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Why Local Rings Provide Calculus Without 

Limits for Algebraic Geometry – Pun Intended!

Okay so what I am going to do now is you know in continuation with our discussion of the

importance of local rings I am going to explain the notion of non-singularity okay which is in

you  know analytical  language,  classical  analytical  language  you  are  trying  to  say  when

something is a manifold okay so or when something is smooth okay so the, so in other words

you know the idea is that an object is smooth at a given point if the dimension of the object is

the same as the dimension of the tangent space at that point.
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Usually what happens is that you know the dimension of the tangent space will be more and

if the dimension of the tangent space is more at a given point then the dimension of the object

that you are studying then that point is a singular point, it is not a smooth point so you know

for example its smoothness in terms of in the language of classical you know the language of

analysis.

So you know if you take a surface and you know you take a point on surface then the surface

is, so suppose you are looking at a you know the usual topology and you are in Euclidean

space and you look at  a  surface for example surface of  sphere or surface of cylinder  or

whatever it is okay then you know if you look at the, so there is a dimension of the surface

which is say m okay.

So if you are I mean if you are looking at the surface in if you want in so if you are in R3

okay (())(3:37) Euclidean space and you are looking at a surface it will have dimension 2

okay your curve will have dimension 1 alright so a surface will be dimension 2, your curve in

3 space will be dimension 1 and you if you take a point on the surface alright and draw, you

try to draw all possible tangents to the surface at that point you get the tangents space at that

point.

And if the surface is smooth at the given point P okay then what happens is that the tangent

space will also be 2 dimensional okay so what will happen is that you will get a unique

tangent plane at the point P okay and if the surface is not smooth at a given point what will

happen is that if you look at the tangents, the tangent space could have higher dimension, so



for example you know if you take something like a cone and if you consider the vortex to be

the point okay.

Then what happens is that if you, how do you calculate the tangent space, it is a space plank

by all tangent vectors and what are tangent vectors, I mean they lie on tangent lines passing

through the point okay so you know if I try to draw tangent lines passing through this point I

can easily draw three you know I can easily draw three linearly independent vectors I can

draw  three  different  lines  which  are  given  which  lie  in  the  directions  of  three  linearly

independent vectors okay.

So you know if the cone is like this right I can draw one like this and then I can draw one like

this and then I can draw one like this okay so I can easily draw three of them, I get three

linearly independent vectors and therefore you know if you take all such vectors the space

that they span will be R3, so you know tangent space here this is the vertex of the cone has

tangent space isomorphic to R3 as a vector space.

Because you are easily able to find three linearly independent vectors and you know and

these are vectors in 3 space alright and therefore the subspace that they span will be all of

three spaces so what happens is that the, so here the dimension of tangent space at the point P

is 3 which is greater than or equal to 2 which is the dimension of the surface, the cone is 2

dimensional.

But you take that point which is the vertex of the cone there you look at the tangent space

namely the space, the vector space spanned by all  tangent vectors, the tangent space is 3

dimensional so the tangent space dimension is more than the dimension of the cone and so

this tells you that P is singular point, P is a singularity or singular point or a non-smooth

point, sometimes in classical, I mean in analysis the language (())(7:54) we also say it is a

non-manifold point, it is also called as a non-manifold point alright.

So the idea is that at any point if you want to check whether it is a smooth point or not okay

what you do is that you try to look, measure the dimension of the tangent space at that point,

if the dimension of the tangent space is equal to dimension of the object, the dimension of the

space on which you are considering the point, then the point is a smooth point otherwise the

dimension could very well be more.



If it is more then the point is not a smooth point, it is a singular point, so it is also the case,

there is also a case with the line I mean with a curve see if you take a point like this on the

curve then you know if it is a smooth point I will get a unique tangent direction to the curve

at that point and the tangent space will just be a single line, it will just be the line spanned, it

will just be the space spanned by a single vector.

So you see the tangent space you will get a unique tangent line at the point P, the tangent

space at the point P has dimension 1 and that is equal to the dimension of the curve on which

the point P is lying that tells you that the point P is a smooth point okay but however you

know if I take a curve which is not a smooth curve then things can be different for example

you know vertex something like you know on the plane I can easily draw a curve which is not

smooth.

