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Ok so we were discussing projective spaces ok. 
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So if you recall  we have here projective space, projective N over K which is where K is

offcourse an algebraically closed field and this is offcourse this thought of a space of lines in

N plus 1 dimensional affine space alright and we have given the Zariski topology on this ok

and infact  if  you remember the,  so this  so there was a very nice picture,  one giving the

geometric  side  and the  other  the  algebraic  side.  So for  the  algebraic  side,  so  this  is  the

geometric side and this is algebraic side. So this is the picture very similar to the case to the

affine case. 
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So  on  the  algebraic  side  you  take  the  so  called  homogeneous  coordinate  ring  of  this

projective N space which is defined to be the ring of polynomials in N plus variables and it is

customary to start the indexing of the variables from zero ok and offcourse you have N plus

variables and this is the affine coordinate ring of the projective space above of the affine

space above ok.

So  this  projective  space  is  afterall  affine  (space)  the  N plus  1  dimensional  affine  space

punctured  at  the  origin  a  modulo  the  equivalence  which  identifies  all  the  points  passing

through on a line passing through the origin ok, all the points on a line passing through the

origin in N plus 1 dimensional affine space or identified as a singly equivalence class ok and

therefore in other words an equivalence class is just a line passing through the origin and

therefore this is the space of lines in affine N plus 1 space ok and this is the homogeneous

coordinate ring which is the (aff) which is also the affine coordinate ring of the affine space

above alright.

And what you do is, that offcourse the important structure here is that we are interested in the

so called graded structure of this ring. (the) this ring so let me write it as S, this S is the

graded ring since that S is the direct sum of its degree D piece is for D greater than or equal

to zero ok, where S d corresponds to homogeneous polynomials of degree D, S0 is offcourse

is going to be just K, K the constants which are homogeneous polynomials of degree zero and

it is this so called graded structure which is very-very important and infact what we do is that

Zariski topology is defined like this on the projective space.
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You start with I in S homogeneous ideal, a homogeneous ideal namely I the condition for

homogeneity is that if you take the ideal I should be the same as it should be the same as

direct sum of all its pieces intersected with S d. So you take the ideal I and intersect with S d

what you will get is all those elements in the ideal which are homogeneous of degree D and

offcourse we take a direct if you take the sum it will offcourse be a direct sum because this is

already a direct sum ok and this will certainly be a subset of this always for any ideal.

But then the condition that the ideal should be homogeneous is that this is exactly equal to

this ok, which is the same as saying that given any polynomial, in given any element here

each of its homogeneous components is also back in this ideal ok, that is what it means and

you know we saw this as a geometry condition for a polynomial to vanish on a line it is

necessary a line passing through the origin it is necessary that the polynomial has no degrees

has  no  constant  term  that  it  is  constant  term  is  zero  and  every  degree  D  piece,  every

homogeneous piece of the polynomial should also vanish on that line ok and that is exactly

the this homogeneity condition ok.

So once you have homogeneous ideal then you can define the zero set of this ideal in the

projective  space,  which  is  the  set  of  all  points  here  which  are  common zeros  of  all  the

polynomials here ok and offcourse it is the homogeneity of the polynomial which allows you

to  decide  for  sure that  the  polynomial  vanishes  at  a  point  on the  projective  space,  it  is,

because it is the homogeneity of a polynomial, it tell you that if it vanishes on a line passing

through the origin then it will vanish at every point on that line ok (and).



So we get this and these are the so called closed algebraic subsets the in projective space and

this  gives  the  projective  space  Zariski  topology, a  topology  which  is  called  the  Zariski

topology. The proof that this is a topology is very similar to the affine case ok you can check

it  and  offcourse  you  have  to  remember  that  the  property  of  an  ideal,  the  property  of

homogeneity of an ideal behaves well under some product intersection and taking radicals ok.

