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Let us see that first integral closure of Z in Q. So, when we are talking about domain, I 

do not really have to specify this and I say integral closure Z by default it is in Q is Z. 

This is easy to see if you take any p by q in Q, p, q relatively prime. And if you write 

down an integral equation p n by q n plus a 1 p n minus 1 by q n minus 1 a n. If this is 0 

then that would say that p n is equal to some q times something; that means, p n is equal 

to Q times something that will say that p and q are not co prime. 

And more generally if A is a UFD then integral closure of A is A itself. What we are 

using here is that you have a prime factorization for p and q; and you have this you know 

in fraction field every element can be written like this. Same thing here that will if I have 

something in the integral and fraction field of A, I have such an equation and ultimately 

we get there exist a prime which divides p as well as q, so unless q is 1. 

So, therefore, we have integral closure of A or in other words a UFD is integrally closed. 

We say that, so integral closure of A in fraction field of A is A itself which means a is 

integrally closed. Let us look at some other examples. Let us take Z. So, we saw that 



 

 

integral closure of Z in Q is Z itself. What if I take root 3? What is the integral closure of 

Z in Q root 3, Z is certainly there. Can you tell me one more element? 

Student: Root 3. 
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Root 3 is there; root 3 satisfies equation X square minus 3 right. So therefore, integral 

closure of a Z this contains Z root 3. Can we say that this is indeed Z root 3? How does 

any element in Q root 3 look like. Some a plus b root 3, where a and b are in Q. So, let us 

write let p 1 by q 1 plus p 2 by q 2 root 3 belong to Q root 3 which is integral over Z root 

3. 

Student: (Refer Time: 05:05). 

Sorry, over Z. Can we say that this is I mean; I can write this element as p 1 q 2 plus p 2 

q 1 root 3 divided by q 1 q 2. Now, the question is whether see we want to see whether 

integral closure is Z root 3 itself. So, the question is whether q 1, q 2 is equal to. 

Student: Plus minus 1. 

Plus minus 1, so how do we say that. So, let us write like this, you know let us. So, 

suppose this has an integral equation over Z, what is that mean p 1 q 2 plus p 2 q 1 root 3 

divided by q 1 q 2 whole power n plus some a 1 p 1 q 2 plus p 2 q 1 root 3 over q 1 q 2 a 

n is 0. What is that mean? Here again you can do the same process q 1 q 2 power of n. 



 

 

So, maybe slightly easier method would be if at all there is an equation. Now, I think let 

us do this. So, if I multiply by q 1 q 2 power n, what we get is p 1 q 2 plus p 2 q 1 root 3 

whole power n plus, this is n minus 1 a 1 q 1 q 2 p 1 q 2 plus p 2 q 1 root 3 a n q 1 q 2, 

this is 0. So, see there are see in this one in each of them what would be a, what are the 

powers that will have only integers. See, this will again be equal to some alpha plus beta 

root 3. 

Student: (Refer Time: 08:07). 

I mean what are all those will be absorbed in alpha. This will be equal to I mean this will 

reduce to a form alpha plus beta root 3. Now, this says that alpha is 0, beta is 0. Now, 

you have to see what are alphas here alpha coming from each place and then try to 

reduce it. So, this is not that easy. Now, let us look at another method. So, this is you 

know one can do it, one can look at ultimately you will have you know some p 1 q 2, I 

mean you will have to get a contradiction with the fact that q 1 and p 1 are prime q 2 p 2 

are prime to each other using this. 
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So, let us look at another example. This is look at A equal to k t square t cube this 

contained in the ring k t. What is mean by this ring, I am looking at all the polynomials 

with t square and t cube. So, the monomials here as a vector space basis, this is generated 

by 1, t square, t cube and then t 4, t 5 all of them are there it generated by this. Now, this 

ring is see if you look at the map k X, Y to k t square t cube X going to t square, and Y 



 

 

going to t cube. Then this k t square t cube is isomorphic to k X Y modulo Y square 

minus X cube. 

The kernel of this map kernel phi is, so that is not very difficult to prove, you do not 

require too much assumption to prove that this k X, Y is. So, every this is certainly 

contained in kernel. Now, what we need to prove is that if a polynomial is map to 0, then 

you can indeed divide by Y square minus X cube. So, this ring corresponds to the curve 

Y square equal to X cube. See, if I have a I mean I said in the beginning, if I have an 

algebraic set which is satisfied by certain polynomials, then there exists some ring 

corresponding to that. That is if I have an algebraic set, I can look at I of X to be set of 

all f in the polynomial ring such that f of a is 0 for all a in X. 

