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Okay, so again let us continue with our discussion on algebraic geometry, so you know let me

recall the setup in which we are working k is an algebraic closed field, for example you can think

of k to be complex numbers if that is convenient for you and then the whole idea is you look at

kn with the Zariski topology on the one side which is called as affine n space over k, okay and

this is the rather this is a geometric side and then on the other side you have the commutative

algebraic side and that is supposed to be the ring of functions on that space and in this case of

course is a ring of polynomial functions on that space so it is actually k of X1 through Xn so X1

through Xn are n indeterminates  there n variables  and if  you think of this  ring as a ring of

functions on affine space because you give any polynomial you take any polynomial then you

can think of it is a map from affine space to An to A1 which is just A1 is just k, okay so this is

the functions with values in k, okay.



And therefore this is the ring of polynomial functions there functions on the space, okay. So the

geometric side has got to do with the affine space the commutative algebraic side has got to do

the functions, see it is a supposed to be statement of (())(3:32) who said that you know that

geometry of a space is supposed to be controlled by the functions on the that you allow on this

space and this is so geometry actually kind of comes into play when you have a space and you

define what the functions on your space going to be, okay.

So in this case the spaces are affine space and the functions are the polynomial functions, okay.

And I told you that so of course the just to recall what we have seen so far you know the given

any subset S here you associate to S the common 0 locus of S which is a set of all points in affine

space which at which every a polynomial in S vanishes, okay. And then there is also there is also

a map that goes in this direction given a subset T of affine space then you associate to T which is

an ideal in the polynomial ring and this ideal of T is just all those functions which vanish at every

point of T, okay and when this correspondence goes on the one side the objects that are important

here are the sub objects which corresponds to ideals and the objects that are important here are

the so called the algebraic sets which are the closed sets which are 0 sets of this form, okay.

And of course you should remember that if I changed or if I replaced S with the ideal generated

by S you will see that the same 0 set, okay. So basically what is that is you get on this side if you

take the set of radical ideals then you get a bijection with the set of all closed subsets and this

bijection is a it is inclusion reversing correspondence that which is quite obvious to see because

the larger the ideal is the common 0’s of all the functions and ideal will grow smaller, okay.

And the other important thing is that so if you look at radical ideals you get closed subsets, on

the other hand if you look at maximal ideals, then under so you should remember so maybe I

think let me write this below let me leave some space in between so there are maximal ideals, so

the maximal ideals they are also radical ideals because actually you should perhaps check as an

exercise  probably  you have  already  done in  commutative  course  in  commutative  algebra  or

algebra that if an ideal is prime then it is already radical and since the maximal ideal is prime the

maximal ideal is also radical but of course there are radical ideals which are not even prime,

okay but in any case maximal ideals the collection of maximal is a subset of this, okay and this

under  this  bijective  correspondence  goes  to  the  smallest  possible  closed  subsets  which  are

actually the points of course when I say points I am thinking of a point here as a singleton subset



of An, okay. So in other words you can actually write An here and of course the notation for this

is the maximal spectrum of the ring of functions, okay. 

So max spec of a ring commutative  ring with 1 means the set  of all  maximal  ideals in the

commutative ring. So what you must understand is the point here is a maximal ideal of the ring,

okay and the fact  is  that  given a  maximal  ideal  you get  a  point  and converse,  okay. So in

particular for example if you take a maximal ideal of the maximal ideal will always look in this

form it will be generated by Xi minus lambda i for a n tuple lambda 1 etcetera lambda n which

will be a point of An and this is the correspondence because the 0 set of this is this and the ideal

of this will be that, okay.

So you should remember that in this direction the map is taking the ideal it is the I map and in

this direction the map is Z map which takes which associates the 0 set the common 0 locus, okay.

And in fact I told you that this is also uses in Nullstellensatz, okay in a way it is an avatar of the

Nullstellensatz probably weaker or stronger probably weaker but let us look at that in exercises

but the point is this is an non-trivial statement, okay what is trivial is if you give me an ideal like

this  it  is  then it  is  maximal  is reasonably trivial  to check but to converse it  says that every

maximal ideal is of this form which is true only when k is algebraically closed at least when k is

algebraically closed that is non-trivial, okay and that uses Hilbert’s Nullstellensatz.

