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Let us begin. 
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So, we were talking about primary decomposition, so as A be a Noetherian ring. So, the 

results that I proved yesterday, the uniqueness and some of the results, we only need 

primary decomposition. Once the primary decomposition is assumed you can go ahead 

and do that; prove so for example, if you look at the; I think a 5th chapter of Atiyah 

McDonald, there once the ideal is decomposable and has a primary decomposition then. 

So, they assume this and then go ahead and prove a lot of results which we discussed 

here in the Noetherian setting. 

So, many of those results you do not really require Noetherian property, but in 

Noetherian property the primary decomposition is assured. Once the ring is Noetherian 

every ideal has a primary decomposition, therefore all the results that was discussed 

assuming a primary decomposes primary decomposition of an ideal is valid. 



So, let A be a Noetherian ring and I equal to intersection q i, i from 1 to n be a minimal 

prime primary decomposition. Let P i be the radical of q i, suppose S is a multiplicative 

set. So, again when we talk about S inverse I, S inverse I we are I mean S inverse I is 

equal to S inverse intersection q i this is finitely many. So, therefore, this is equal to 

intersection i from 1 to n S inverse q i. 

Now, if S inverse q, I mean S if S does not intersect with q i, this will be a proper ideal, 

now the question is whether this will be a primary ideal? Suppose it is primary is it true 

that the radical if this is S inverse P i. So, let us look at one thing see S intersection q i, 

suppose some S is in S intersection q i, this implies that some S power n S is in q i; that 

means, some S power n. 

Student: (Refer Time: 04:34). 

Sorry, I mean I want to say intersection P i, suppose S is in S intersection P i then this 

implies that some S power n is in. 

Student: Q i. 

Q i, but S power n is certainly there in S as well. So, therefore, S power n is in S 

intersection q i. Now conversely if there is an element in S intersection q i that is 

naturally there in S intersection P i because that is q i is contained in P i. So, this is; 

therefore, S intersection q i is non empty is equivalent to saying that S intersection P i is 

non empty, the advantage here is that we have a prime ideal. 
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Now, let us come back to this now first of all is this is is S inverse q i. So, assume that 

suppose S intersection q i is empty so; that means, S inverse q i is a proper ideal now 

why can we say that is S inverse q i a primary ideal in S inverse A. So, how do you 

check that? 

Student: (Refer Time: 06:34). 

We want to say every, so, if you look at S inverse A mod S inverse q i every nonzero 

divisor should be nilpotent in this ring, but what is this ring? This is isomorphic to S 

inverse of a mod q i. So, if I look at an element here let us say x bar I mean x by S bar 

you can write it as some x bar by S where x bar belongs to this if x bar x bar by S is a 0 

divisor here, this x bar will be a 0 divisor here and that is nilpotent because q i is primary 

in A. 

Therefore, it is nilpotent the element x bar by x by S whole bar is nilpotent here or else 

you can start with you know start with an element x by S times y by t belongs to this the 

normal way one can proceed one can show that it is primary. So, I will leave the exercise 

to you to check that S inverse q i is a primary ideal either way one can conclude this. 

Now, what is the radical of S inverse q i? 

Student: (Refer Time: 08:32) S inverse. 



S inverse of that again we have seen S inverse of radical of q i which is S inverse of P i. 

So, therefore, if S do not intersect with q i S inverse q i is a S inverse P i primary ideal. 

So, what we have proved is that if S intersection q i is empty then S inverse q i is an S 

inverse P i primary ideal. 

Therefore, this is indeed a primary decomposition and if we have to write, this will imply 

that if that is a minimal decomposition I can write this S inverse equal to S inverse q i S 

intersection q i is non sorry, empty I look at intersection over the q i’s which are which 

are in the complement of S i take this is a minimal primary decomposition minimal we 

have not discussed by I leave it to you to check minimal primary decomposition of a S 

inverse I to check minimality what we need to show is that S inverse q i do not contain 

intersection of the rest of them that follows from the minimality here if I am starting with 

minimal decomposition here that this will follow I mean it is direct verification. 