Namely sum of homogeneous ideals is homogeneous, a product of homogeneous ideals is

homogeneous and intersection of homogeneous ideals is also homogeneous, a radical of a

homogeneous ideal is also homogeneous ok. This are simple facts that you can check and

moreover you can also check that, to check that homogeneous ideal is prime you can check

the prime must condition only for homogeneous products ok.

So to in general if you want check-up ideal is prime you take a product in the ideal and show

that one of the factors of a product is also in the ideal but then you can restrict this checking

to homogeneous elements. If you wanted to check a homogeneous (ele) ideal is prime ok. So

the fact is that as it the affine case you get a very nice picture, you get you have an arrow

going in this direction and well there is also an arrow that is going in this direction.

So this is the Z , this is the I and this is give me any subset Y of projective space then I have I

of Y this is the set of all so you take the set all those homogeneous polynomials which vanish

on Y and then you take the ideal generated by that. So this is the ideal so this is well, so this is

the ideal generated by all homogeneous polynomials vanishing on Y ok. So and I have also

told  you if  you recall  in  the  last  lecture  that  yet  another  way of  saying that  an ideal  is

homogeneous is by saying that it is generated by homogeneous elements ok.

So  since  this  ideal  is  generated  by  homogeneous  polynomials  which  are  offcourse

homogeneous elements it is obvious that this ideal is a homogeneous ideal. So you get a kind

of you know mappings back and forth in this on this side you can have you know closed

subsets or algebraic subsets of projective space and on this side you can have homogeneous

ideals and you have mapping going in this direction and the reverse direction but then if you

want to make this into bijective correspondence you will have to restrict offcourse uhh where

infact on this side I can take all subsets ok but and here I can take all subsets and here I can

take  all  ideals  but  offcourse the  point  is  I  can’t  take  all  ideals  here I  have  to  take  only

homogeneous ideals ok.



But then this map always gives me something closed here ok because that is how Zariski

topology is define whereas if you give me any subset this always gives me homogeneous

ideal ok. So if you want a bijective correspondence, what you will have to do is that, just like

the affine case you will have to restrict here to you know, you have to restrict here to radical

ideals  ok and on this  side you will  have to  restrict  to closed subsets  and then you have

bijective correspondence ok and uhh as before this is as in the affine case this is an inclusion

reversing  bijective  correspondence  between  radical  homogeneous  ideals  on  this  side  and

closed subsets here.

The only thing you have to remember is that you should take homogeneous radical ideals that

is the first point. The second point is you will have to leave a one particular ideal and that is

the  so  called  the  irrelevant  maximal  ideal.  That  is  the  actually  the  maximal  ideal  that

corresponds to the zero in the affine space above of which has been thrown out when we

considered the projective space ok. So this is the fact that I told you last time and offcourse

we have nice things like, we have the statements like.
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So let me say that just repeat it here you have closed subsets on this side and you have a

bijective correspondence.

On this side you take homogeneous radical ideals different from the irrelevant maximal ideal,

which is usually written as S plus, it is written as S plus because it is the sum of all the it is

the direct sum of all the S d’s for D positive ok, if you take S 1 plus, S1 directs sum S2 direct

sum and so on, what you will get is exactly the ideal generated by all the variables, so it is



written as S plus ok and this called the irrelevant maximal ideal ok. So you have this bijective

correspondence and then offcourse as you, we have these facts like I of instead of I is rad I

and you have E z of I F Y is Y bar ok.

This are all facts that we have in the affine case. We have the and offcourse in one direction

this is trivial, the other direction is the so called projective Nullstellensatz ok and so you have

projective version of the Nullstellensatz and you have these two facts and you also have as in

the projective  as in the affine case you also have this  fact that  if  you take prime ideals,

homogeneous prime ideals that is a subset of this because a prime ideal is always radical. So

if you take the subset of homogeneous prime ideals that will, that under this correspondence

will go to what are called as projective varieties.