So, this is nothing but the ideal corresponding to the curve Y square equal to X cube or 

in other words, the curve this one. And one can see that this is singular at the origin, the 

curve is singular at the origin, this is we do not have a proper tangent at this point. So, it 

is singular at the origin. Now, let us that is the geometry behind it. 

(Refer Slide Time: 13:09) 

  

Let us come back to the algebra here. What is the integral closure of? So, what is the 

fraction field of this? See, this is contained k t, what is the fraction field of this. So, this 

is denoted by k round bracket t, you look at all you know polynomials f t by g t. Now, 

what is the fraction field of this? So, it will certainly be contained here. Now, you can 

see that if A is this, this has t in it, because t cube by t square is there in this one. So, the 



 

 

fraction field should contain k as well as t. So, it has to be this itself this is the smallest 

field containing k and t. So, therefore, fraction field of A is k t. So, now let us look at the 

integral closure of A in the in its fraction field which is k t. 

Now, what about this extension what can you say about this extension, is that an integral 

extension is t integral over A t is integral over A right that means, integral closure of A 

contains k t. I want to say that ok. So, suppose I take a polynomial suppose I take A an 

element in. So, now, what can you say about k t, this is PID, and hence CFD, therefore, 

this is integrally closed by the exercise k t is integrally closed. 

If I start with some element here, which is integral over A, it is naturally integral over k t. 

So, if I have something here which is integral over this, it is integral over this, but then 

this is integrally closed here. Therefore, that element has to be in k t itself that means, 

integral closure of this is k t itself. This implies that integral closure of A is equal to k t. 

So, the integral closure of k t square t cube is k t. So, here what we are seeing is that this 

ring is not integrally closed. 

When the field k is algebraically closed, there is close relation between the integral 

closure and smoothness of the curve. See this ring corresponds to I mean another way to 

look at this is the curve is nothing but curve can be parameterized by t square t cube. The 

curve is nothing but t square t cube where t varies is over r. So, therefore, this is a 

parameterization for the curve. So, this is the ring corresponding to the curve or this is 

the ring corresponding to the curve. 

Now, the normality or sorry integral closedness of this ring in fact, it is equivalent to 

saying that the ring the curve c is nonsingular, when the field is algebraically closed. I 

mean if you are taking over C or similarly algebraically close fields. So, this is again 

something that you will probably see if you take a advanced course in algebraic 

geometry. So, what we have used here is see if this is integral over this, this is integral 

over this, and an element here is integral over this implies it is integral over this and 

therefore, it belongs to here. 
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Now, one can ask the following question. Suppose A is I have A contained in B 

contained in C are rings, B integral over A, and C integral over B does that necessarily 

say that C is integral over A. So, this is called Tower law let A contained and B 

contained and C be rings such that A this is integral and B over C is integral. Can we say 

that A, I mean C is integral over A? Let us check. So, I will write rest proof and see 

where do we reach. 

Let us start with an element C, when do you say something is an extension is integral 

every element is integral over the base ring. So, let us start with an element in C what we 

know is that X is integral over B. So, therefore, there exists b 1 etcetera up to b n in B 

such that X power n plus b 1 X power n minus 1 plus etcetera b n is 0. Now, what do we 

know about B, B is integral over A; that means, each b i is integral over A, this is 

equivalent to saying that. So, each b i is integral over A, this is equivalent to saying that 

this is a finitely generated A-module. Now, what we know is that X is integral over B, 

but you do not need whole of B, but we only need this ring, X is integral over this ring; 

or in other words if I attach X to this, it will be a finitely generated module over this ring, 

but this is a finitely generated. 

Student: A-module. 

A-module; therefore, you attach X to this that will remain to be a finitely generated A-

module and that was one of the equivalent condition for X to be integral over A. There 



 

 

exists an A algebraic C containing A and containing the element X that was the third 

condition that we wrote down yesterday. So, what is the conclusion then C is integral 

over A. So, let us write this. Since x, so let me call this A prime. Since x is integral over 

a prime A prime x is finitely generated A-module, A prime is a finitely generated A-

module and A prime x is a finitely generated A prime module. 

Therefore, A prime x is a finitely generated A-module and that implies that x is integral 

over. So, what we have shown is that every element in C is integral over, so this is called 

Tower law. 
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So, an immediate corollary is if C is the integral closure of A in B, then C is integrally 

closed in B, I mean the forward part is obviously true. So, if C is integral over A then 

obviously, every element of B is integral over A, and C is integral over B as well. For 

that you do not require any you know proof, I mean in the sense that that is trivially true. 

