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I am going to remind you about few things from Field Theory. All right. So recall from Field

Theory. So if you have L over K, the field extension, you take a field extension L over K, then

we say when an element of L over K is algebraic, when an element of L is an algebraic element

over K, it is an element of L is said to be algebraic over K if it satisfies polynomial, non-trivial

polynomial with K coefficients in one variable.

So and if every element of L satisfies such a polynomial over K, then we say L over K is an

(algeb), we say L over K is an algebraic extension. That is every element of L is algebraic over

K. And if you have elements of L which do not satisfy any polynomial, any such polynomial

with coefficients in K, we call such elements as transcendental elements. And well, if L over K is

finite extension in the sense that if you treat L as vector space over K, if dimension of L as vector

space over K is finite, then a finite extension is always algebraic.

And in fact, but of course an algebraic extension need not be finite. Now you see if L over K is

not algebraic, then it has transcendental elements. There are elements which are non-algebraic



and then given a set of transcendental elements, you can define when that set is algebraically

independent over K. And this is analogous to the definition of linear independence over K. So a

set of elements of vector space is said to be linearly independent if they, if no finite subset of that

set satisfies a non-trivial linear relation with coefficients in K.

So in the same way a set of elements of L which is said to be algebraic  over, is said to be

algebraically independent over K, if any finite subset of that set does not satisfy any polynomial

relation with coefficients in K. So if you give me finitely many elements of L, then those finitely

many elements are said to be algebraically independent over K if those finitely many elements

are not zeroes of some polynomial over K in those finitely many variables, in as many finitely

many variables. Okay, a non-trivial,  it  should not be, they should, that element, that tuple of

elements should not be zero of a polynomial in as many variables with K coefficients.

That is when you say those elements are algebraically independent and this is when you take a

finite set of elements. And an infinite set of elements is said to be algebraically independent if

every finite subset of that infinite set is algebraically independent. And then there is this just like

in the case of vector space you define the dimension as the max, it is the cardinality of your

maximal set of linearly independent elements.

In the same way if you have a field extension which is not algebraic, then you can define it is so

called transcendence degree. It is degree of transcendence to be the cardinality of your maximal

algebraically independent set. So if there are elements L which are not algebraic over K, you can

try to, your transcendental elements and then you try to take, try to find a maximal subset of

these such elements which are algebraically independent.

And that cardinality will always be the same. Any two, just like if you take any two bases of a

vector space are bijective, the same way any two sets of maximally, any two maximal sets of

algebraically independent elements will be bijective and that and the cardinality of that set is

called the transcendence degree of L over K. And we say that, L over K has, we say that L over K

has a separating transcendence base. If you can find that, you can find that set of elements which

forms a transcendence basis, a transcendence basis is just given by maximal set of algebraically

independent elements. If you can find your transcendental basis, transcendence basis, such that L



over  the  field  adjoined  to  K are  given  by those,  given by the  transcendence  basis  is  finite

algebraic extension.
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So there is this, you want picture like this, so L, so you have K and in L you have this family of

elements alpha j where j is in some indexing set J. Then you have the field generated by these

alpha js. So this is the, so this is a transcendence basis. And transcendence basis is, it just a, it is

just the analog of basis. So it consists of maximal subset of algebraically independent elements.

A usual basis will consists of maximal subset of linearly independent elements.

A transcendence basis will consist of maximal set of algebraically independent elements. So you

want a situation where you can find a transcendence basis and you want this extension to be

finite,  separable.  So you want,  I  mean this  is  the  best  thing  that  can happen with the  field

extension. The best thing that can happen with the field extension is that the field extension splits

up into two extensions like this.

The first one is given, we say that this extension is purely transcendental extension because it is

the  extension  which  contains  only,  it  is  gotten  by  simply  adjoining  all  the  transcendental

elements from that all the elements of transcendence basis. And then this over this will only be a

finite extension. This will be algebraic because there will not be, already this contains a maximal

set of algebraically independent elements. This so, this cannot be transcendental. Because if there



is an element of this which is transcendental over this, then I can take that element and add it to

this to get a bigger transcendence basis and that is not possible.

