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Operation and Modules (Continued) 

 

Let us begin with the question that we addressed last time. 

(Refer Slide Time: 00:28) 

 

Suppose I have a an ideal; let A be a ring I be an ideal of A and M be an A module. 

When can is M an A mod (Refer Time: 01:12) module. Can we think of M as an A mod I 

module, in a natural way; that is how do you expect the natural way? See this is an 

abelian group; basically we need to define a scalar multiplication. So, how do you define 

scalar multiplication here? X bar m, this is the natural way of defining. But then, if I take 

two representatives of x bar then may not be equal. So, what is the condition that is 

required? 

So, what I want is if I take any two representatives that should imply that xm is ym for 

any M in M or for all M in M. Then only this definition will make sense. But what does 

this mean? Does this mean x equal to y? So, this would imply that x minus y times M is 

0 for all. 

Student: M belongs to M. 



M belongs to M; or in other words. 

Student: X minus y should be (Refer Time: 02:59). 

X minus y should be in the annihilator of M. See here we have started with x bar equal to 

y bar and we have concluded that for this to be a M to be naturally A mod I module we 

need x minus y to be in the annihilator of M. This says that x minus y belongs to I. And 

what indeed we want is x minus y should be in the annihilator. So, what condition would 

you like to impose? 

Student: (Refer Time: 03:52). 

See this is the condition that we started with, right x minus y belongs to I which is same 

as say x bar equal to y bar. And then we said that from here I want this property, so 

ultimately we got x minus y belongs to annihilator. Or in other words what we want is I 

is contained in annihilator. 

(Refer Slide Time: 04:26) 

 

So, therefore, the observation that we have made here is if I is contained in the 

annihilator of M then M is an A mod I module. 

As I said earlier, see if you look for example, if you take Z and Z let us say Z 5. We 

cannot really say that Z is a Z 5 module. So, start with Z n z, Z is a Z module, but Z is 

not a Z mod 5 Z module, naturally. You can of course define all scalar multiplication to 



be 0; that will define a null structure on the module, but the natural definition is this. 

With this we do not have a module structure on Z over Z mod 5 Z. So, you have A 

module M over a ring A does not mean that you can have A module structure on M over 

A mod I. For that what we have found is I should be contained in the annihilator, and 

then only it is possible. 

So, now let us look at some more properties of modules. So, a set of elements x lambda, 

lambda belong to ok; M is said to be a generating set or set of generators for M if, when 

would you say a set is a generating set? 

Student: (Refer Time: 07:27). 

So, think of the vector space you must have gone through that; to start with. 

Student: (Refer Time: 07:31). 

Every element can be expressed as a finite linear combination of elements coming from 

here. Or in other words if M is equal to summation a lambda x lambda, I will just write 

finite here a lambda belongs to A; lambda belongs to A. So maybe I will write this call 

the set S x lambda in S. And if S is finite then M is said to be finitely generated. So now, 

taking ideas from the linear algebra course that you have gone through one may you 

know tend to talk about linear independence and basis and so on. So, one of the linear 

independence of course you can define the same way. Like this finite linear combination 

is 0 if and only if all the coefficients are 0. A set is said to be linearly independent if you 

take any finite linear combination nonzero finite linear combination cannot be 0. 

In this case one can define to be the same, now the question is the: first question is can 

we have a generating set which is linearly independent? You start with any generating 

set can we reduce it to a linearly independent, I mean maximal linearly independent set 

which is a span of whose span is the whole module and so on. So, the module theory is 

not as fortunate as the vector space theory. 



(Refer Slide Time: 10:16) 

 

For example, if you take Z, take one of the nicest example; Z over Z. If you take the 

module Z over Z itself, can you give me generating set? 1 right, this is a generating set. 

And this is linearly independent right, alpha times 1 is 0 if and only if alpha is 0. But 

now in vector space theory we have much more. You take any generating set from that 

you can throw out if needed few vectors and get a generating set which is linearly 

independent. In this case suppose you take the generator taking set 2, 3; this is certainly a 

generating set. 

Now, is this linearly independent? Minus 3 times 2 plus 2 times 3 is 0, therefore this is 

not linearly independent. But can you throw away one of them? Still generate whole Z, 

no. So therefore, this is a generating set; in fact this is a minimal generating set which is 

not linearly independent. 