So the what lies in between are the prime ideals, the prime ideals the collection of prime ideals

they correspond to what is called the spectrum of the commutative ring and you see the spectrum

or the commutative ring is supposed to be the set of all of its prime ideals and therefore you think

of prime ideal here as a point in the spectrum, so a point here is a maximal ideal and the point

here is a prime ideal, okay and of course this is contained as I told you prime ideals are radicals

maximal ideals of prime, okay.

And what happens is that so what corresponds to prime ideals on this side are what are called as

affine varieties in An, so by this I mean the so the definition is these are all algebraic these are all

algebraic sets these are all closed sets which are irreducible, okay. So prime ideals correspond to

irreducible subsets which are closed, okay and that is a theorem I stated in the previous lecture

and I just stopped with that because the last lecture actually stopped with the definition of what

an affine verity is, okay an affine verity is an irreducible closed subset of affine space, okay and



why are they important? They are important because we will see later that any variety I mean

that  any  closed  subset  can  be  broken  down  into  a  finite  union  of  affine  verities  and  the

decomposition is unique if you make sure that there are no redundancies that is no affine variety

in this is contained in no affine variety in the decomposition is contained in some other affine

verity in the decomposition.

So every closed subset can be broken down into a finitely many affine verities on the in a unique

way so actually unique way, I see essentially because you can always permute the pieces in the

union but that should not affect the union or the decomposition and so that is one important thing

about affine verities because they are like building blocks of algebraic sets every algebraic set is

broken down into union of affine verities and this is very very important because later on for

example I told you probably in the first lecture that there is a more advanced or I should say

sophisticated language of algebraic geometry which involves what are called as schemes and

schemes are some spaces with functions, okay with rings of functions and in fact what you have

is  not  just  rings  of functions  you have shives of  rings which means that  you have rings  of

functions on every open subset of this space so its data not only with the space with ring of

functions on the whole space but it also comes with for every open set in this space you will have

a ring of functions.

So your this whole data is called a shive of rings and a scheme is something to like that which

consist of space and the shive of rings, okay where the shive is collection of rings for every open

set in the space but the important point is the technical point is this schemes is supposed to be

locally modeled in this way it is supposed to be made of affine pieces, so the for all the algebraic

geometry no matter how general algebraic geometry you do these affine pieces these are the

building blocks and that is the reason why these are to be first studied,  okay so you should

understand that affine verities are important because they are the building blocks even at the

most sophisticated form of the theory, okay.

And the other important thing is of course that this sets are topologically irreducible, okay and

you know irreducibility I have told you is a very strong form of connectivity, so they will have

nice properties with respect to maps, so for example in topology you learn that the image of a

connected set under continuous map is again connected, okay. So if you have a topological space

and you have a map a continuous map from the topological space in another topological space



then the image of a connected set if in the source topological space will be a subset of the target

topological space which will be connected, okay.

And the same thing will happen for irreducible subsets, okay so irreducibility is a very nice thing

to have on a subset, okay. 
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So now let me try to prove this part so let me recall definition so this is I am just recalling a

topological space a subset y of a topological space so I am just abbreviating topological space

top sp X is called irreducible if y cannot be written as y1 union y2 with y1, y2 non-empty proper



close subset, okay. If a topological space can be written as y1 union y2 where y1 and y2 are non-

empty proper close subsets then we say that the topological space is reducible, okay and the

definition of irreducible is that it should not be irreducible, okay.

And what happens in the case of varieties as we will see what happens in the case of algebraic

sets here namely close subsets of affine space you will see that you will get you will be able to

break it down into not just the union of two we will be able to break it down in the union of

finitely many subsets which are each which are themselves irreducible, okay and they will be

called the irreducible components, okay but and that will be called the reducible decomposition

of your given closed set, okay so that is where we are heading to, fine. 

So the of course this definition as I told you implies that if y is irreducible then it is connected,

okay because connected is a for it to be connected you should not be able to write it as a disjoint

union of proper close subsets non-empty closed subsets, okay and that is certainly not possible if

you cannot write it as a union of non-empty proper close subsets, okay. So irreducibility is a very

strong form of connectedness I told you that irreducibility has lots of nice properties one thing

that comes is that if space is irreducible then if a subset is irreducible then its closure is also

irreducible so its irreducibility is not going to be affected if you add the boundary which is what

you do when you take the closure and this is also true for connectedness if a set is connected then

its closure is also connected.

