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Translating Projective Geometry into Graded Rings and Homogeneous Ideals

Affine space automatically gives you a geometry on the projective space. So what this tells

you is that philosophically the geometry of the projective space is controlled by the geometry

of their affine space and that is going back to (())(2:10) ok philosophical yeah. 
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Ok so, so you know lets recall that if you take a point in N dimensional projective space and

you take a polynomial vanishing on the line above that point ok in the affine space N plus 1

dimensional affine space then we saw that every homogeneous component of that polynomial

will also vanish on that line and in particular that polynomial will not have any constant term

ok.

So it  will  be a some of homogeneous components and there won’t be any homogeneous

component  of  degree  zero  alright.  Now  this  leads  into  the  study  of  what  I  called  as

homogeneous ideals and the uhh when you try to translate from the algebraic geometry of

projective space to commutative algebra you end up studying properties of homogeneous

ideals ok and the key to defining homogeneous ideal is actually it comes actually from this

observation. So let me explain that in more detail.
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So the first thing is the translation from projective geometry to commutative algebra is in the

language of homogeneous ideals and graded rings. So this is a little bit of algebra that one

needs to recall alright. So recall the following things, the notion of a graded ring first, a ring S

is called graded which is suppose to mean N graded or rather whole numbers graded ok, if a

S is the direct sum of S d, d greater than equal to 0 ok, with each S of d and a abilian fact

offcourse a abilian, a sub-group an additive sub-group of S and such that S p into S q lands

inside S p plus Q for p q greater than or equal to 0 ok.

So under multiplication,  so you see what is a here the W corresponds to whole numbers

which means that you include zero and all the natural numbers which star from 1 ok and this

indexing is on the whole numbers alright and the ring should break into a direct some of

pieces each piece is additive sub-group of the, the additive group underline ring ok and there

is a multiplication in the ring, the multiplication should the multiplication of the Pth piece,

the Qth piece should land you inside the P plus Qth (P) piece ok.

And offcourse you know well if my ring could my ring need not have 1 if you want when I

want to make a general definition it need not even have 1 and did not even be commutative

and in that case I will also it also follows that S q into S p will also land into (S) P plus Q by

this ok and therefore the Pth piece if you take an element in the Pth piece and the element in

the Qth piece and you multiply them, they land in the P plus Q piece ok.

We say that this is meant to, this is also sometimes refer to us the multiplication this was the

gradation ok it respects the gradation. It takes a, so what you do is you think of elements of S



d as elements as homogeneous elements of degree D ok. So the elements each S d are called

homogeneous of degree D ok and what you are saying is that every element of the ring can be

decomposed into homogeneous elements of certain degrees and the decomposition is unique.

The uniqueness of the decomposition is because the direct sum ok. 

The direct sum tells you ok that every element of this can be broken down can be written as a

sum of finitely many elements which have, which are homogeneous, which belong to certain

homogeneous pieces and for each (homo) the each component the each sumant in that sum is

unique, for that homogeneous. So the if you give me an element here the its for any D its Dth

homogeneous pieces uniquely determined.

That is what the direct sum suppose to mean alright and the multiplication preserves the uhh

it respects the homogeneity in the sense that homogeneous element of degree p multiplied by

homogeneous element of degree q leads to a homogeneous element of degree p plus q ok. So

this is the definition of what graded ring is offcourse.
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So  let  me  write  this  elements  of  S  d  are  called  homogeneous  of  degree  D  alright  and

offcourse the particular case at we are interested in is polynomial rings and their quotients by

prime ideals, their quotients by ideals which are homogeneous ok.

So what is the basic example, the basic example is offcourse the polynomial ring in finitely

many variables I will take the variables to be N plus 1 variables because I am always thinking

of projective space. 
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So example take S equal to K X knot etc X n S d is  equal to subset of S consisting of

homogeneous polynomials of degree D ok and so you know that the whole polynomial ring is

a direct sum of homogeneous polynomials of various degrees that is just reflection of the fact

that you take any polynomial you can break it down uniquely into homogeneous components

each component a homogeneous polynomial of certain fixed degree ok.