So, unlike in the case of vector spaces here minimal generating set need not be linearly 

independent. And similarly a maximal linearly independent set need not be a generating 

set, for example 2. If you take simply 2 that is a maximal linearly independent set. In 

fact, you take any integer single integer that is going to be maximal linearly independent 

set, but that is not a basis unless that integer is 1 or minus 1. So therefore, the theory of 

modules is no slightly more general, and it is does not behave as nice as in the case of 

vector spaces over fields. So, let us look at one or two more examples of generating set. 



Suppose, your ring A is let us take k x k a field and I to be all polynomials with constant 

terms 0, is this an ideal? There is certainly A module over A. Can you tell me what a 

generating set for this? What is a generating set for this? 

Student: X. 

X right. So, ideal I is generated by x, I will write. Usually either this or another notation, 

both the notations will be used. Can you think of A module which is infinitely 

generated? Think of vector space theory; if you borrow the example from vector space 

theory you can always cook up infinite dimensional vector space over a field. 

(Refer Slide Time: 15:03) 

 

Here itself if you take A to be, A to be? 

Student: (Refer Time: 15:11). 

Well, A to be C ab; this is what you mean, and then what is M then? 

Student: (Refer Time: 15:25). 

Well, that will require some; M cannot be c dash, can it be c dash? Will it be A module 

over, but how do you? I guess you are thinking too complex, let me just then; I will take 

A to be k and M to be k x, it is a infinite dimensional vector space over k rights that is a 

natural infinite dimensional infinitely generated module over k. And if you take A to be 

R and M to be C ab; again example coming from the vector space theory. 



Suppose, I take A to be; so here you will see some sub rings of k x k xy and so on. So, if 

I take A to b k M to be; let me take the A to be not k x square, xy, xy square, xy cube, 

and so on. So, this is a ring and if I take I to be this ideal x square, xy, xy square, xy cube 

and so on. Can you see that this is infinitely generated? Can you get this from here? How 

do you get this from here? The only possibility is to multiply by y, but in the ring it is not 

there; y is not there in the ring. I mean no pure power of y is there in the ring. So, none of 

these can be obtained from previous nevertheless. Therefore, this is infinitely generated 

A module. 

(Refer Slide Time: 18:54) 

 

Suppose I have a; see in the case of rings, in the case of vector spaces, in the case of 

groups you have studied, now if you have a collection of vector spaces V 1, V 2 and so 

on of vector spaces over a field F then you can form its product right: Cartesian product. 

Have you seen direct product direct? Some direct product, there is a difference between 

these two. So, suppose I have a collection of A modules be a collection of A modules, 

then we can form what is called direct sum of M lambda, lambda belonged to lambda. 

This is set of all sequences x alpha, I mean x lambda lambda and lambda, such that x 

lambda is 0 for all but finitely many. This is all tuples where it is a 0 after a finite stage. 

And I can form the product. So, this x lambda in M lambda and x lambda is 0 for all but 

finitely many lambdas. Product M lambda lambda n lambda this is defined as x lambda 

sequence with no restriction; that is the only. So, if lambda is finite then? 



Student: (Refer Time: 21:38). 

Then the direct some M lambda is same as a product M lambda. And otherwise they are 

not the same, I mean if your modules are nonzero modules and the indexing set is infinite 

then they are not the same; product and directs sum they are not the same. Because in 

this one there would be an infinite nonzero sequence, while here there are none like that. 

(Refer Slide Time: 22:26) 

  

A module M is said to be free if; so this is somewhat similar to the case of vector spaces, 

we do not really have. Again as I said see in the vector space theory, once you say it is a 

vector space over A module over a field F there is a unique either infinity or a unique 

integer assigned to it which is the cardinality of minimal generating set or a maximal 

linearly independent set. But in the case of modules we have already seen that there is 

nothing like that. In general there is no dimension in some sense. 

But in for a certain subclass of modules one can, one has this. These classes of modules 

are called Free modules. So, what is free modules? We define free module to be the way 

exactly that a vector space looks like, in the case of linear or in the case of vector spaces 

over fields. If you take any finite dimensional vector space or you take any vector space 

it is a direct sum of phi. If you take any vector space V over a field F, if it is finite 

dimensional then we know that this is isomorphic to F n where n is the dimension of V. 