So you know for example if I purposely draw something like this with a kink here if I draw a

curve like this and take this point then at this point if you calculate the tangent space you will

easily see that you can draw two tangents you know from if I approach from the left okay the

I will get a tangent like this, if I approach from the right I will get a tangent like this at this

point okay and these two are two linearly independent directions.

Therefore the directions of the tangent space at this point is 2 whereas the point is lying on a

curve which is 1 dimensional so the dimension of the tangent is more than the dimension of

the curve the dimension of the object on which the point lies and that tells you that point is

not a smooth point okay so here what happens again P is singular point as the dimension of

the tangent space of the tangent space at the point P is 2 which is strictly greater than.

So here also I should not put greater than equal to, in fact I should put strictly greater than, 3

is strictly greater than 2 and here it is 2 is strictly greater than 1 which is the dimension of the

curve, so this is the curve on which the point is lying the curve is 1 dimensional okay but the

tangent space at that point is 2 dimension where the tangent space dimension exceeds the

dimension these are the singular points okay.

So this is what happens in so I have of course looked at dimension 2, dimension 1 you can

therefore say if you are looking at an N dimensional hypersurface okay and in say some

which has to be thought of in some Euclidean space of dimension greater than N okay then at

a  point  how do you say  the  point  is  smooth  or  not  what  you do is  that  you check  the

dimension of the tangent space at that point if it is strictly greater than the dimension of the



space on which the point lies then it is not a smooth point if it is equal then it is a smooth

point okay.

So this is the idea from at least from calculus and geometry usual analysis okay now the

analogue for this  in  algebraic  geometry  is  of  course there and everything is  I  mean this

business of estimating this business of calculating the tangent space and its dimension at the

point P is done by looking at things connected with the local ring at the point okay so here is

a definition.

(Refer Slide Time: 13:25)

So now I am switching you know some classical or analysis based situation I am going from

there to algebraic geometry so you know x, I am going to take the following thing I am going

to define when your point of an affine variety is smooth, I mean when it is non-singular okay

and when it is singular right so here is, so in algebraic geometry so how do you do it so what

you do is that you take x to be an affine variety okay.

Let X be an affine variety, P a point of X okay, how do you define that P is a smooth point or

a non-singular point okay so for that what you do is you do the following thing so let X sit

inside some An, affine space over k, k is of course an algebraically closed field, X is an affine

variety so it is an irreducible subset isomorphic to some irreducible closed subset of some

affine space.

So this is by definition X is isomorphic to an irreducible closed subset of affine space okay

and then you know you have the you have the ideal of X which is the ideal inside the affine



co-ordinate ring of An okay which is actually you know well it can be identified with all the

polynomial ring in N variables if you want okay if you take capital X1 through capital Xn to

be the co-ordinates,  co-ordinate  functions then you take the polynomial  ring in those co-

ordinate functions that is the affine co-ordinate ring of affine space okay. 

And X is an irreducible closed subset so it corresponds to a prime ideal so I of X is its prime

ideal and of course you know the affine co-ordinate ring of X is given by the affine co-

ordinate ring of affine space namely the polynomial ring mod the ideal of X, there is a finitely

generated K algebra which is an integral domain okay but the point is more importantly the

point is about this ideal see the ideal of X, this is an ideal this polynomial ring which is

noetherian ring so it is finitely generated okay.

So let us look at set of generators so f1 say g1 etc upto gm is ideal generated by finitely many

polynomials okay this is true because in a noetherian ring any ideal is finitely generated and

the polynomial ring is noetherian because that is as you know Hilbert’s Basis Theorem or

Emmy Noether’s Theorem so you choose a set of generators alright now what you do is you

do the following thing.

You compute, calculate the Jacobian of this (())(16:39) of functions with respect to these N

variables okay you get M by N matrix of polynomials, a matrix with polynomial entries and

that you evaluate at the point P okay and then you get a numerical matrix, a matrix with the

entries in the field and calculate its rank okay so this is the thing that you will have to do, so

you calculate rank of Jacobian of g1, gm with respect to these variables.