And this is the example that we keep in mind ok and offcourse it is not just to what its just

not enough to work with this but we need to also work with graded quotients of this ok. So

for that so it is a you know the intuitive  area is very clear if you to get a quotient you have to

go (())(11:56) ideal ok but to get a graded quotient ok you have to go modulo what is called a

homogeneous ideal ok. So what is a homogeneous ideal? 
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An ideal I in S which is graded where S is graded so I will draw a line here ok will draw a

line here and I am again going back to the old situation where I take a graded ring which is

direct sum of homogeneous pieces ok.

I should say it is a direct sum of pieces which corresponds to homogeneous elements of

certain  fixed  homogeneous  degree  ok.  So  take  an  ideal  S  an  ideal  I  C  S  it  is  called

homogeneous if I is I intersection S d direct sum D greater than equal to 0. So look at this

definition of what a homogeneous ideal is. So definition is you take the ideal alright you

intersect it with S of d, when you intersect the ideal wit S of d what you get is mind you not

an ideal. 

Because you are only intersecting with a additive sub-group and you know the ideal is also an

additive sub-group therefore the intersection is again additive sub-group therefore each of

these is an additive sub-group of the additive group underline their ring S ok, and now you

take the direct sum ok offcourse it is a direct sum because all the S d’s themselves are pieces

of direct sum and you take the direct sum and that you should it is obvious that this will be

contained inside I ok.

The right side every piece ok I intersection S d refers to all  the elements of I which are

homogeneous of degree D. what is an element I intersection S d? It is an element of I which

is in S d but elements of S d are called homogeneous elements of degree D. So I intersection

S d is, those elements of I which are homogeneous of degree D ok and offcourse if you take a



direct sum of this mind you the direct sum an element in a direct sum only consist of a finite

sum, even though that direct sum is over a collection of infinite, infinitely many sub-scripts

ok.

So an element here is certainly here by definition but the requirement is every element here

comes from here, that is the homogeneity definition ok. So you know what it means? 
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It means that so, see in other words if F is in I ok, if you take F is in, F is an element of I then

since S is a direct sum of all the S d’s D greater than or equal to 0, what you will have is F

will be F knot plus F1 plus etc upto F m ok you will get this alright, where so you will get a

finite expression like this ok.

You get a finite expression like this because it is an expression in direct sum it will leave only

upto a finite index ok, beyond this all the F G S will be zero right. So here F I or in S I or F D

is in S D you get a breakup like this  ok and so if  you take an F and you break it  into

homogeneous pieces then the condition is that this condition will tell you that each F I is also

an F ok. So you see the, so implies that F d belongs to I for every d for every index d ok. See

why is that true? That is because you see take an F here, F is because F is in I and I is in this

graded ring and this graded ring has its graded decomposition, F has a decomposition alright.

Where each of this pieces come are homogeneous of the corresponding degrees alright. On

the other hand since you have written like this F also has a decomposition here because of the

equality F belongs here. So it corresponds to an element here. So it also is a, it also has a

decomposition in terms of homogeneous elements ok but both decompositions are to be valid



in S but is S there is only one decomposition, the decomposition S is unique, therefore what it

forces is that each F d is already in I.

So the moral of the story is an ideal is (homogeneous) saying that an ideal is homogeneous is

the same as saying that every element of that ideal you take any element in that ideal, every

homogeneous piece of that element  is also in that  ideal.  One way of saying that  ideal  is

homogeneous is saying that you take any element in that ideal ok then every homogeneous

piece of that element is also back in that ideal ok and you see that is exactly geometric, that is

exactly algebraic reflection of this geometric fact.

If  you’re  polynomial  vanishes  on  a  line  then  every  homogeneous  component  of  that

polynomial vanishes on that line. So what you are saying is that if the line is in the zero set of

an ideal suppose you take the line to be in the zero set of an ideal ok and you take an element

of that ideal that means that is a polynomial which vanishes on that line then what you are

saying is that every homogeneous component of that polynomial is also vanishing on that line

so if the zero set of an ideal contains a line what you are saying is that every element in that

ideal ok, every polynomial in that ideal is such that each of its homogeneous components is

also again in the ideal of that line ok.