This will be irreducible algebraic sets in projective space. So on this side I get projective sub-

variety here and my projective sub-varieties I mean closed or algebraic subsets of projective

space which are irreducible. So in other words what I am saying is just in affine case a subset

here is closed subset here is irreducible if and only if its ideal is prime ok and so these are all

things that we have just as affine case.
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Now what we do is that so we define, so we uhh so what we do is that we enlarge the notion

of variety to include so far our varieties were either affine or quasi affine so affine meant that

you are looking at an irreducible closed subset of some affine space and quasi affine means

you are looking at an open subset non-empty subset of an irreducible closed subset of affine

space.



So this is X irreducible closed in some affine space and quasi-affine meant something that is

an open subset of such an X that is an open subset of affine. So you can think of it as U

sitting inside X this is non-empty open subset of X which is an irreducible closed subset of

some affine space ok. So this is what is meant by a quasi-affine variety. So we have already

dealt with these two. Now you extend the definition to include projective varieties and quasi

projective varieties.

So what a, so projective varieties are similarly irreducible closed subset in projective space.

So it is some X which is irreducible close, in such projective space and offcourse you can

again  define  quasi  projective  varieties  and  quasi  projective  varieties  are  open  subset  of

projective varieties. So quasi projective these are open subsets of projective varieties so they

will  look like an open subset open non-empty inside X which is irreducible closed some

projective space.

So  now variety  it  means  any  one  of  the  following  four  possibilities.  So  it  is  either  an

irreducible closed subset or an open subset of that in affine space or in projective space ok.

Now so you, we enlarge the notion what a varieties and then you have to note that talking

about irreducibility outing out that projective space is also noetherian. So I just wanted to

remind  you  that  projective  space  is  just  the  quotient  of  the  punctured  affine  space  and

offcourse you know if you take and the punctured affine space is noetherian. 

So  the  projective  space  is  noetherian.  For  example  how  do  you  verify  that  a  space  is

noetherian  you show that it satisfies the D C C descending chain condition for closed sets. So

if you give me a descending chain of closed subsets in projective space, you simply pull it up

by the projection map to the affine, the punctured affine space above and then you add the

origin ok, so that you will get a descending close sequence of subsets in affine space.

But then you know that the affine space is noetherian, therefore that’s sequence stabilizes and

therefore its image below will also stabilize ok. Offcourse you will have to remove when you

take the image below you will have to remove the origin and then take the image under

projection  from the  punctured  affine  space  to  the  projective  space.  So it  is  obvious  that

projective space is going to be noetherian ok and then you know the moment you have a

noetherian   topological  space  then  every  closed  subset  has  a  noetherian  decomposition

namely decomposition into unique decomposition into irreducible finitely many irreducible

closed subsets.



The  decomposition  being  unique  except  our  for  permutation  of  the  elements  appearing

occurring in the decomposition except provided you assume that there is no redundancy in

your decomposition namely no irreducible closed subsets in the decomposition is a subset of

some other  irreducible  closed  set  in  that  decomposition  and  therefore  and the  such  sets

irreducible closed subsets though finitely many irreducible closed subsets the union of which

in  a  unique  sense  is  the  given  closed  subset  of  projective  space.  They  are  called  the

irreducible components ok.

So this is just, so you have noetherianess of projective space you have irreducible (decom)

you have the noetherian decomposition for any closed subset ok that is because noetherian

property and then you will also have this fact that topologically you know that any noetherian

space is quasi-compact therefore you will get that projective space any a projective space is

offcourse quasi-compact and infact direct demonstration of that is that we have seen that the

projective space is actually a union of N plus 1 affine spaces ok.

So there is already a finite cover by affine spaces. So P n has a union, P n is the union of

finitely many A n’s, N plus 1 A n’s ok. So but infact any closed (sub) any subset of P n being

a  sub  set  noetherian  topological  space  will  be  noetherian  and  you  know  and  since  the

noetherian  topological space is always quasi-compact any subset will be quasi-compact ok.

So well now so these are all nice things that are going on here. So in particular you must

remember that if you take an open subset, if you take a quasi-projective variety then that is

both irreducible and dense in its closure which will be a projective variety.