So let  me just  write it  like this,  calculate  rank of the Jacobian of all  this  at  the point P,

calculate this number okay so what you are doing is well basically what you are doing is you

are taking g1 partially differentiating it with respect to x1 and then you know evaluating it at

P okay and then you do it so on with g1 with respect to well all the variables Xn and then

now you repeat it with g2 with respect to X1 at P and this is dou g2 at Xn at P okay and then

you do it like this, you calculate this, you have this matrix okay.

Now mind you when I say partial derivative, you do not have to think of derivative in the

sense of calculus because derivative in the sense of calculus will require a limiting process

but do not think of it as derivative in the sense of calculus but think of it as formal derivative

because you know you can always take any polynomial in so many variables and you know

how to define the derivative okay using the usual rules of differentiation.



So in calculating this derivatives there is no need for I mean you are not going you are not

actually  computing  derivative  in  the  calculus  sense  okay  but  you  are  directly  using  the

formula for the derivative which so you know formula is for differentiation of polynomials, I

mean these are the same formulas that you get in calculus but then they make sense even

without calculus you take those differentiation formulas as the definition rather than getting

them by using a limiting process okay.

So you have this matrix okay this is a matrix you calculate these rank okay and what you do

is you, now you do the following thing we say P is a non-singular point of X if, so this is the

definition the rank of the Jacobian of the generators okay of the ideal of X at the point P

should be equal to the co-dimension of X in An and what is co-dimension it is co-dimension

is just dimension of An minus dimension of X so it is just n minus dimension X.

So co-dimension of a subspace is just the difference of the X, you take away the dimension of

the subspace from the dimension of the ambient space okay the ambient space here is affine

space An the subspace is X which is embedded sitting inside An and you take the dimension

of the ambient space minus the dimension of X that is called the dimension of the bigger

space minus the dimension of the smaller space is called the co-dimension of the smaller

space and the bigger space okay.

So the condition for P to be non-singular point X is that the rank is equal to the co-dimension

alright so this is the condition and by the way rank of the Jacobian at the point P is actually

rank of this matrix okay so this is equal to n minus dimension of X, so this is the condition

for P in X to be non-singular for it to be smooth point okay now the beautiful thing about

varieties is that you know they are not always smooth okay they will involve singularities.

But the point is that the set of points which are singular will form a very small subset where

you should take the set of points which are non-singular that will be a huge open set they be a

dense open set okay so you know if you want to compare a variety with classical smooth

object in analysis okay the comparison should be the if you want to think like that what you

should think of is that a variety is something like a smooth object on an open set plus a

boundary which is the compliment of the open set which will have singular points.

So you know something like a cone okay, if you throw away the point which is the vertex of

the cone the rest of it is all smooth okay and that is a dense open set and the boundary is this

point which is a singular point so a variety also looks like that there is a big open set which is



full of smooth points okay where it is like smooth where it is analogue of a smooth object in

analysis okay.

These are all the points where the dimension of the variety is same as the dimension of the

tangent space okay and that is what is actually being said in the definition but then we will

have to we will unravel this definitions and try to literally see that this is the same as that

okay but there is some translation that one has to do okay which we will do okay so when

you think of a variety what one needs to remember is that there is an open set, dense open set

where it is smooth okay, where it is like a manifold, a smooth object in analysis.

And then the compliment of the open set is a closed set, it is a boundary and that closed set

will  consists  of singular  points  okay of  course there  could be varieties  which are totally

smooth that  also can happen and such varieties which are totally  smooth are called non-

singular varieties right so now let  me, this  definition looks a little involved okay but the

advantage of this definition is that you can do some calculations okay.

(Refer Slide Time: 25:23)

So for example you know so if you want to apply it so let me take example of hypersurface in

An okay what is the hypersurface it is a co-dimension 1 subvariety of An, it is a co-dimension

1 subvariety and we have seen this a co-dimension 1 subvariety means that it is an invisible

closed subvariety of dimension 1 less so it is dimension n minus 1 and we have seen that this

will  happen if  and only if  the ideal  of  the variety  is  generated  by a single non-constant

irreducible polynomial okay.