And then but the other more important thing is that you see the more important thing about an

irreducible  space  is  that  every  open  every  non-empty  open  subset  is  dense  and  is  itself

irreducible that is another very important property, okay which I hope you would have tried as an

exercise otherwise you should try it, it is pretty easy exercise. So what it tells you is that if you

take an if you take an irreducible space and take a non-empty subset then you can test on that

subset all those properties which will be preserved when you take a closure, okay that subset will

because the closure of that subset will be the whole space and that is.

So you can test on any non-empty open subset an any non-empty open subset will be dense and

that also tells you that if you take (())(20:40) non empty open subsets they will intersect, okay

they cannot be disjoint from each other. So these are of the nice properties of irreducibility and

later on it will come we will again look at it probably it is not so hard you can even check it of



hand I think that the image of an irreducible set continues to be irreducible under a continuous

map, okay which is a same kind of statement that you get for a connected set, okay.

Now I go to this  theorem which I  stated last  time so the theorem is a following if  I  in the

polynomial ring in n variables over k is an ideal then Z of I the 0 set of I the (())(21:39) points in

An which are common 0’s of all  the polynomials  in  I  is  irreducible  this  is  a  subset  of this

topological space you see this topological space is just kn given the Zariski topology, okay. So

since is a subset of a topological space this definition applies and you can put the condition that

this subset is irreducible and the theorem says that this is irreducible if and only if the radical of I

is a prime ideal.

So what this means is that if I already started with radical ideal I mean if I already started with

prime ideal then Z of I will be irreducible and conversely if I already started with the radical

ideal then saying Z of I is irreducible is same as saying that the ideal itself is prime, okay and

that essentially what gives you this correspondence in the middle that the affine sub the affine

varieties in An they correspond to prime ideals, okay.

So well so the proof is quite straight forward so let us do both ways, so let us begin with let us

assume a radical of I is prime suppose radical of I is prime, what do I have to prove? I have to

prove Z of I is irreducible to show Z of I is irreducible, okay but actually you see Z of I is same

as Z of radii, okay this is something that I told you last time two ideals J1 and J2 have the same

set of common 0's if and only if the radical of J1 is equal to radical of J2, so it is since I and radii

have the same radical namely which is radii they both have the same 0 set, okay and but even

otherwise this is quite trivial to see directly, okay because radii mind you is defined to be all

those polynomials some positive integral power of which lies in I.

So it is like taking the radical of an ideal is like expanding that ideal to include nth roots of its

members positive nth roots of its members, okay that is nth roots for positive n, right? And so

anyway so how do I check a set is irreducible so the (())(24:59) is I have to check that it is not

reducible I have to check that it is not reducible so I have to check that if it can be written in this

form with y1 and y2 as close subsets and if I assume that y1 and y2 are both non-empty and also

that y1 and y2 are both proper that should not happen that is what I have to check.



So what I will do is I will assume that it can be written as in this form with y1 and y2 non-empty

but I will assume that I will assume further that y1 is proper close subset and I will try to prove

that y2 is not proper namely that y2 is everything if I do that then I am done, okay. So that proves

that it is not reducible in other words that it is irreducible, so what I will do is suppose that Z of I

is y1 union y2 where y1, y2 are non-empty closed subsets.

So here I have to go back to the definition and stress on something which I have not written there

with y1, y2 non empty proper close subsets mind you of y, okay that is something that I had not

written but I did say that in my last lecture so let me stress it when I say so I told you y is just a

subset of a topological space what are the meaning of saying that subset of y is closed in y that

you have closed subset of y this is the language of induced topology a subset of y is said to be

close subset of y if it is gotten by intersecting y with this close subset of the ambient space the

larger space X in which y sits, okay.

So when I write Z of I is y1 union y2 where y1, y2 are non-empty close subsets of Z of I what

you must understand is that since Z of I is already closed in X it follows that y1 y2 are not just

closed subsets of Z of I but they are actually close subset of X itself because the close subset of a

close subset will continue to be a close subset, okay. See in other words if when I say y1 is close

subset of Z of I it means y1 is Z of I in (())(27:43) with close subset of X, okay but then you see

Z of I itself is close in X as if I intersect with another close subset of X the intersection of finitely

many closed  subsets  is  again  a  close  subset  for  in  the  topology because  the  schemes  for  a

topology if you take the schemes for close sets tells that you take any finite number of close sets

and you take the intersection the result is again a close set in the whole space.