Now, as a consequence of this observation we have a we have another kind of 

uniqueness theorem, first uniqueness theorem that we proved yesterday said that if I have 

a primary decomposition of i, i equal to intersection of q i then the radical of the primary 

components is uniquely determined. 
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Now, suppose I have a; I will write down the statement let us let I be a primary 

decomposition minimal primary decomposition of I and P i equal to radical of q i. 



So, we have I mean these are all the associated primes of A mod I now among them there 

are minimal primes that is isolated primes and embedded primes. So, look at the isolated 

primes let P 1 up to P r be isolated prime ideals of isolated associated primes of; that 

means, these are the minimal ones. 

Now, suppose I take S be equal to A, the complement of S i I will just write this S i, S i 

is A without P i, i from 1 to r. I look at the multiplicative set S i equal to the complement 

of these minimal associated primes then what would be S inverse I this I mean S i 

inverse I this would be? 

Student: S i inverse q i. 
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So, this is equal to intersection of S i I mean intersection of S i let us write this as q j, but 

now this is one of the minimal primes here and I am taking the complement of the or this 

minimal prime. So, this S i will intersect with all other primes because this is let us say S 

1 is A without P 1, S 1 will intersect with all other prime ideals; that means, S inverse I is 

equal to S i inverse q i that will be the only one that will survive since S i intersection P j 

is non empty for all j not equal to I which is equivalent to saying that S i intersection q j 

is non empty for all j not equal to i. 

Therefore, this will in this intersection only one of them will survive which is the 

primary components which are; now forget about this part if you look at this part this is 



you know we are taking some multiplicative set this is independent of the primary 

decomposition I am taking see we have proved that the primary components are unique 

the prime I mean prime ideals associated to I are unique. So, I take those prime ideals 

among them I look at the minimal prime ideals look at I take one of them and look at its 

complement and apply the localization. 

What we get here is S inverse q i this says that- however, your primary decomposition is 

primary decomposition the primary ideals involved need not be unique, but then the 

minimal primary com I mean the primary ideals corresponding to the isolated prime 

ideals they are uniquely determined right S inverse q i is now uniquely determined. So, 

therefore, the second uniqueness theorem says- let A be Noetherian and I be I equal to 

intersection q i and be a minimal prime decomposition primary decomposition let P i be 

equal to q i radical of q i and let then the primary components the primary ideals 

corresponding to the isolated primes are uniquely determined. 

So, S i is q i, therefore the primary components given by phi inverse of S i i where this is 

components corresponding to. So, let me corresponding to the isolated primes are given 

by phi I inverse of S i inverse of I where S i is complement of P i and phi I is the natural 

map from A to S i inverse of A. So, this set has nothing to do we are not talking anything 

about the primary decomposition of I when we are describing the primary components 

corresponding to the minimal I mean the associated minimal associated primes or the 

isolated components. 

Student: (Refer Time: 20:31) components so. 

Components of S inverse I; sorry, components of primary components of I. 

Student: (Refer Time: 20:42). 

So what we are here see earlier when we try to prove the uniqueness of the first 

uniqueness theorem how did we prove it we proved that the primes that appear in the in 

the as radical of primary components is they are precisely the prime ideals of the form 

radical of I colon x where x varies over A. So, that has nothing to do with we have 

expressed that set independent of what primary decomposition you are taking. 



So, there that that is how it is you know we proved the uniqueness similarly here we are 

saying that if I take the primary components corresponding to the ideal S inverse I are 

precisely of this I mean the minimal primes are precisely of this form. So, this does not 

really talk about because you know once the primes are uniquely determined we can use 

that uniqueness to get S i, S i we are not talking about q i’s how ever your primary 

decomposition is S i’s is are uniquely determined. 