Just like if you take a quasi-affine variety it will be both irreducible and dense in its closure

which will be a affine variety ok. So this is the situation. Now what I you wanted to do is, I

have enlarged the objection the category of varieties like this ok. I also want to enlarge so I

am thinking of the category of varieties which means I am thinking of both, I have to think of

both objects  and morphisms ok. Objects  offcourse I  have enlarged because I  have added

projective  and  quasi-projective  varieties.  But  then  I  have  to  enlarge  the  definition  of

morphism and you know definition of morphism the affine a quasi-affine case is that it is a

continuous map that pulls back regular functions to regular functions.

Therefore if I want to enlarge if I want to define morphisms which involve even projective or

quasi-projective varieties I have to tell you what are meant by regular functions for projective

or quasi-projective varieties ok and the answer is very-very simple. Just like the affine case

where the regular functions is just a quotient of polynomials locally. In the projective case



you only require that it is a quotient of homogeneous polynomials of the same degree and you

put the same homogeneous degree so that you get a valid function ok.
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So let me say that so you know so suppose you are having a subset S in projective space ok

and you take F and G in the S to upper H this is the union of all the S d’s D greater than equal

to zero ok. Let me alright, so let me take D greater than equal to 1 ok, let me not take non-

zero constants ok. See you take two so I am taking two homogeneous polynomials. Offcourse

you know I cannot evaluate a polynomial on even if it  homogeneous I cannot evaluate a

polynomial at a point of projective space.

The only the homogeneity of the polynomial will only tell me that it is, what I can uniquely

always say is whether the polynomial vanish at that point of projective space or not but I

can’t give but if it doesn’t vanish it can’t give you a particular value ok. That is because if I

plug in at point from projective space here then you know there is a common multiple which

is floating around because the points in projective space are common ratios they that is why

they are called homogeneous coordinates and that whatever constant multiple can always be

pulled out of the valuation and it will come out to the power Z equal to the degree of the

homogeneity of the polynomial.

So but the point is that if degree of the homogeneous degree of F is equal to the homogeneous

degree of G then you know ok so maybe there is no harm in including zero also because

anyway constant functions will make sense. So if both of them have the same degree then

you know F by G makes sense as a function into K in S intersection the compliment of E Z of



G ok. So the point is that if I plug in problem is that if I plug in a point of projective space

into a homogeneous polynomial then if I change representation of the point then a scalar will

come out and it will come out with a power which is equal to the degree of polynomial. 

But if I take such quotients ten these powers will cancel ok therefore you get a well-defined

function. So all this is to tell you is that you know homogeneous polynomials are not enough

to define functions but quotients of homogeneous polynomials with the same degree certainly

define functions on appropriates subsets of projective space, offcourse appropriate (subject)

subsets I should by that I mean the denominator polynomial should not vanish ok. For me to

be able to evaluate F by G at a point ok. So now the, now this is the prototype of what a

regular function if for a subset of projective space. 
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So we make this definition that so here is the definition, a function H from X to K where X is

a (variety) quasi-projective or projective variety is defined is  said to be regular  at  X (())

(27:31) if it locally looks like a quotient of two homogeneous polynomials and the number of

variables is equal to one more than the dimension of projective space in which exists ok.

So if X belong to Z of G where X is subset of A n and H restricted to U x is equal to F by G

restricted to U x where U x is an open neighbourhood of X contained in said oops X should

not be in (())(28:44) I don’t want I want to divide by G and I want evaluate it at X. So G

should not vanish at X so this has to be corrected X should not be in the zero set of G and this

neighbourhood should be contain in the compliment of this, zero set of G, the compliment of.

So this is the definition of what a uhh function regular function at a point means.
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Offcourse here F and G are in the homogeneous coordinate ring of the projective space ok,

which is a well polynomials in the right number of variables. So this is going to be K of X

knot ok. So the idea is very simple and offcourse you know its regular a point automatically

means regular and neighbourhood of a point ok. So because you are requiring this not only at

that point you are requiring it in the neighbourhood of the point so the definition of regular

function as in affine case already says that regular at appoint if and only if its already regular

in a neighbourhood of a of that point ok.