And this is true in general aspect; it is a direct sum of. If you take any infinite 

dimensional vector space also it is product of F. 



So, here we will define A module to be free module if it is exactly of this form. Or in 

other words if M is equal to direct some M lambda with M lambda isomorphic to A for 

all: each M lambda is isomorphic to A. Or in other words we can say that M is 

isomorphic to; this is the notation for you know direct sum of as many copies of A as the 

cardinality of lambda: this is a notation. For example I have, if I take M to be M direct 

sum M; sorry A direct some A. So, this is we usually denote this by A. And A direct sum 

A n times is denoted by A power n, if the lambda is finite then we denote it like this 

instead of this. 

So, just to take examples from; ok sorry I forgot to mention one thing. See again this is 

something that you have already seen in the case of rings and module vector spaces and 

groups and so on. This is again in A module, remark direct sum M lambda and the 

product M lambda is an A module or A modules. So, when you say they are A modules 

you need to specify what should be the operations; the addition and the scalar 

multiplication. 

Student: (Refer Time: 27:49). 

Component wise right: with component wise addition and scalar multiplication. Let us 

look at one or two examples: can you give me an example. 

(Refer Slide Time: 28:18) 

 

So, a module over Z which is not free gives me an example. 



Student: (Refer Time: 28:33). 

P Z, why is this not free? Is this free or not free? As a module over, so this is A, this is 

M, is M free A module? How do you check whether M is a free A module or not? The 

question is. So, here we are saying it is a direct sum of like this with each M isomorphic 

to M lambda isomorphic to A. So, here it is kind of obvious that it has to be. 

Student: Isomorphic (Refer Time: 29:28). 

Isomorphic to Z if at all; so how do you check whether it is isomorphic to Z or not? 

Student: (Refer Time: 29:38). 

You have to define a map right, you have to define a homomorphism a map which is a 

homomorphism injective and subjective. If you are able to do this then, it is an 

isomorphism they are isomorphic. Now looking at this can you think of a map to start 

with, from Z to here or from here to Z. 

Student: (Refer Time: 30:02). 

So, from Z to? 

Student: P z. 

P z. 

Student: N going to p n. 

n going to p n, is this an A module homomorphism? N 1 plus n 2 is mapped to p n 1 plus 

p n 2. Similarly p I mean M n is mapped to p times M n which is M times p n which is M 

times phi, if I call this to be phi. So, then phi is, is this injective? It is injective right. This 

is an integral domain and you are doing a multiplication map, that can never be nonzero 

image element cannot be taken to a 0 element. So therefore, this is injective. Is it 

surjective? 

Student: Yes sir. 

Yes, so this is an isomorphism. So therefore, what does that say? 



Student: (Refer Time: 31:19). 

 And what did we start with? We wanted to check whether M is? 

Student: Free or not. 

Free or not; so what does it say? 

Student: (Refer Time: 31:33). 

M is a free Z module. So, what can you; I mean can you more generally say can you 

generalize this statement? That is if you take any n that is going to be a free Z module, 

every ideal is a free Z module. Can you say this more generally? Suppose instead of Z 

can you replace Z by some special kind of ring and any integral domain. 

Student: (Refer Time: 32:21). 

If you take any principle ideal domain and take any ideal in the principal ideal domain 

that will be a free A module. So, A is a PID and M is an ideal in A, then M is isomorphic 

to a as A modules. So, that implies M is free. 

(Refer Slide Time: 33:04) 

 

So, let me give you an exercise to think about. Take A equal to F xy. Find some free 

modules over A? Well, do not give me examples like A direction A A direction A 

direction, you know that is by definition they are free models. What I am asking for 



some ideals of A or some modules over A which are free. Think about it; now give me 

some examples which are not free. 

Student: (Refer Time: 34:14). 

Z x this is; so your A is Z and M is Z x. This is free, not free? It is not finite that is. 

Student: (Refer Time: 34:38). 

So, see there is one way that to say it is not free you have to say that M cannot be 

isomorphic to something of this form. 

Student: (Refer Time: 35:03). 