Now, you just look at phi I inverse of S i i where S i is the complement of minimal prime 

minimal associated prime. So therefore, this implies that the. So, that proves the assertion 

this implies that the minimal components are uniquely determined. So, this is another 

uniqueness theorem. So, this one we saw yesterday in the example of x square comma x 

y x square comma in x square comma x y there was x intersection x square comma y that 

was one decomposition and the other was x intersection x square comma x y comma y 

square or y power in for any n. 

So, the primary component corresponding to the embedded primes are varying, but the 

primary component corresponding to the isolated component is x itself. 
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Now let us look at some more interesting properties of A ideals in Noetherian rings. 

Suppose I is; this is if I is finitely generated then I contains a power of its radical, if I is 

finitely generated then the ideal contains a power of its radical; that means, there exists 

see I is contained in radical of I. So, I have I is contained in radical of i, but what this 



says is that there exists some m such that this is true this is when I is finitely generated 

how do you prove this if I is finitely generated, I guess I will require a radical of I is 

finitely. 

Student: (Refer Time: 24:54). 

If radical of I is finitely generated then I contains the power of its radical. So, let this be 

equal to a 1 up to a n, each element in the radical there exists a power which is contained 

in I. So, this implies there exists k I in n such that a I power k I belongs to I now if I take 

my k to be summation k I i from 1 to n then radical of I whole power k will be contained 

in I right how what is this see this will be generated by radical of I is generated by a 1 up 

to a n. So, whole power k will be generated by this is span of a 1 power r 1 up to a n 

power r n where summation r I is k now k is summation k i. So, therefore, at least one for 

at least one I r I will be bigger than to k i. So therefore, for each therefore, this each 

element will be in I therefore, the whole of this in I. 

So, corollary of this is that every ideal in a Noetherian ring contains a power of its 

radical because in a Noetherian ring every ideal is finitely generated. 
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So, you start with any ideal its radical is finitely generated take its radical and take the 

generators and do this and another corollary to this is in a Noetherian ring nilradical is 

nilpotent take I to be equal to 0 what is nilradical collection of all. 



Student: Nilpotent. 

Nilpotent elements; that means, set of all n such that x power n is 0 which means radical 

of the nilradical is radically of the 0 ideal. So, therefore, if I take in corollary in the 

previous corollary take I equal to 0 then in a Noetherian ring it contains some power is 

contained in some power of its radical is contained in the ideal therefore, some radical of 

I which is the nilradical; nilradical whole power something is 0 another interesting the 

same time not very difficult let A be a Noetherian ring and m be a maximal ideal then for 

an ideal I the following are equivalent I is m primary radical of I is m and this is m 

power n is contained in I contained in m now if I is m primary it means its primary and it 

is it is radical is m. So, 1 implies 2 is straightforward radical of I is m then of course, I is 

contained in m and we are in Noetherian ring. Therefore, every ideal contain a power of 

its radical. So, therefore, m power n is contained in it. 

Now, suppose m power n is contained in I contained in m, we want to prove I is m 

primary this equation says that apply radical on this equation, what do you get? Radical 

of m power n is contained in radical of I is contained in m. Now what is radical of m 

power n? 

Student: (Refer Time: 31:16) m. 

M itself, because for m power n m is the only ideal maximal ideal containing m power n, 

therefore, m power n radical of m power n which is m, m is contained in radical of I 

contained in m which means radical of I is m if radical of I is a maximal ideal then it is 

primary this is what we proved something. So, that proves three implies one I leave it 

you to complete that. 

Now, let us go ahead and learn some properties of Artinian rings. 
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So, let us recall a ring is Artinian if every descending chain of ideal terminates that if I 1 

I 2 is a chain in a chain of ideals in a then there exists k such that I n is I n plus 1. So, on 

one when we talk about the Artinian rings one important property that we proved earlier 

is that this is recall suppose a is a ring such that the 0 ideal is a finite product of a some 

maximal ideals of a is a ring whose 0 ideal is a finite product of maximal ideals of a then 

a is Noetherian if and only if it is Artinian this is something that we proved some time 

back. So, I if this is m 1 up to if I can write 0 as m 1 up to m n then I can I have a chain 

product m 1 up to m n contained in m, m 1 up to m n minus 1 contained in m 1, m 1 up 

to m n minus 2 each quotient is a vector space over a mod corresponding m I. 