So this is just a geometric reflection of this algebraic fact. So this is the key to defining a

what a homogeneous ideal is and the advantage of having a homogeneous ideal is that once

you  have  a  graded  ring  and  you  have  a  homogeneous  ideal  the  quotient  ring  S  mod  I

automatically gets a graded structure, it becomes a graded ring ok. So the key to translating

project  from  projective  geometry  to  commutative  projective  algebraic  geometry  to

commutative algebra is that you have to change uhh from ordinary ideals to projective ideals

from ordinary ideals to homogeneous ideals and you have to change from ordinary rings to

graded rings. 

So the language instead of just looking at rings and ideals commutative rings and ideals in

them, the language becomes the language of homogeneous ideals and graded rings ok. That is

the  language  that  you  should  use  that  is  the  algebra  that  you  should  use  for  projective

algebraic geometry ok and well now the fact is, so let me tell you what happens there are a

few nice facts. 
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So lemma there  is  a  lemma that  you can  easily  check  the  sum product  intersection  and

radical,  so the sum, product,  intersection of homogeneous ideals is homogeneous and the

radical of a homogeneous ideal is also homogeneous ok.

So this collection of homogeneous ideals in a graded ring is a well it is well behaved under

the operation of taking sum product intersection and radical ok. This is a I mean this is a very

straightforward verification algebraic verification which I leave you to do ok and therefore

you know the, so you know the with armed with this we can now translate from projective

geometry projective algebraic geometry to commutative algebra.
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So you know let me recall that as far as affine geometry was concerned what we did was if

you recall we had affine space ok and we have this is the geometric picture the algebraic

picture is the coordinate ring of affine space the algebraic picture is the coordinate ring of

affine space is polynomial ring in N variables ok and you know well you had a map like this

which is called as I and you had a map like this which is called as Z and what did these maps

do? 

Well if you give me a subset T or if you give me a subset Y of affine space then I get I of Y

the ideal of functions polynomials that vanish on Y and conversely if you give me an ideal I

here in the polynomial ring in N variables I get the close subset Z of I and every closed subset

if of this form ok and you know that so you get a correspondence between closed subsets here

and on that side you have to take radical ideals ok and we had things like, so on this side if

you  take  sub-varieties  affine  sub-varieties  which  are  reducible  algebraic  sets  they

corresponded on that side to prime ideals which were offcourse radical ideals and points here

will correspond to maximal ideals there ok.

So we had this nice translation from a algebraic geometry to commutative algebra alright, this

is for the affine space. Now we go to, we can do that now for the projective space as well

right. So in the same way what we do so I will have to make a statement here, so here is one

more lemma which I forgot to mention probably. 
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Let me mention it here, an ideal  I C S is homogeneous if and only if  it  is generated by

homogeneous elements. So this is another definition of when an ideal is homogeneous. This

definition of an ideal being homogeneous requires its generate has to be homogeneous ok. So

earlier  definition  of  homogeneity  is  that  you take  the  ideal  is  a  sum of  its  components

homogeneous components and which translates to saying that given any element in the ideal

each of its homogeneous components is again back in that ideal ok. So this is again a simple

algebraic fact that you can verify as an exercise ok and the reason I need it is the following.
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Recall  that we have defined in on the projective space ok we have defined algebraic sets

closed sets as zero sets of a bunch of homogeneous polynomials ok and again instead of just

taking the zero set of a bunch of homogeneous polynomials you can take the zero set of the

ideal  generated  by  this  homogeneous  polynomials  and  by  this  lemma  that  ideal  will  be

homogeneous ideal ok. So what you will do is so will do the following thing, will use S will

use this rotation, S of P n this is the commutative algebraic picture this is K X knot to X n ok.

So this thought of this is called the homogeneous coordinate ring of projective space ok,

projective N space. See in the affine situation ok, A we use the word A to give you the affine

coordinate  ring  ok,  which  is  a  number  of  (pol)  which  is  a  polynomial  ring  in  as  many

variables as the dimension of the affine space. Now what you do is in the projective case the

analogue is the so called homogeneous coordinate ring ok and you know why they are called

homogeneous  coordinates  because  when you write  a  point  in  projective  space  you these

coordinates are only when you put them together they are only common ratio ok.