So, here what we are saying is that if C is integral closure of A and B, I collect all the 

elements in B which are integral over A, then you will take any element in C which is 

integral over any element in B which is integral over C, then by this that has to be 

integral over A. And hence it has to be in C itself. So, therefore, C is integrally closed in 

B. 

Now, suppose I have be rings. Let J be an ideal in B, and I be equal to J intersection A 

the contraction of J into A. Then we have this natural inclusion then we have this natural 



 

 

inclusion a mod I going to B mod j, x plus I map to x plus J, x in A. So, if I take two 

representatives x and y, x minus y is in I, if and only if it is in J, because X and Y are in 

A. So, therefore, this is well defined as well as injective map. Now, if B is integral over 

A, do we have some relation like this if B is integral over A, then B mod j is integral 

over A mod I. I mean straightforward right, do I need to prove that if I have an integral if 

I take an element X plus j in B mod j then X is. 

Student: Integral over. 

Integral over A; so I have a an equation with coefficients coming from A, now we just 

have to take that equation model of I. So, let us complete this. If x by s belong to S 

inverse B then for x and s x an B there exists a 1 up to a n and a such that x power n plus 

a 1 x power n minus 1 plus etcetera a n is 0. And that implies that x by s whole power n 

plus a 1 by s x by s whole power n minus 1 plus etcetera a n by s power n is 0. 
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And that implies x by s is integral S inverse A, because each x I by s or A I by S power J 

A I by S power I belongs to S inversely. So, there are some nice you know applications 

of this. This is one of the important applications. Let A contained in B be integral 

extension of integral domains then A is a field if and only if B is the field. Well this is 

not a direct application of the earlier proposition, but it is an important result in this 

direction. So, what this says is that if I have an integral extension of integral domains 

either both can be fields or neither of the mesa field. It is easy to prove. So, in each case 



 

 

what we need to prove is that there exists multiplicative inverse. So, let us start with A be 

a field. So, I start with a nonzero element in A, I want to say that it has inverse now. 

Student: (Refer Time: 31:10). 

Sorry nonzero element in B, to say that it has multiplicative inverse. Now, x is integral 

over A, there exists a 1 up to a n in a such that x power n plus a 1 x power n minus 1 plus 

etcetera a n equal to 0. Now, we can assume that this you know this is an equation of 

minimal degree, and hence we can assume that a n is nonzero. See what happens if a n is 

0; if a n is 0, I will have x times x n minus 1 plus dot dot up to a n minus 1 is 0, but it is a 

we are in an integral domain. Therefore, either x is 0 or the other one is 0. So, we can 

always reduce this equation degree of the equation ultimately get to a minimal equation. 

So, without loss of generality, we can assume that this is an equation of minimal degree 

and hence a n is nonzero. 

Now, can you see an inverse here? I take minus a into the other side and multiply by the 

a n is in A, and A is a field. So, therefore, I can write x times minus a n inverse x n minus 

1 plus a 1 x n minus 2 a n minus 1, this is equal to 1. I take minus a n and a into the other 

side and multiply by its inverse. So, therefore, this is an element in B therefore, I have an 

inverse in. 
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Conversely assume that B is a field and start with a nonzero element in A. Now, A is 

contained in B, B is a field therefore, there exist. Since B is a field, there exists y prime 

in B such that y, y prime is 1. Now, y prime is integral over A, therefore, there exist a 1 

up to a n in A such that y prime power n minus n plus a 1 y prime n minus 1 plus etcetera 

a n is 0 multiplied by multiplied by y power. 

Student: N minus 1. 

N minus 1 multiplying by y power n minus 1, we get y prime plus a 1 a 2 y a n y power n 

minus 1, this is 0 or in other words Y prime is a linear combination of. 

Student: Elements in A. 

Elements in A; therefore, y prime is in A, this implies A is a field. 
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Now this has a very nice application. Let A contained in B be rings, with B integral over 

A. Let n and B be a prime ideal and, so p be a prime ideal and q be equal to p 

intersection A. Then p is maximal if an only if q is maximal, this is direct application of 

the cell that we proved earlier and this one, because A mod q is integral over B mod p 

that is what we proved just before, therefore B mod p is integral over A mod q. 



 

 

So therefore, p is I mean B mod p is a field if and if only if A mod q is a field which is 

same as saying p is maximal if and only if q is maximal. We will continue in the next 

class. 