So this over this has to be algebraic and the fact is that you can make, it would be nice if this is a

finite separable extension. And that is, that always happens if the field K is algebraically closed.

So this, so all this happens if K is algebraically closed. But in fact it happens even under more

weaker condition. It happens if K is what is called a perfect field. All right. But let us not worry

about it. Basically what the definition of a perfect field is that, if a field is of characteristic zero,

it is called perfect and if it is of characteristic p, it is called perfect if you can always find pth

roots.

If you take K power p, you should get K. And you should be able to find pth roots for all your

elements. So an algebraically closed field is always a perfect field because finding pth roots is

just amounting to solve equations and over an algebraically closed field you can always solve

equations because that is the definition of algebraically closed. Therefore an algebraically closed

field is always perfect. And for a perfect field you have this very beautiful situation. Of course it

is important that I need a finite, separable extension here.

And this part will be purely transcendental extension. And this is some field theory, all right but

important thing is that we will not apply it when K is small k or algebraically closed field and

when L is a function field of a variety. So applies if K is k for k is the algebraically closed field

over  which  we are  doing algebraic  geometry. That  is  the  field  over  which  we are  studying

varieties. And L is the function field of X for a variety X over k. So this is our application.

So in all these things our viewpoint is that this k, this K is our k and this L is a function field of

variety and then that theorem is that the function of variety is a finite, separable extension of

purely transcendental extension of k. You know that if L is KX, then the transcendence degree of

KX will over k, will give the dimension of the variety. Therefore but the transcendental degree

will  be  just  the  cardinality  of  this  J  because  the  transcendence  degree  is  just  the  size  or

cardinality of a transcendence basis. So you know if the variety X has dimension R, then this J

will have R elements. So this will just be, this will be k and this will be k adjoined with R in

determinants or R transcendental elements.
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So the picture will look like this, you will get k and then you will have k of X1, etcetera Xr and

then you will have L of, L which is actually KX. I do not have to use L, so let me just and this

part will be finite, separable. This is it, so this is the picture that we need. If you take the function

field of any variety X, then that function field what kind of an extension is it of K, you can break

it up into two pieces. The first piece is purely transcendental extension. It is an extension which

is gotten by simply adding as many variables as the dimension of X.

So this part will correspond, will contribute to the transcendence degree. This will give you the

transcendence degree. And this part will not have any transcendence, this will, because all the

(transc)  because  X1  through  Xr  are  already  your  maximal  set  of  algebraically  independent

elements. So this over this will be algebraic and not only algebraic, it will actually be finite. And

of course finite extension is always algebraic and not only that it will actually be a separable

extension.

And the separability is a technical condition and it is very, very important. And the reason why it

is important for example in Field Theory is that whenever you have finite, separable extension

that can always be generated by single, by adjoining a single element and that is called the so

called  theorem  of  the  primitive  element.  The  theorem  of  the  primitive  element  says  that

whenever you have field extension which is finite and separable, then the bigger extension can

be gotten by adjoining a single element to the smaller field. So this finite, separable extension



actually tells you that this K of X is the k X1, etcetera Xr, Y. You can find out Y in KX, such that

you adjoin this Y to this field, you get this field and that is all of KX.

So this you get this Y because of the fact that this over this is finite, separable and you are using

so called theorem of the primitive element which says that a finite, separable extension can be

gotten by adjoining just one element. And in fact you see the theorem of the primitive element

says  more,  it  says  that  if  you take  set  of  finite,  finitely  many generators  for  this,  then that

primitive element is even linear combination of those generators with coefficients coming from

the smaller fields. So the moral of the story is that you have very nice description in terms of

fields if you are working with variety, I mean if you are working with function field of a variety.
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Now you see, now what I want to you to understand is that well, you see you take, now you take

X to be a variety over K. Suppose the dimension of X is r, and you take KX as field of rational

functions, then you can find of course X1 through Xr which you can think of as are algebraically

independent rational functions on X. So X1 through Xr are algebraically independent rational

functions on X.