So what this tells you is that y1 which is supposed to be intersection of Z of I with a close subset

of X is itself a close subset of X, so let me stress that suppose Z of I is y1 union y2 where y1, y2

are non-empty closed subsets of Z of I with y1 a proper subset of Z of I of course I will then try

to prove that y2 is equal to Z of I that in other words that y2 is not proper, okay. Then note that

y1, y2 are closed in the larger space X which is actually in our case An because by definition as I

just told you y1 has to be Z of I intersection with a close subset of An but Z of I is already closed

in An and the intersection of two close subsets of topological space is again a close subset.



So the reason is since Z of I is already closed in An by definition because you know that is how

the Zariski topology was defined the Zariski topology was defined just by taking for the close

sets subsets of the form Z of I, okay. So but what does that mean saying that y1, y2 are close in

An means that y1 and y2 are the 0 sets of some ideals, okay. So this implies so y1 is Z of I1 y2 is

Z of I2 for I1, I2 ideals in kX1 etcetera Xn, okay this is what you get but then what is now y1

union so if you take Z of radii which is Z of I which is y1 union y2 is actually Z of I1 union Z of

I2, okay and you know but this is a same as Z of I1, I2 because this is something that we this is

how we proved that sets of the form Z of I they form a topology by declaring such sets as such

subsets as close subsets in fact what we proved is if you take Z of S1 union Z of S2 union

etcetera up to Z of Sm where Si is our subsets not even ideals.

Then the union is just Z of the product S1 times S2 times etcetera Sm we proved that, okay. So

this is Z of I1, I2, okay and you see it is (())(31:48) that you know I will use so I will now use the

Nullstellensatz, okay. So what will happen is you see apply I if you apply I the Nullstellensatz

tells you that since I of Z of J is a rad J, okay mind you this is the statement that involves the

Nullstellensatz and that is valid for any ideal J, actually I of Z of J always contain rad J that is

very easy to see, the non-trivial thing is to say that I of Z of J is contained in rad J namely it is a

statement that if F if a polynomial is in I F Z of J namely if a polynomial vanishes on Z of J then

some power of the polynomial is in J you cannot have a polynomial some power of which is not

in J to vanish on all the 0’s of J that cannot have, okay.

So this is this statement uses Nullstellensatz and if I apply this on both sides what I will get is I

will get radical of radii is equal to radical of I1, I2, okay I just want to say that this contains I1,

I2, okay this is the way I have to go, okay. So you see radical of an ideal always contains the

ideal,  okay because the radical  is  supposed to be all  those elements  some positive power of

which is in the ideal and the first positive power of every element of the ideal is in the ideal so

the ideal itself contain its radical ideals and see the fact is that this is radii, okay because taking

rad more than once is not going to change anything and this is prime.

So what you are getting is you are getting a prime ideal contains a product of ideals now you see

we use this following fact for commutative algebra it is a very simple fact that if a prime ideal

contains a finite product of ideals then it has to contain at least one of them, okay. 
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So here is a lemma is a very simple lemma from commutative algebra if a prime ideal contains a

finite product of ideals then it has to contain at least one of those ideals one of the ideals in the

property, of course you know of course all  these is  in this  statement  the background I must

assuming is that you are working in a commutative ring with 1 and you are having finitely many

ideals and if you have finitely many ideals J1, J2 through Jm then there product is J1 dot J2 dot

etcetera Jm which consist of just finite sums of products of m tuples taken from the Cartesian

product of all the J’s, okay and if a prime ideal contains the product J1, J2, Jm then it has to

contain some Ji and this is just this is very easy to see because is just a definition of prime ideal

that if a prime ideal contains the product then it has to contain one of the finite product then it

has to contain one of the factors of the product it is just a restatement of that if you try to work it

out.

So what this lemma will tell you is that radii has to contain I1 or radii has to contain I2 but then

this now you apply Z, okay you apply Z to take the 0 locus and remember that when you apply Z

the inclusion is revised, so what you will get is Z of rad of I the Z of radii is contained in Z of I1

or Z of rad of I is contained in Z of I2 this is what you get and mind you but Z of rad of I is mind

you is just same as Z of I and Z of I1 is y1 and Z of rad I is again is Z of I here and this is y2.