In this case this is isomorphic to right. See every element is a finite tuple in some sense 

right. So, one can define this map A naught plus A 1 plus etcetera up to A n; A naught 

plus A 1 x plus etcetera A n x power n is mapped to A naught comma A 1 comma a n 

and then 0 everywhere else. That will be A module isomorphism between these two 

modules. So, again this is Z x is a free Z module. So let me ask you; how about is Z 5, let 

us start with Z 2 free A module. 

Can we say Z 2 be a free A module. Z 2 if I have any map from an infinite set to a finite 

set it cannot be injective, as simple as that. So, any homomorphism from some direct 

sum of that form; direct some lambda of Z this any map to Z 2 is not injective. This is 

pure set theory, there is homomorphism or not any map from direct sum like this to Z 2 

cannot be injective, because of properties of finite sets; basic properties of finite sets. So 

therefore, this is Z 2 is not a free module. So, can you make a general statement? Any 

finite abelian group. 



(Refer Slide Time: 38:04) 

 

Student: (Refer Time: 38:02). 

Is not; And if you take Z ni, i from 1 to R let us say is they are all see the any abelian 

group is in Z module. So, they are all Z modules, but this is not a free Z module. 

Now, what if I take infinitely many of them? Up to here we did not need any group 

theory, we only needed the definition of free modules and to say that a basic set theory 

from an infinite set you cannot give a injective mapped to a finite set. But what if I take 

direct sum Z ni i from 1 to infinity, ni in Z well Z n maybe. So, you shall with the usual 

notation, yes we will expect it to be natural numbers. I can even exclude 0 and 1. 

Therefore, is this free Z module? Think about this. Why it cannot be a well; so let me 

reveal the answer it cannot be a free Z module. Now think about why this cannot be a? 

Student: (Refer Time: 40:16). 

So, the question is whether we have an isomorphism like this. There is an isomorphism, 

does there exist an isomorphism? 

Student: (Refer Time: 40:45). 

Yes. 

Student: And each component is finite. 



Yes. 

Student: So how (Refer Time: 40:53). 

That is exactly you have to prove right. See earlier arguments say that you cannot have a 

injective map from here to here, because of properties of finite sets. But you have here it 

is, this is an infinite set. Why we cannot have? Again Z is infinite. 

Student: (Refer Time: 41:27). 

That is ok, that does not follow from the basic set theory. 

(Refer Slide Time: 41:39) 

 

See for example, if you take natural number take N from N to 1. Is there an injective 

map? No, N to 2; no. Now this is my M i this is M i, but from n to union M i i from 1 to 

infinity there is an 1 1 on 2 map. So, we cannot really say, but the idea is there from what 

you said. Each Z ni is a finite Z module. That Z ni sits inside here, you can think of it as 

a sub module of this module. 

So, I will probably leave it at that point you know, you should now be able to complete 

it. So, what are these? You know we will just explore more properties of modules and 

then come back to this question later maybe. I mean does not need any more theory it is 

straight forward from here. 
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Suppose I have a finitely generated M be a finitely generated A module. Let x 1 up to x n 

be a generating set. In the case of vector spaces if I have a generating set then we have. 

So, the same in fact in the case of vector spaces there is one result that we proved during 

the linear algebra course, that if you take a basis of a vector space V and you take that 

many number of vectors from another vector space w then there exists a unique linear 

map from V to w which maps each of these V i’s to corresponding w i’s. We did not 

really use any specific properties of vector spaces there, except for the case of 

uniqueness. 

So, in the case of modules also one can prove that there exists a linear map, there exists a 

homomorphism from M to N taking a generating set and corresponding set of elements, 

we will not need that for the time being. But then how did we prove the same method to 

say that V has dimension n n is uniquely determined where V is isomorphic to F n. We 

define the map from. So, if V is a vector space over F then we define the map from F n to 

V by a 1 up to a n going to a 1 b 1 plus etcetera a n v n. Where, this is a basis of F basis 

of V. And one showed that this is a homomorphism, I mean it is a linear map 1 1 on 2 

and so on. 

So in the case of modules, suppose I have a generating set can you think of something 

similar? Will it be 1 1 on 2 and so on? We will take it up in the next class. 