I mean they are given by set of ratios, that is the reason we put a colon, a point in projective

space has coordinates X knot colon X1 colon etc X n and the colon means that there is a ratio

involved ok and therefore it is a that’s why it is called homogeneous and that is why this is

called the homogeneous coordinate ring ok and for that matter each Xi is a homogeneous

polynomial of degree 1 right and what we do is well, how do we start we say close set is of

the form E Z of T where T is a in S it is in this I will put a I will put this H ok, which means

the union of the various degree D pieces.



Namely all the possible homogeneous elements ok. See this, this is homogeneous coordinate

ring is direct sum of its degree D pieces ok. Which is just trying to say that polynomial at

degree n is uniquely expresses expressible as a sum of its homogeneous components but what

you do instead of taking if you take a direct sum you will get the homogeneous coordinate

ring.  Instead  of  taking  the  direct  sum  if  you  take  union  will  get  all  the  homogeneous

elements.

Because by definition a homogeneous element is suppose to be an element in one of this

pieces ok. So where offcourse S d of P n is homogeneous polynomials of degree D in this

variables that is what it means ok. So you take what I am doing is why I am writing it like

this is, I am taking a subset of homogeneous elements I am taking, my T is a is not just any

bunch of polynomials in this polynomial ring, it is homogeneous elements, that is the reason I

have put the sub-script the superscript H ok.

And that is just gotten by taking this union ok and what you do is that for this T you take the

zero set of T but now you see you are taking the zero set in projective space ok. Mind you

sometimes if you are working with both the affine space and the projective space at the same

time  you  will  have  to  worry  about  where  you  are  taking  the  zero  sets  you  need  better

notations. So sometimes it is if you don’t want any confusion you put Z sub P n of T which

means you are looking at the zero sets, the zero set of T in P n ok.

And this is how the close sets in projective space are defined, this is how the Zariski topology

is defined ok. This was the second definition ok. We had three definitions of Zariski topology.

The first one was a as quotient topology of the punctured N plus 1 dimensional affine space

above,  the  second one  is  this  where  the  closed  sets  are  given by zero  sets  of  bunch of

homogeneous polynomials and the third is offcourse the topology that is gotten by gluing the

N plus 1 pieces though we each of which is are which is isomorphic to an affine space ok of

dimension n.

So well so this is how we have defined it ok and now what we can do is well, so you have

this just as in this case you have this map Z ok and there is also this map in this direction,

what is this map in this direction? In the affine case you give me any set Y then you look at

all  those  polynomials  which  vanish  on  Y ok  and  as  you  go  like  this  and  then  this  is

automatically an ideal here. So I land on the collection of ideals on this side ok. So you know

I also need to put an I here right and you have to be careful that you should simply not say all

the polynomials here which vanish on a given subset here.



Mind you if a polynomial vanishes on a subset then it has to be homogeneous I mean each

homogeneous piece of that polynomial has to vanish on that subset. You see what we just saw

sometime ago was that you know if a polynomial vanishes on a line passing through the

origin ok then each piece of that polynomial each homogeneous piece of that polynomial will

also vanish on the line through the origin. So it means that if you’re so you must think of the

polynomial vanishing on a line on the origin on a line through the origin as you must think of

it like this, take the point in projective space corresponding to that line and that point is a zero

of that polynomial in the projective space.

So what you are saying is if your polynomial vanish at a point in projective space then each

of  its  homogeneous  components  will  also  vanish  at  that  point  in  projective  space  and

offcourse the constant term will not be there right. So if I want to make sense of a polynomial

vanishing on subset of projective space I need to make sure that every , that first of all that I

has no constant term and I also need to make sure that every homogeneous piece of that

polynomial also vanishes on that subset of projective space alright.