So now what we do is again define the ring of regular functions on the projective variety or

quasi-projective variety. We define O X as before and it becomes K algebra ok. So regular

functions  O X is  offcourse set  of all  global  regular  functions  namely function which are

regular on the whole of X which are that means functions are regular which are regular at

every point ok and if you take the set of all such functions that is a K algebra because sum of

regular functions is regular, product of regular functions is regular and that (multi) when you

multiply a constant function constant with regular function that is again regular, because the

constant it also set of as a constant regular function ok.

So well so we have this ring of regular functions on the on your quasi-projective or projective

variety and the point I want to make is that as before every a regular function is always

continuous ok.
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Regular functions elements of O X are always continuous and that is again something is

continuous offcourse for Zariski topology. So elements of O X are going to give (morhp) I

have still not defined morphisms, so let me come to that later. 

Regular functions of O X are always continuous ok and the continuity is obvious because of ,

it is obvious if you look at the if you remember the fact that the Zariski topology on the

projective space is a quotient topology of the topology above ok so if you give me a regular

function on a subset here ok then if you compose it with the projection ok you will get a

regular function on the affine space ok above on a subset of the suitable subset of the affine

space above and that is continuous and that will tell you that the inverse image of closed sets

are closed because of the definition of the quotient topology and therefore what will happen

is that regular functions are it is very trivial to see regular function are continuous ok.

Now that we have defined this what we can do next is now with this paves the way to be able

to define morphisms, so now how do we define morphisms between two varieties is just this

definition the same as before it is a morphisms between two varieties is just a continuous map

that pulls back regular functions regular functions ok, so definition remains the same. Only

thing is now you have your objects are more you are not only considering affine or quasi-

affine varieties you are also considering projection or quasi-projective varieties.

So you can think of morphisms from an affine or quasi-affine or a projective or a quasi-

projective variety into another variety which is again one of the one of these for types ok. 
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So the definition of a morphisms keep the same as before , the definition of a morphisms is

the same as before and again what will happen is that we again get the following important

theorem. If X is any variety and Y and affine variety then we have a natural bijection from the

set of all morphisms of varieties from X to Y to the set of all homo-morphisms of K algebras

from A Y to O X. 

We saw this theorem where we thought where we were thinking of X only as a final quasi-

affine variety but then the same theorem will the proof will go through now if you back and

look at this proof you will see that the same proof will work even if X is a projective or quasi-

projective variety ok. 
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So this theorem still holds and if you remember I think I call this map as a alpha and what

was this map well if you give me morphisms from X to Y then it goes to alpha F which is just

a pullback of regular function it is a map from A O Y to O X which will pullback regular

function Phi to you give me a regular function on, you will give me a regular function Phi on

Y the if you compose it with F you will get regular function on F on X. 

So first apply F then apply Phi ok, this is just the pullback of regular functions and you must

remember that A Y is a same as O Y, A Y and the O Y are the same because Y is an affine

variety ok. So the affine coordinate ring is the same as the global regular functions ok and so

this  is  the  map we defined  and then  you also  have  the  inverse  map which  goes  in  this

direction and what is the inverse map if you start with Phi here K algebra homo-morphisms

from A Y to O X then what you do is that you recall that Y is an affine variety so Y sits inside

some A in,  so  A which  it  so  it  means  the  affine  coordinate  ring  of  Y is  just  the  affine

coordinate ring of A n modulo the ideal of Y, this is how we define the affine coordinate ring

of a fine variety.

And then and this is well this is going to be identified with K X1 etc upto X or let me put K

Y1 or maybe T1 etc upto T n, T n modulo I Y and so you are, you have the T I bars here

which are regular functions they are just the (globe) they are just the coordinate functions on

the affine space in which Y sits ok and you are just a T I bar means just it can also be thought

of just as T I restricted to I ok, because afterall taking this quotient amounts to restrict in

polynomial functions the closed subset Y ok.