And then if you take the subfield generated by these r independent, algebraically independent

rational  functions,  you get  this  field  and then  KX over  that  is  a  finite,  separable  extension.

Therefore by the theorem of the primitive element, you can get this from this by adjoining a

single element Y which is yet another rational function on X. And the point is that this Y is



actually belonging to KX and KX is, KX over this intermediate field is finite, so it is algebraic.

So  in  fact  Y satisfies  your  polynomial  with  coefficients  here,  Y satisfies  polynomial  with

coefficients here.

And the moral of the story is that Y if you clear denominators, Y will satisfy your polynomial

with coefficients in the, polynomial ring in r variables. You can have that polynomial to be an

irreducible polynomial. And therefore you know that polynomial in affine space with so many

variables, its zero set will give hypersurface. And that hypersurface, its function field will exactly

be this. So this argument tells you that the functions field of X is the same as the function field of

hypersurface in r plus 1 dimensional affine space where r is a dimension of X.

And we have already seen last lecture that I think last lecture or maybe couple of lectures ago,

that if two varieties have the same function fields, then they are birational. So all this argument

tells you together that any variety X of dimension r is birational to hypersurface in affine r plus 1

space.
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So let me write that down. See Y is gotten from the primitive element theorem. And in fact since

K of X is finite over k of X1, etcetera Xr and Y is in KX, we have Y algebraic over k of X1,

etcetera Xr. So Y satisfies a polynomial, an irreducible polynomial. It satisfies an irreducible

polynomial in one variable over kX1, etcetera Xr. But what are the elements of k round bracket

X1 etcetera Xr, they are actually quotients of polynomials in those r variables. When you put



square brackets, it is the polynomial ring in r variables but when you put round brackets, you go

into its quotient field. So Y satisfies an irreducible polynomial in one variable.

(Refer Slide Time: 24:42)

And in fact if you take the degree of that polynomial, that degree will be the same as the degree

of this finite extension. For any finite extension generated by a single element, the degree of the

finite extension is the same as degree of the minimal polynomial of that element and that the

minimal polynomial of element is the unique irreducible polynomial that element satisfies. It is

the polynomial of least degree that, that element satisfies.



(Refer Slide Time: 25:07)

So this, so here I am looking at the minimal polynomial of Y over this extension. And so now the

coefficients of this, in fact you can even make that polynomial monic if you want. But the point

is that is because the leading term can always be made 1 by dividing by its coefficient. But the

fact is that if, but even if you think of these as coefficients of polynomials in r variables and you

clear denominators, what you will get is that you will get that Y satisfies your polynomial in r

plus 1 variables.

If you clear, by clearing denominators, Y satisfies a polynomial, an irreducible polynomial in r

plus 1 variables. So what you are doing is Y satisfies an irreducible polynomial in one variable,

call that one variable as S, and the coefficients are all here. And but the coefficients are therefore

coefficients of polynomials in the X size. If you clear denominators,  finally  and you rewrite

instead of the X size, you put the Ts. You will get a reducible polynomial in r plus 1 variables

which the whole tuple, X1 through Xr upto Y satisfies.

And now see the, this is the polynomial which is an irreducible polynomial in n, so I should not

put n here, it  should be r, sorry it  should r. So this is an irreducible polynomial  in r plus 1

variables. What does zero, what is that zero set? It is a hypersurface in A r plus 1.
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So the zero set of, f of T1 etcetera Tr, S, this is a hypersurface in A r plus 1. We have already seen

this,  hypersurface  in  affine  space  is  simply  given  by  the  zero  set  of  a  single  irreducible

polynomial. Hypersurface is by definition, codimension one sub-variety. An irreducible closed

subset of dimension 1 less, then the dimensional affine space. So this is a hypersurface in A r and

for this hypersurface what is the function field?