So you know so if I call that as X is equal to hypersurface in An so ideal effects is generated

by f where or let me put g itself, g an irreducible non-constant polynomial so we have seen

this and now what is if you take a point P on this hypersurface when is the point P smooth so

if I apply this condition so I will get I will have to look at rank of the Jacobian of g which will

be just at the point P and that is just going to be, that is equal to rank of dou g by dou x1, dou

g by dou xn okay.

So are just looking at all  the first partial  derivatives of that polynomial and then you are

evaluating them at a point P and this is equal to the co-dimension of X and what is the co-

dimension of X is 1 okay because X is a hypersurface so the co-dimension is 1just  if and

only if P is a non-singular point of X, so you know if you want the hypersurface to be non-

singular that means you want all the points on the hyper surface to be smooth non-singular

points then the condition is that all the first partial derivatives of g should not simultaneously

vanish at any given point okay.

And  such  polynomials  is  called  a  non-singular  polynomial  okay,  it  is  called  a  smooth

polynomial so X is non-singular if, so X is non-singular means X is every point at every point

of X is non-singular that is what it means okay so X is non-singular if and only if the rank of

this is always 1 okay that means that given any point at least one of the partial derivatives

should not vanish okay, at least one of the partial derivatives dou g by dou xi does not vanish

at each point of X okay.
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So you know it is very easy to check that a hypersurface is you know is non-singular that is

smooth right, so examples of these things are well examples of smooth, I keep using the word

smooth but in algebraic geometry the word smooth is a reserved for something more general

than  this  so  the  word  that  we use  is  actually  non-singular,  so  examples  of  non-singular

hypersurfaces or well hyperplanes which are given by you know f is linear homogeneous, f is

just a linear polynomial, you take a linear polynomial alright.

So that is f of x1 through xn is just sigma alpha i xi minus some beta 0, i equal to 1 to n,

something like this and of course you know I am not looking at the case when all the alpha i’s

and this beta are all 0 and so I really want a linear polynomial which is not zero polynomial

right or a constant polynomial so at least one of the alpha is survives is non-zero, so you if

certain alpha j survives then dou f by dou j if I take the partial derivative f with respect to xj, I

will get the alpha j which is not 0.

So that  will  never  vanish at  any point  on this  hyperplane  so these hyperplanes  are  non-

singular then you can take things like n equal to 2 and you can take f to be x squared plus y

squared minus 1 okay then well this is the circle in A2, this is a circle in A2 and you know if

you calculate  of course I  am taking the variables  as x and y okay then if  you want use

standard notation I should take x1 and x2 right.

So let me do that, let me write it as x1 and x2 then you see that if I calculate dou f by dou x1,

dou f by dou x2, I get this I will get 2 x1, I will get 2 x2 okay and now you know now you

want that at any point of the circle okay one of these should not vanish, so when will both

vanish, both will vanish at the origin okay both will vanish at x1 equal to 0, x2 equal to 0

which is the origin in A2 alright.

But then the origin is not the point on the circle so it does not give me, so what it tells me is

that this is not going to vanish at any point of the circle but there is a catch, the catch is that

your, there is one issue this k could be characteristic 2, k could be an algebraically closed

field of characteristic 2 in which case this will be identically zero because in characteristic 2,

2 is zero, so if k is an algebraically closed field of characteristic 2 then this x1 squared plus

you know this will become you know this will vanish.

So you have to be careful  about  the characteristic  of the field  where you are doing this

computations  okay and so let  me put  characteristics  is  not equal  to 2 for safety okay so

whenever you get these some integer co-efficients you have to really worry about whenever



you are talking about something vanishing okay and you are in algebraic geometry, you are

working  when  algebraically  closed  field,  you  should  remember  that  it  could  be  any

characteristic.

So if the characteristics divides one of these co-efficients you are in bad shape because it will

just vanish okay so if you take characteristics not equal to you know their circle is smooth

and well in fact if characteristics is 2 something more serious is happening f is first of all not

irreducible if you are in characteristics 2 this is the same as x1 plus x2 plus 1 the whole

square because in characteristics P, A plus B whole power P is A power P plus B power P

okay.