So now each T I bar will go to a certain regular function in X and use this bunch of N regular

function in X to defy a morphisms from X to affine space and show that morphisms actually

that map is actually a morphisms which factors through Y and for which the alpha is Phi. So

you know so the diagram is that from Y what you do is you get a map into A n and this is

given by so here is G and G is G of Y is just Phi of T1 bar of Y dot-dot-dot Phi of T n bar of

Y it is a (())(39:12) so and the fact is that this factors through so I rather call this map as G

this as G tilda  if you want I need factors through X oops my this should have been X.

So this should have been X, so this all should have been small x’s so this map in from X to A

n and it factors through Y and through a morphisms like this and Phi is actually Phi, so let me

write that below alpha the alpha of this G is actually Phi ok. So this is the inverse map, this is

the alpha inverse. This is how we got this bijective correspondence. You can check that the

whole proof goes through if you allow X also to be a quasi-projective or a projective variety

there is no difference ok. The proof doesn’t I mean really the proof really didn’t depend on

the fact that X was affine quasi-affine ok.

So you can check this theorem so in particular you know if I take Y equal to A1 it will tell

you that the morphisms from X to A1 are the same as the regular functions on X ok. So just

as  in  the  affine  case  regular  functions  are  the  same  as  morphisms  into  A1  there  is  no

difference ok, there is really no difference. 
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So the same proof works and the point I want to make is here is very important theorem

which is I would like to say in this connection, see, we saw that if you put Y to be A1 you

will get regular functions ok.

But more importantly  we saw that you know the if  you take any affine variety which is

different from a point ok, the fact that is different from a point means that its ideal is different

from a maximal ideal and therefore then you take its affine coordinate ring it will have lots of

polynomial functions ok. So it is going to be polynomial ring modulo some ideal which is a

prime ideal but it is not a maximal ideal ok. This is finitely generated K algebra which is

integral to main this has lots of polynomial functions.

So if you give me a affine variety which is different from a point they are lot of global regular

functions  which  are  given by lot  of  polynomials  ok.  Whereas  this  is  not  the  case  for  a

projective  variety  ok.  So the theorem is  that  if  X is  a projective  variety then O of  X is

isomorphic to K, O of X is just K ok. So maybe I will let me put isomorphic ok, where by

isomorphism I mean so what I  mean by this is  that,  every global  regular function is  the

function that corresponds to a constant, it is a constant function.

The only global regular functions are constant. So you must think of this as an analogue of

the  fact  that  you  know  if  you  have  a  compact  complex  manifold  then  the  only  global

holomorphic functions on that will be constant and that is just because of (())(43:22) theorem

ok, that a bounded entire function is a constant. So it somehow you must think of X as being

compact and therefore it doesn’t admit any global functions which are not constant ok.



But the proof of this will require some more definitions so I will differ that ok. But what you

must understand is that, if your varieties are projective variety then it has no global regular

functions which are no non-constant global regular functions. Offcourse constant functions

are always there, but if you want non-constant regular functions there are none ok. These

makes life a little bad in the following sense because you know you can be what we have

seen that if you have two affine varieties then they are isomorphic if and only if their fine

coordinate rings are isomorphic.

And you know for an affine variety the affine coordinate  ring is the same as the ring of

regular  functions  ok.  So  an  affine  variety  can  be  kept  track  of  by  looking  at  its  affine

coordinate ring and the affine coordinate ring doesn’t change no matter in which projective

space you are embedding the fine variety as a closed subset of ok. But this is not going to

(happen)  uhh so  let  me  repeat  that,  if  you take  an  affine  variety  if  you takes  its  affine

coordinate ring that is the same as its ring of regular functions that ring is independent of the

embedding of this affine variety as a closed irreducible closed subset of some affine space.