The  function  field  will  precisely  be  KX.  This  hypersurface,  the  function  field  of  this

hypersurface,  how do  you  get  it?  What  you  have  to  do  is  you  have  to  first  get  its  affine

coordinate ring which is gotten by taking this polynomial ring in r plus 1 variables and you have

to divide by f, because that is the ideal of the hypersurface. The ideal of the hypersurface is

generated by f, so you have to divide by the ideal generated by f and then you will get affine

coordinate ring of the hypersurface and then you have to take its quotient field.

But then if you divide by f, you the moment you divide by f and then invert everything, you will

get back KX because that is how f was gotten. So what you will get is that the function field of

this  hypersurface is  KX by definition,  the function field of this  hypersurface is  exactly  KX.

Because it will be the polynomial ring in this r plus 1 variables. You divide by the ideal generated

by f, okay and then you will get finitely, you will get integral domain.

You take its quotient field, so essentially what you are doing is you are inverting everything

except that you are inverting, it is like taking the quotient field of the polynomial ring in this r



plus 1 variables but putting additional condition that this, f of this is equal to 0. But putting the

condition that f of that is equal to 0, will give you the smaller field which is KX by construction.

So the moral of the story is that now the function field of the hypersurface is same as function

field of X. Now we have already seen that if two varieties of the same function field, then they

are birational. So this implies that X is birational to this hypersurface.

So X is birational to this hypersurface, so what this tells you is that I mean the whole purpose of

my recalling all this though I did it very quickly and on your part this will demand some more

reading, is that, is just to tell you that if you have variety of dimension r, then it is birational to a

hypersurface in A r plus 1. So this is the fact that I need to use. I am going to use the fact that

given a variety of dimension r, it is having an open set which is isomorphic to an open subset of a

hypersurface in r plus 1 dimensional affine space.

So roughly what I am saying is following thing, I am saying take a variety of dimension r, there

is an open set where the open set looks like the zero set given by single equation in an affine

space of dimension one more. The variety X has dimension r, you take affine space of dimension

one more which is A r plus 1. And there is a hypersurface there. And an open subset of the

hypersurface which looks like the open subset of your variety. So I am just saying that given a

variety of dimension r, there is an open set which looks like the zero set of a single equation in

affine space of dimension one more. So that is this fact.
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And now I use that to prove this theorem and I do that in the following way. What I say is well, if

I  take,  so this  is  standard taken algebraic  geometry, you want  to  prove something about  an

arbitrary variety. You want to prove some open condition, something that is happening on an

open set. So for example, here I am trying to, what I am trying to show is that I am trying to say

that the condition of non-singularity is open because its compliment is, it is equivalent to saying

that the condition of singularity is closed. And I want to say it is nonempty, open. So what I have

to show is that the set of points where X is non-singular is actually nonempty, open set.

So I am just saying that if I prove that you take hypersurface, for hypersurface if you show that

the singular points is proper closed sets, then I am done. Because if I show for any hypersurface,

the set of singular points as proper closed set, then I am saying that there is open set which

consist of good points. But opens, but any variety has an open set which is isomorphic to an open

subset of the hypersurface. Therefore it will have good points. Because under isomorphism of

varieties, local rings are preserved.
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Since  local  rings  are  preserved,  the  smoothness  condition  will  be  preserved.  So  under

isomorphism of varieties, a smooth point will go only to a smooth point. So if you give me any

variety, then I know that if I can, I know that there is an open subset of that variety which is

isomorphic to an open subset of a hypersurface. And I know open subset of the hypersurface will

contain smooth points.
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If I know that, then I will  know that X will  contain smooth points. The moment X contains

smooth  points,  this  becomes  a  proper  subset,  so  it  become  a  proper  closed  subset.  So  this

theorem is just to show that every variety contains at least one smooth point. And I prove this

theorem by reducing to the case of hypersurface because I know every variety of dimension r is

birational to hypersurface in r plus 1 dimensional affine space.
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So because of this fact assume that X is, assume that the variety X is hypersurface. So now the

proof is just probably few lines. So assume X is hypersurface in, z of f in A r plus 1. What do I



have to show? I have to show the singular points of X is a proper subset. So if let us look at this,

let us go by contradiction, to the singular points of X is all of X, then what it means is that doh f

by doh Xi vanishes on z of f for all i from 1 to etcetera up to r plus 1.