So you know x1 plus x2 and minus 1 is same as plus 1 in characteristic 2, so this is actually f

becomes square of a linear polynomial in characteristics 2 it becomes x1 plus x2 plus 1 the

whole square okay and so it  is  not even irreducible  alright,  so you have to worry about

characteristics  alright,  of course if  you are working over complex numbers one does not

worry about these issues but then whatever algebraic geometry we are discussing about is

over an algebraically closed field and you know you can have algebraically closed field of

any characteristics right.

So this is not equal to 0 for any P in the zero set of f which is the circle in A2 and well now

you know you can start this is with one equation you can start looking at objects given by

several equations okay and start checking which are the points that are smooth points and

whether the smooth points that is a non-singular points are all the points or you get some

points singular, some points which are non-singular.

So that way this definition is useful for computation alright but you know the problem with

this definition is that there are two problems with this definition, so the first problem is I only

defined it, defined non-singularity for a point of affine variety okay I have not defined non-

singularity at a point for any variety because any variety in general would be non-affine okay

it could be quasi affine, it could be projective, it could be quasi projective.

So well I but anyway I can get over this problem by saying that well any of I know that any

variety  is  covered  by  finitely  many  open  sets  which  are  isomorphic  to  affine  varieties

therefore you give me a point on any variety, I can find an open sets surrounding that point

which is isomorphic to an affine variety so that point it is now lying on this open set which is

an affine variety and then I can say it is non-singular or not based on this definition alright.



So I can get over this problem of extending this definition of non-singularity to any variety

just because of the fact that any variety admits a cover, finite cover by open sets which are

isomorphic  to  affine  varieties  that  is  an  issue  that  is  easily  resolved  but  there  is  more

something more serious, the more serious thing is this numerical business here, you see there

is lot of ambiguity here, you see the same affine variety could be embedded in different affine

spaces okay.

I could embed the same affine variety in An, I could also embed it in some Am, if I embed it

in a different Am then the ideal will change okay so this ideal depends on the embedding, see

this ideal of x is the ideal in the affine co-ordinate ring and that affine co-ordinate ring it is in

the ideal of the affine co-ordinate ring of the affine space in which x is embedded but if I

change this affine space where x is embedded then I am changing this ring therefore this ideal

also changes, this ideal is not an invariant.

See what is an invariant, this is the only thing that is an invariant, for an affine variety the

affine co-ordinate ring is an invariant okay, whether I embed X as an irreducible closed sub

variety of An or Am any affine space if I calculate this, if I calculate the affine co-ordinate

ring of X then you know that is an invariant because that is also equal to OX, you know the

regular functions on X.

But the ideal can change okay so that is the ambiguity of the embedding if we change the

embedding  the  ideal  will  change  alright  that  is  the  first  ambiguity,  what  is  the  second

ambiguity, second ambiguity is here when I write the ideal I write the set of generators for the

ideal, the same ideal can have different sets of generators the sets of generators are by no

means unique okay.

So if I change these generators then this you know this Jacobian matrix itself will change

instead of well even the number of generators I have, I do not know, g1 trough gm maybe one

set of generators, I may find these are m generators, I may find some different number of

generators  and  they  may  be  all  completely  different  polynomials  and  again  I  do  this

computation, what is the guaranty that my definition is consistent.

Okay for the same ideal if I keep the same embedding and therefore my ideal is fixed if I take

a different set of generators what is the guaranty that if I compute this I will still get the same

rank, so well thanks to God that is the case okay and the point is why does that happen, the

one way to see it is using the language of local rings okay so this is where the power of local



rings  comes  in  to  tell  you  that  this  definition  is  independent  of  the  embedding  it  is

independent  of  the  generators  for  the  ideal  that  you choose,  this  definition  is  absolutely

correct, it is not going to fail you, it is not going to become inconsistent okay.

So it is to that end that I am going to state something now, so here is the, this is the fact which

was discovered and proved by Oscar Zariski who can very welled be called the father of even

the grandfather of algebraic geometry, the grand man of algebraic geometry, he was a person

who initially wrote papers in the Italian style where he was, the papers were the proofs were

based more on you know geometric ideas and there was no proper rigour.