So  what  you  do  is  you  see  find  the  everything  reduces  to  vanishing  of  homogeneous

polynomials. So when you define this I you define it very carefully you, keeping this in mind

you define I F Y to be the ideal in the homogeneous coordinate ring generated by all F in the

all homogeneous F namely all homogeneous polynomials such that F of Y is zero for every Y

in Y ok. So this is how you define, when you define the ideal of Y you define it as the ideal

generated by all those homogeneous polynomials which vanish on Y alright.

So you see therefore this is an ideal which is generated by homogeneous elements therefore it

is a homogeneous ideal because that is what the lemma above (())(34:30) says ok. So this is

actually this is a homogeneous ideal. So what has happened is, if you start with a set of

homogeneous elements you get the zero set of that which is a closed subset of projective

space and if you start with any subset of projective space you get the ideal of that subset and

that will be homogeneous ideal by definition and whatever happened here more or less will

happen there except for one or two certainties.
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So let me tell you what are the things that would happen you know a few things in the affine

situation what do you know? You know that you know if I take a uhh so the Nullstellensatz

says that I of Z of I is rad I that is one fact ok then if I take E Z of script I of Y I will get Y bar

the Zariski closure of Y so E Z of script I of Y is Y bar ok and the fact is this, is that the same

thing will hold here except with one certainties for the Nullstellensatz  so let me state it here.
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So what is going to happen here also I am going to get I of E Z of I is rad I ok and for

offcourse I knot X knot etc X n so and well the other thing is E Z of I of Y will be Y bar ok.

So both facts will be true here also except that here the ideal I start with should not be the

maximal ideal corresponding to the zero in the affine space above because you know I have



thrown it out, when I got the projective space below I have thrown out, I have taken the

punctured affine space and then I have gone modulo and equivalence relation.

Namely I have taken the lines in the punctured affine space passing through the origin ok. I

have thrown out the origin but the origin corresponds to this ideal in the affine space above

the point 0, 0, 0, 0, 0 N plus 1 coordinates that corresponds to the maximal ideal candidate by

the variables and this is the only ideal that you have to leave out, it is a maximal ideal but you

have to forget and it will not, so that maximal ideal will not it is also a homogeneous ideal,

because it is generated by the coordinates which are homogeneous functions.

They are all homogeneous of degree 1 ok. So it is a certainly a homogeneous ideal but the

point is that it is a maximal ideal it is homogeneous ideal but it is not going to come into the

picture ok. So on this side you are only going to consider homogeneous ideals which are

different from this particular maximal ideal that is the ideal generated by all the variables and

therefore this particular ideal generated by all these variables is given a very special name it

is called irrelevant maximal ideal ok.
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So there is a name for this, X knot through X n is called the irrelevant maximal ideal, it is the

irrelevant maximal ideal ok and it is a homogeneous ideal but then the homogeneous ideals

we are interested in are everything except that and that is why that is called irrelevant alright.

It is irrelevant with respect to the projective geometry right and uhh so what I want to tell you

is that you can prove the statements from the corresponding statements for affine space.



If you just remember that the quotient on the projective space is this is the quotient topology

given Zariski topology on the punctured affine space above ok. So all the statements can be

proved by translating everything to the affine space above ok and by using the corresponding

results in the affine case. So what you must understand is you must understand the following,

I mean this is a picture that should help you to think of what is going on.
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So you see you must always think of this is the affine space this is the punctured affine space

and there is this projection onto the projective space ok and how you should think of it is that

if you take if I draw a picture like this on the projective space and well I take the zero set of a

homogeneous ideal here ok and this is a zero set in P n of this ideal ok. 

That is how close subsets in projective space look like then how you should think of it is, if

you take the affine space above so in the affine space above the diagram will be something

like a cone so it will be, so this is the diagram in the affine space above ok and what has

happened is that for each of these lines they go down to a particular point. So this line each of

these generating lines L throughout certain point lambda knot through lambda N goes to the

corresponding point in projective space (lambda) with homogeneous coordinates lambda knot

through lambda N and this is to be thought of us simply the line above.