So what you are saying is Z of I is contained in y1 or Z of I is contained in y2, okay but what we

starting with was that y1 and y2 are contained in Z of I, so what this means is that either Z of I is



equal to y1 or Z of I is equal to y2 but then you are assuming that Z of I is not equal to y1 so

what this will tell you is that Z of I has to be equal to y2 and that tells you that you cannot reduce

Z of I, okay. 
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So let me write that down this implies that Z of I is equal to y1 or Z of I is equal to y2 this

implies that Z of I is equal to y2 since Z of I is supposed to properly contain a proper subset of,

sorry supposed to properly contain y1, okay and this implies that Z of I is irreducible, okay.

So we have started with radii prime, okay and we are able to reduce that Z of I (())(38:07), now

we will do the other way now we will assume Z of I is irreducible and show that radii is prime,

okay. So conversely assume that Z of I is irreducible will show radii is prime, okay. So how do

you so is again a translation you just have to check the condition for a prime ideal you have to

take a product, how do check something is a prime ideal? How do you check an ideal is a prime

ideal  you  take  a  product  of  two  elements  of  the  ring  as  belonging  to  the  prime  ideal  and

demonstrate that one of the two factors of the product is that ideal, okay.

And so what we will do is so let f times g belong to radii let the product be in radii, okay. So

what this will tell you? This will tell you that the ideal generated by fg f into g is a subset of

radii, okay because if an element belongs to an ideal and the ideal generated by that element is

also in the radial  because the ideal  generated by an element  is just  simply multiples of that

element by ring elements, okay. So if I now you apply Z if you apply Z I will get Z of fg contains



Z of radii, okay and but know Z of fg is just Z of F union Z of g, okay this is exactly the same

statement that Z of I1 union Z of I2 Z of I1, I2, okay so Z of fg is Z of f union Z of g, okay.

And of course when I write Z of F for a single element F by that I mean Z of a single element F

is same as Z of the subset consisting of the single element F and this is also the same as Z of the

ideal generated by F they are all one and the same, okay. So what happens is that so you know so

now can so what this tells you is that you see Z of radii has been written as Zf intersection Z of

radii union Zg intersection Z of radii, okay you see Z of f is a close set this union contains this so

you intersect this with the smaller subset you will get back the smaller subset. 

So if I intersect this with Z of radii I should get Z of radii and that is and intersection as you

know distributes over the union by simple set theory, okay so you get this but what you must

realize is that this is if I call this as y1 and if I call this as y2 what you will notice is that y1 is a

close set it is a close set because it is the intersection of two close sets so it is the close set,

similarly y2 is a close set and you have written Z of radii as a union of two close sets but mind

you Z of radii is same as Z of I but what is assumption on Z of I is the assumption of Z of I is

that it is irreducible. So the moral of the story is that either one of these is empty, okay and if

both are non-empty then one of them has to be the whole Z I itself, okay. 
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So let us write that out let me write that out here since Z of I could Z of radii is irreducible we

have and y1, y2 are closed we have the following possibilities so I want to say y1 is non-empty



y2 is non-empty, okay so let us write down y1 if y1 is empty this will tell you that that means so

that will imply that Z of F intersection Z of radii is empty then this intersection is supposed to be

Z of F union Z of the ideal generated by f union radii, right? This is what it is supposed to do by

definition because what is how do you show that the close sets form a topology, how do you

show the algebraic sets form a topology.

So what you if you recall you can recall that set of if you take intersection over alpha or lambda

in capital lambda some indexing set of Z of S lambda this is just Z of the ideal generated by the

union of S lambdas, okay if S lambdas are subsets of the polynomial ring, okay and you take the

EZ S lambdas this are collection of close sets how do you show that the intersection of see how

do you show that the intersection of an arbitrary collection of closed sets is closed it follows

from this calculation, okay.

So Z of f intersection Z of radii will be Z of f union radii ideal generated by f union radii and so

what that will imply is if I apply I to both sides if you apply I to both sides and use again use this

Z of I of Z of J so rad J so what I will get is if I apply I to both sides you will get radical of the

ideal generated by f union radii will be if I apply I to the null set, okay then I get the whole ring,

okay because what is I of a subset it is all those polynomials which vanish on the subset, okay I

of a subset of affine space is all those polynomials in the polynomial ring which will vanish on

that subset but if that subset is empty there is nothing to test every polynomial will satisfy this

condition.