So here now you know the Xis are the affine coordinates in r plus 1 dimensional space. And the

singular points is the whole of X, that means these, I mean these components of the gradient of f,

they all need to vanish. Your point will be a smooth point if at least one of them does not vanish

at that point. But the only way that every point is not smooth is that all of these guys vanish. But

then you see, what does this mean if, see after all these are polynomials and if they vanish on the

variety, then they have, then you know that by the Hilbert Nullstellensatz they have to be some

power of, I mean they have to be in the ideal generated by f.

So you see, so by the Nullstellensatz,  you see doh f by doh Xi, they all belong to the ideal

generated by f for every i. That this is because Nullstellensatz who says that if a polynomial

vanishes on a variety, then some power of that polynomial should be contained in the ideal of the

variety. So if this vanishes on z of f, then some power of this is contained in the ideal of f, ideal

of z of f but ideal of z of f is just the ideal generated by f. And if some power of that is contained

in f, then that itself is, has to be contained in f because f is irreducible.

And therefore the ideal generated by that is prime. All right. So you will get this. But then what

is the degree of f? This is more than the degree of, this will have degree at least one less, right?

Because we have taken a partial derivative. And therefore this condition will tell you that this is,

these are all identically 0. So this will imply that doh f by doh Xi are identically 0 for all i. It will

tell you that all these partial derivatives are identically 0. Now you see if you are in characteristic

0, this cannot happen.

Because if, when will the partial derivatives of all the variables be 0, will be 0 for a polynomial,

if  those variables  do not  appear  in  the polynomial  at  all.  Okay, if  the  variable  appears  in  a

polynomial and if you are in characteristic 0, then that variable come with a coefficient. All right.

So  when  you  take  a  partial  derivative,  the  coefficient  will  not  kill  it  because  you  are  in

characteristic 0 and the partial derivatives cannot vanish.

So the fact that all the partial derivatives vanish, so this implies that characteristic of k is not 0

because in characteristic 0 this cannot happen. And in characteristic, so if characteristic is not 0,



then the characteristic of k is positive, is a prime positive. And in positive characteristic if a

polynomial is in a certain variable, partial derivative is 0, it means that the polynomial should be

a polynomial in the pth power of that variable.

So this implies that f is equal to f is polynomial in Xi power p for every i. This is a result from

characteristic p. And this will tell you that f is g power p, because since you are in, since your

field is algebraically closed, you can take pth roots of all the coefficients and you can use the fact

that a plus b plus, I mean if you want a plus b whole power p, is a power p plus b power p. So if

a  polynomial  is  a  polynomial  in  all  this  Xi  power p,  then  you take  the  pth  root  of  all  the

coefficients.

Then you can write the polynomial itself as g power p, but this will contradict the fact that f

irreducible, contradicts irreducibility of f. So this contradiction tells you that if X is hypersurface,

then the singular points cannot be the whole of X. That means there are smooth points. But

already  we  have  seen  as  a  corollary,  the  singular  point  is  a  closed  set.  So  that  means  the

compliment of this closed set can be the set of smooth points, is nonempty.

So the set of smooth points of hypersurface is irreducible, nonempty and dense. And since any

arbitrary variety is birational to hypersurface, each singular points will also be only a proper

closed set. So that proves that on any variety, you have open, dense, irreducible subset consisting

of smooth points, non-singular points. Okay and the bad points may be the singular points, they

only correspond to a proper closed set. Okay, so I will stop here.