This is just L of lambda knot etc lambda N. so you think of this point as a line above ok. So

what you will get is if you give me any projective any close subset of projective space take its

inverse image here and then the only thing that will be missing is zero you which is what you

will get when you take it closure you will get a closed subset there ok, zero is the only thing



that will be missed. So if you add it you get this picture which is which you can easily think

of as a cone over this closed subset in projective space.

So you see this thing is the cone it is called the affine cone over E Z, A n I, this is called the

affine cone alright. So and you know so the picture is something like this, so if you give me

any closed subset of projective space then you take the inverse image in the affine space

above and close it up so that you add the origin, what you get is a cone above and what is this

cone? What is it? This is actually this is none other than this is just the Z zeros of I in the

affine space, it is the same I, take the same ideal, the same ideal mind you the ideal is an ideal

in the affine coordinate ring of A n plus 1.

Which is thought of a projective coordinate ring, homogeneous coordinate ring of P n. note

that A of A n plus 1 is s of P n and this is offcourse polynomial ring in these N plus 1

variables ok and I is sitting here ok. So if you start with I homogeneous here, the zero set is a

close set in projective space if you take its inverse image and add the point zero you will get

projective cone, it is called the affine cone. It is the cone in the affine space above and what is

the affine cone? It is just the zero set of the same ideal considered as a zero set in the affine

space above ok.

So any questions about Z I in P n can be translated to questions about Z I in A n plus 1 ok and

then in affine space offcourse I know I have a good dictionary, I have the Nullstellensatz I

have all that I need. So I use that to prove things in gets same as the projective case ok. So all

so the point is somehow already they geometry that you know the affine geometry that you

know that kind of helps you to get the projective geometry ok.

 It controls the projective junction. So now you see and well so what you will get so there are

two facts that I want to say, here you get a bijective correspondence between closed subsets

and radical ideals. So if you look at this situation the projective space and the homogeneous

coordinate  ring  you  will  get  a  bijective  correspondence  between  closed  subsets  and

homogeneous radical ideals ok and in that collection you will have to get rid of this particular

homogeneous radical  ideal  which is his  maximal  ideal  corresponding to the origin above

which you have thrown out ok. So this is the irrelevant maximal ideal. 

So what you get in the projective space is a bijective correspondence between closed subset

of projective space on one side on the other side you will have to take homogeneous ideals,

homogeneous radical ideals which are different from the irrelevant maximal ideal. You take



the  collection  of  all  homogeneous  radical  ideals  which  are  different  from the  irrelevant

maximal ideal that is in bijective correspondence with the closed subsets of projective space

ok.
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So  let  me  write  that,  check  number  1,  I  and  Z  give  inverse  maps  defining  a  bijective

correspondence between closed subsets of projective space and the set of and homogeneous

maximal, homogeneous radical ideals in S of P n except the irrelevant maximal ideal. You

will get this bijective correspondence ok. So the difference from the affine case is that there

you simply consider I radical ideals here you consider homogeneous radical ideals and there

you consider offcourse all ideals but here you consider you leave out that particular irrelevant

maximal ideal ok and that is one thing.

 Then the second thing is offcourse that in this case the correspondence in both directions is

inclusion reversing it is an inclusion reversing correspondence because as the ideal grows

bigger the zero set becomes smaller ok and conversely so the same thing happens here as well

ok. So this is an inclusion reversing correspondence, the correspondence in one is inclusion

reversing that is also true then offcourse whatever versions of the Nullstellensatz that you had

for the affine case also have corresponding version of Nullstellensatz for the projective case.

What is the Nullstellensatz for the affine case? If a polynomial vanishes at every point of a

variety then some power, if a polynomial vanishes on the zero set of an ideal then some

power of the polynomial is in the (radical) some power of the polynomial is in the ideal that

is the Nullstellensatz ok and the same statement will work for the projective case if you take



homogeneous, but the only thing now you have to use homogeneous polynomials and you

have to use homogeneous ideals. So if you have a homogeneous polynomial which is positive

degree and if it vanishes on the zero set of a homogeneous ideal then some power of that

polynomial is certainly in that ideal, that is the homogeneous version, projective version of

the Nullstellensatz.