Therefore I of null set will be just a whole polynomial ring, okay and you know if this happen I

mean I essentially  have to show that if this happens I am done otherwise I have to proceed

further, okay. So what does this means? This means that f the ideal generated by f union radii is

itself the polynomial ring see so this again a fact I am using that you know if an ideal if the

radical of an ideal contains the unit then the ideal itself contains a unit because saying that the

radical of an ideal contains a unit say 1 tells you that there is some power of this which is equal

to 1 there is some power of this the ideal generated by this union which is equal to 1 but then that

if the some power of an element is equal to 1 then that element itself is a unit, okay.

That means that the ideal generated by this itself is the whole polynomial ring, okay and what

this will tell you is that so you know there is some so what this will tell you is the following that



so there exist a g1 etcetera gm in radii such that sigma fg plus fg plus sigma over I, I equal to 1 to

m fi gi is 1 this is what it is, okay I mean an element in the ideal generated by the union like this

will look like this you will have to pick actually you have to pick finitely many elements from

this subset and then take ring linear combinations of that and such a ring linear combination is

equal to 1 because 1 is there on the right side.

And now what I want to say is that from this we will have to say that so you know if this happens

that is if y1 is empty it should more or less follow that if y1 is say that again yes, y1 is empty,

yes.

Student: radii is equal to Z of g intersection Z of radii

Professor: Z of,

Student: (())(49:01) is equal to the remain thing on the (())(49:04)

Professor: Oh, I see you will just get Z of radii is equal to Z of I g intersection Z of radii and then

you will get therefore, 

Student: We get Z of radii and then Z of g.

Professor: okay.

Student: So if we apply I on both sides you will get a g belongs to radii. 

Professor: You will get g belongs to radii, right? You will get g belongs to radii, okay. 

So this is not required you are right, okay so let me get rid of this, good let me get back to the

easier part of the argument but I would strongly encourage you to think about that whatever I

wrote down, okay. So and the fact is that that also will lead to something, okay that will also lead

to what  you want  but  you have to  so the point  is  you have to  keep translating  back to the

geometric side if you are on the geometric side you should translate to the ideal side if you are on

the ideal side you should translate to the geometric side by applying this I and Z appropriately,

okay.
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So as you as one of you has rightly pointed out what you should what one does is that if y1 is

empty then I mean Z of it is obvious that Z of radii is just Z of g intersection Z of radii and so

which means that Z of radii is contained in Z of g, right? And because the right side is contained

in Z of g and now you apply I you will get I of Z of radii which is just rad of radii which is radii

containing I of Z of g will be just radical of the ideal generated by g, okay and to which g

belongs, okay.

So if y1 is empty you get g is in radii, okay alright. So you assume y1 is not empty, okay if y2

similarly if y2 is empty then you will get f in radii mind you f times g is in radii so you have to

prove either f is in radii or you have to prove g is in radii, okay and y1 equal to empty directly

gives you g is in radii, similarly y2 is empty implies f is in radii, okay and you are done. So

assume both are not true, okay so assume both y1 and y2 are non-empty, okay so you will have

to trash out all the possibilities, okay suppose y1 is proper then irreducibility of you are right Z

of radii implies that if this is proper then that cannot be proper if y1 is proper then y2 cannot be

proper so y2 has to be everything, okay and in that case you see g belongs to radii, right? 

So you are done essentially so let me write that out suppose y1 is proper then irreducibility of Z

of radii implies that Z of radii is y2, okay and this implies that, again the same argument literally

Z of radii is equal to Z of g intersection Z of radii and this will imply that g I guess this will

imply g is in radii, okay so if y1 is proper you will get g is in radii, similarly if y2 is proper, okay



you will get f is in radii, okay. Similarly y2 proper will imply f is in radii and that completes the

proof, okay, right? 

So it is very clear that an ideal here is prime if and only if the radical of an ideal here is prime if

and only if the corresponding 0 locus here is irreducible, okay that proves it, okay. So I will stop

here and then we will continue in the next part with some examples, okay. 