If it change the affine space and you embed the same affine variety into some other affine

space as an irreducible closed subset then if you compute the affine coordinate ring there you

will still get an isomorphic ring ok. So you can keep track of an affine variety by looking at

its ring of functions that is what is says, the ring of functions completely controls and keeps

track of their affine variety. But this is not true for projective variety because for a projective

variety  you take  two different  projective  varieties  they  unfortunately  the  ring  of  regular

functions is just K it is just the constants.

So there is no way to it becomes hard for you to distinguish between two projective varieties

ok. Then offcourse so this leads to other problems and infcat this is what leads you to study,

so infact this should tell you, you should expect that if you take a projective variety and try to

define the coordinate ring of a projective variety which is you know analogous to what you

would do for affine variety namely take the homogeneous coordinate ring of the ambient

projective space if you have projective variety embedded in an ambient projective space.

What you do is you take the homogeneous coordinate ring of the ambient projective space

and go modulo the ideal  of  this  projective  variety  and the  result  id  again  a  graded ring

because you are taking a  graded ring ok and you are going modulo an ideal  which is  a

homogeneous ideal its homogeneous prime ideal.
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So you again get a graded ring which is an integral domain which is a finitely generated K

algebra but the problem is that if you change this embedding you take the same projective

variety and put it into some other projective space and calculate again look at the coordinate

ring homogeneous coordinate ring it will change, it could change and it will. 

So it is very so the way in which a projective variety is embedded in projective space is has a

is  doesn’t  have  a  uniformity  about  it  and this  tells  you that  you know it  gives  you the

following fact I mean this is the following philosophy which is the basis of all higher study

about projective space it is the fact that if you want to study all the functions if you want to

study the geometry of projective space you want to study geometry of projective variety you

must look at its embedding in various projective spaces. That should reveal its geometry ok.

The way its, the way its homogeneous coordinate ring changes as you embedded it in various

projective spaces ok, that should give you a some grasp about the geometry of the projective

variety. So it  is but nevertheless this doesn’t mean that there are not that you don’t have

properties of projective variety which are intrinsic to it as a variety ok. So what it tells you is

that you can no longer work with global regular functions on it. Because there aren’t any non-

constant global relay functions ok. So I will come to the proof of this later but then I want to

tell you only one thing.
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If you look up put these two together as a corollary you will get the only morphisms from the

projective  variety  to  an  affine  variety  or  the  constants  or  the  constant  maps.  So  this  is

something that you can see immediately because you know in this bijection suppose X is a

projective variety if X is a projective variety then O X will become K ok and therefore I will

get morphisms from X to Y in bijection with homo-morphisms K algebras from A y to K ok.

But every K algebra homo-morphisms from A y to K is surjective because it is a K algebra

homo-morphisms the image has to contain K. so every K algebra homo-morphisms from A y

to K will be surjective which means its kernel will be a maximal ideal and therefore the set of

morphisms from X to Y ok will be the same, will be in one to one correspondence with the

maximal ideals of A Y but the maximal ideals of A y correspond to points of Y and therefore

what will happen is that what this will translate to if you look at it, it will be that the only

morphisms from a projective variety to affine variety will  be the constant  map that ends

whose image is single point.

And how many points, how many such morphisms will you have? As many morphisms as

there are point in the target variety ok and each point in the target variety which is an affine

variety corresponds to a maximal ideal of A y mod which you get a homo-morphisms from A

y to  K that  is  what  these  bijections  is.  So  as  a  corollary  what  you get  is  that  the  only

morphisms from a projective variety to affine variety or the constant maps ok. There are no

non-constant morphisms, there are no morphisms except constant maps ok.



And offcourse this also should tell you another corollary that you can get is that if a variety is

both affine and projective then it is a point ok. This is also something that you can easily

realise because you know if the variety is projective then its global relay functions are just

constants and if it is an affine variety then you know the ring of regular functions is will now

be (cons) just the constants and for what affine varieties will the ring of regular functions be

constants only single turns which consists of points.

So if you put the condition affine and projective on a variety then you are reducing it to a

point ok. So these are two easy corollaries of this theorem and this, these two theorems ok. So

I will stop here and continue in the next lecture.