But then being a you know commutative algebra is (())(42:35), he developed the necessary

commutative algebra in field theory to translate all that into modern language and then he

was able to rewrite everything gradually and show that everything is can be you know made

rigorous using commutative algebra.
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So here is the theorem, let x be a variety and P a point of X then P is non-singular if and only

if dimension over k of mp mod mp squared is equal to dimension of X okay so this is the

correct statement so what I want to tell you about this is you see you have the local ring O XP

okay this is the local ring of X at the point P okay and it is a local ring so it has unique

maximal ideal and that maximal ideal is given by this mp okay.

So with, so this is with unique maximal ideal mp right and now what you must understand is

you know the dimension of the local ring you know that this is the same as dimensional X

this is something that we already know okay, the dimension of the local ring is a same as the

dimension of X and so you know you can here I can add if I wanted if I want to reflect the

point P, I can also write dimension of O XP okay and so if I remove the, if I do not look at the

central term then I have condition which seems to have only to do with the local ring.

I am just saying that the dimension of the local ring is the same as the dimension of m mod m

squared so you know what I want you to understand is the local ring modulo the maximal

ideal  will  give you just  k okay and what you must understand is that  if you look at  mp

squared  okay this  is  the  square  of  the  ideal  mp,  so  you know this  is  just  consisting  of

elements of the form you know sigma ai bi, i equal to 1, 2 some l where ai  and bi are in the

maximal ideal okay this is just the squared ideal alright.

Finite sum of products taken two at a time from the ideal okay from this maximal ideal mp

and you know this is if you look at it, if you look at and you of course this is contained in mp

okay this is certainly contained in mp because if you take two elements of this ideal and

multiply them out the product is certainly in the ideal this sums that finite sums are also here,



so this is contained inside this but the point is that if you look at mp mod mp squared okay

this is a k vector space okay this is a k vector space.

And it is a k vector space just because of this fact because O mod m is k okay so this is a k

vector space it is module over k, well in fact you see you take O XP modulo mp you can

define scalar multiplication like this by simply you know f, so you know f bar, well g bar

going to well f bar g bar, I think this should give you an obvious map which will make mp

mod mp square a module over O Xp mod mp.

But O XP mod mp is just k therefore mp mod mp squared is a module over k so it is a vector

space okay so you can well you know you can check that this is, this map is well defined

where this f bar is, where f is an element of the local ring so it is germ of a regular function at

the point P and f bar is its image actually f bar is just that regular function evaluated at the

point P okay, it is just evaluation.

And here you are taking g bar is  just  the image of a g,  g is  just  a regular function in a

neighbourhood of P, germ of a regular function in a neighbourhood of P which vanishes at the

point P so g is in mp and its image in the quotient mp mod mp squared is g bar, so you are

reading g upto you know going mod mp square is just reading only the linear (())(50:10)

when you go mod m you are evaluating at the point see these are all actions that are going on

with the elements here, the local ring, what are the elements of the local ring?

The elements of the local ring are regular functions, germs of regular functions, how do you

get this quotient isomorphic to k, what you do is give me a regular function at that point you

evaluate it at that point, you give me a germ of a regular function here you evaluate it at that

point that will give you a map from this to k its kernel will be exactly mp, all those germs of

those regular functions which vanishes at the point P.

So the quotient will be k so this isomorphism is just evaluation arises just by evaluation of a

germ of a regular function in a neighbourhood of P at the point P okay and what does m mod

m square stands for, it is you take a function which vanishes at the point P, germ of a regular

function which vanishes at the point P that is what a function that belongs to mp means and

reining it mod mp squared means that you take literally you know its derivative.

Because you know you are cutting if you read mod m squared that means you are not, you are

only taking the linear tem, you are not taking the degree to term onwards so in a sense this



corresponds to taking only reading only the linear term alright and you know the first order

term always is the derivative so going m mod m square is reading of the derivative in a

certain sense okay.

And therefore this  is  how m mod m squared becomes a k vector  space okay and it  is it

certainly a finite dimensional vector space because you know after all O XP is a noetherian

ring you know this local ring is a noetherian ring and this ideal mp in this noetherian ring is

finitely generated you take a set of generators and take their images here they will give you

generators for this quotient.