So, now by induction we can say that each module I mean each ideal product is as a 

module over a it is Noetherian if and only if Artinian and by induction we prove 

ultimately reach m 1 and then a that is the that is how we proved this result now Artinian 

rings are and the all the examples that we looked at they are all you know we will close 

to being Noetherian or even stronger than being Noetherian. So, we will see that that is it 

is true in general but before that. 
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Let us look at some nice properties of Artinian rings in an Artinian ring every prime 

ideal is maximal suppose I take a prime ideal let a be an Artinian ring and P be a prime 

ideal of; we want to say that P is maximal or in other words we want to say that a mod P 

is a field. So, let B be equal to a mod P we want to say that B is. 

Student: Field. 

Field we know is what we know is that B is. 

Student: Integral domain. 

Integral domain now we also know that B is Artinian because A is Artinian and P is an 

ideal in a therefore, B is Artinian. So, B is an Artinian integral domain we want to say 

that B is a field. So, let us start with a nonzero element B then we have you know then 

there exists this chain the chain x contained in x square contained in x cube and. So, on; 

that means, since B is Artinian there exist some n such that x power n is equal to x power 

n plus I for all I bigger than to 1. So, I can write x power n is contained in the ideal plus 1 

or in other words. So, I can write this is equal to r times x power n plus 1 for some r in B 

now B is an integral domain. 

Therefore, I can cancel x power n; that means, since B is an integral domain one is equal 

to r x that implies x is a unit and that implies B is the field and that is exactly what we 

wanted to prove. So, what we have proved here is that an Artinian integral domain is a 



field and this is this can be thought of as a corollary to that result an Artinian the proof is 

if you start from here what we have proved is an Artinian integral domain is a field and 

this is. In fact, a corollary of that result so, in an Artinian ring there are no non maximal 

prime ideals every prime ideal is maximal. 
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Now, equally interesting property of Artinian ring is that there cannot be too many of 

them that is there exists in an Artinian ring there exists only finitely many prime ideals or 

maximal ideals now I will write as maximal because there cannot be too many of them. 

For this look at this set consider the set sigma equal to m 1 up to m n set of all I will 

write in words that is easier to finite intersection of maximal ideals I take some finite 

maximal ideals intersect and put them in this, this is certainly a non empty set I would 

assume that it is not a field I am starting with an arbitrary Artinian ring. 

So therefore, every collection of ideals has a minimal element in Artinian ring in 

Noetherian ring any collection of ideals has a maximal element here in Artinian ring any 

collection has a minimal element then sigma is non empty and sigma has a minimal 

element. So, I will denote this by m 1 intersection m n. Now, I take any other maximal 

ideal let m be a maximal ideal then this m intersection m 1 intersection m n this is an 

ideal that is contained in m 1 intersection m n this is which means this is smaller than the 

minimal it cannot be because this is indeed the minimal. 



So therefore, these two are equal this implies this is equal to m 1 intersection up to m n 

this is an element in sigma and this is contained here, but then this is contained in if there 

is a comparison between two ideals then this is contained in. So, therefore, these 2 are 

equal that implies that m contains m 1 intersection m n I intersection j is equal to I if and 

only if j is contained in j contains I. So therefore, this m is m contains m 1 intersection m 

n, but when a prime ideal contains a finite intersection. 

Student: (Refer Time: 45:14). 

One of them is contained here this means that m contains m I for some i, but that means, 

m is equal to m i. So, if m is if m is any maximal ideal of a it has to be one of them; that 

means, the only maximal ideals here are. 

Student: M 1 up to m n. 

M 1 up to m n. So, that proves that it has only finitely many maximal ideals. Now, more 

properties of Artinian rings I will take up on in the next class. 