So  it  is  a  vector  space  which  has  finitely  many  generators  and  therefore  it  is  a  finite

dimension vector space it is a vector space which has a finite spanning set so it is a finite

dimensional  vector  space  okay  therefore  this  is  a  finite  dimensional  vector  space  you

calculate its dimension okay and this dimension if it is equal to the dimension of x then and

only then is the point P a non-singular point.

So you know what this quantity is, you know this quantity is actually the dimension of the

tangent space at the point P this quantity dimension of m mod m squared over k actually

measures the dimension of the tangent space to the variety x at the point P and what normally

will happen is that this will be more than this as we saw in those examples of cone and a line

and a curve with a kink at a point, what happened at the singular point was that the dimension

of the tangent space shot up.

The dimension of the tangent space became more than the dimension of the object at for the

vertex  of  the  cone  the  dimension  of  the  tangent  space  is  3  whereas  the  cone is  only  2

dimensional so the vertex is not a smooth point it is a singular point, similarly if you take a

line with a kink if you take a curve with a kink at the point where you have the kink you

know that the tangent space becomes 2 dimensional.

And the dimension is 2 which is greater than dimension of the curve which is 1 so that point

which is the kink is not a smooth point, it is a singular point okay so that is exactly what is

happening here so it is a matter of little bit of commutative algebra to check that you know if

you have a noetherian local ring with maximal ideal m then the dimension of this vector

space will always be greater than or equal to the dimension of the local ring okay.



And if the dimension is greater than the dimension of the local ring then that point P is not a

smooth point it  is not a non-singular point, it  is a singular point it  is a singularity if the

dimensions are equal then it is a smooth point, so the point I wanted to understand is that

what this, see what this theorem is saying is exactly the analogue of what we saw in the

analysis calculus situation.

That your point of a variety is smooth if and only if dimension of the tangent space at that

point is exactly equal to the dimension of the variety and what will happen if it is a non-

singular, if it is a singular point, this will be bigger than this you will have more, tangent

space dimension will be more than the dimension of your, of the space on which your point

lies okay.

But the nice thing I want you to notice is that whole thing that is done using calculus all that

has been captured just using local rings that is what I want you to appreciate okay so when

you do usual calculus how do you define a tangent space at a point, you take a point you draw

a curve through the point and then you draw the tangent to the curve at that point okay and

then like this you try to fill the neighbourhood of the point by curves draw tangents and then

now take the all these space of all these tangents that is a tangent space.

So it involves the usual facts from calculus thinking of curve passing through the point and

drawing tangents and all that okay and of course even to find the tangent to a curve at a point

it is a limiting process right, because you take a point and you take a sufficiently close point

and then you draw a cord and then you take the limit as the sufficient closed point tends to the

given point so the cord becomes the tangent at that point.

So in usual calculus even the process of getting hold off a tangent is a limiting process and

then you in this way you build the tangent space you check out what the tangent space is you

calculate these dimension and then you check whether the tangent space dimension is more or

whether it is equal to the dimension of the object and then that is how get smoothness or not

and the (())(57:31) sort of calculus but you see in algebraic geometry all that limit process is

not there.

But still you are able to capture the smoothness, the non-singularity the key is local rings

okay that is one fact then the other fact is what this tells you is that you know this based on

this definition tells you that this definition is independent of the embedding of X in affine

space, if X is an affine variety then a point of X is smooth okay that is a condition which is



intrinsic to the point because that condition only depends on the local ring at that point and

the local ring at a given point is invariant, it will not change if you no matter how you embed

you variety.

The local ring is in invariant and therefore this theorem tell you that the non-singularity that

you have defined here actually really does not depend on this embedding or this ideal or I

mean this embedding which dictates this ideal and then the ambiguity of what generators you

have chosen for these ideal okay so it is a very intrinsic statement okay and that tells you that

you do not have to worry about this definition.

But it is useful to make calculations and to check that a given you know variety defined by a

bunch of equations is smooth or not at a point so in that way this definition is useful but that

theorem tells you that you are not going to go wrong if you use this okay, so I will give you

proof of this in my next lecture okay so I will stop here.