Again the projective version of the Nullstellensatz can be you know derived from the affine

version by going to affine space above ok. So this is the whatever you wanted to do here you

go above and do it  ok.  Because  there  you already have  a  clear  picture  you have  affine

geometry  already  there  so  use  that  alright.  So  let  me  write  that  have  a  homogeneous

projective version have a projective version or homogeneous version of the Nullstellensatz

and that is just if F is homogeneous and F belongs to I F E Z of I where I is homogeneous

then F for M is an I for sum M greater than or equal to 1. So this is the homogeneous version

of the Nullstellensatz.

And so the only thing that has not been said in all this is, what happens to this irrelevant

maximal ideal? So that is the only thing that I have to tell you and that is pretty easy to state.

So here is a fact that it is a fact about irrelevant maximal ideal but certainly it is not irrelevant

to our discussion. 
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So you know, so here is a lemma which you can check I in S of P n a homogeneous ideal. The

following are equivalent, number 1 I is I contains S d for some d greater than or equal to for

some d ok.

Then 2, Z of I in P n is empty ok, number 3 rad I is irrelevant maximal ideal ok. So these are,

this tells you why you throw out the irrelevant maximal ideal ok. So these are all, this three

are equivalent conditions and you know if I contains S d then it means that I will contain Xi

power d for every I therefore rad I will contain Xi, therefore rad I will contain the ideal

generated by the Xi’s ok and offcourse there is another there is one more possibility it is

either this or it could be the whole ring.

So I should also write or of S of P n itself right, so it can happen that see the ideal may

contain S, S knot, S knot is homogeneous polynomial of degree zero they are the constants.

So if the ideal contains constants it will contain non-zero elements of the field so it is the

ideal will be a unit ideal and therefore the radical of ideal will also be the whole ring (it will

be the even at ideal). So these three are equivalent conditions and this is the exact reason why

you throw out the irrelevant maximal ideal to get a bijective correspondence ok (and) ok.

So with that we have now a nice dictionary between projective algebraic geometry and on the

one  side  on  the  geometric  side  and  on  the  algebraic  side  we  have  the  homogeneous

coordinate ring and homogeneous ideals there. Now let me tell you a point of surprise. We

have seen for affine variety that offcourse we, so that reminds me we define an affine variety

to be an irreducible closed subset of affine space ok.



In the same way we define a projective variety to be an irreducible closed subset of projective

space it will follow that by the same argument we follow that you know if you know a closed

subset here is in affine space is irreducible if and only if the corresponding its ideal is prime.

The same thing will hold also in projective space a closed subset of projective space going to

be irreducible if and only if the ideal its ideal is a homogeneous prime ideal ok and the fact

that will have to remember when you go here is that under continuous map the image of an

irreducible set is irreducible ok.

So that is a fact that is a topological fact that you have to remember and use ok. So to get

proof of the fact that a closed subset of projective space is irreducible if and only if it is ideal

is a homogeneous prime ideal ok and there are two big differences if you take an affine

variety  you  know  that  there  are  (globe)  the  ring  of  regular  functions  is  a  same  as  its

coordinate  ring  ok  and  the  coordinate  ring  is  just  polynomials  ok  and  there  are  lot  of

polynomials ok there are lot of polynomial functions at the worst if it’s even a single point

you have, I mean you have constant functions but if it is not a point then you have many

functions many non-trivial polynomial functions on your affine variety ok.

However if you to the projective space there also you can define regular functions and the

amazing thing will that will happen is, on a projective variety namely an irreducible closed

subset of projective space, the only regular functions are constants ok. So that is a major point

of difference between affine geometry and projective geometry. The other major  point of

difference is the following. We saw the two affine varieties or isomorphic if and only if they

are affine coordinate rings are isomorphic as K algebras ok.

But here the projective or homogeneous coordinate ring is not such an invariant, so what will

happen is you can have two projective varieties which are isomorphic as projective varieties

but their homogeneous coordinate rings are not isomorphic which means that the way they

are homogeneous coordinate rings will depend on the way in which they are embedded in the

ambient projective space ok. So offcourse here the definition of homogeneous coordinate ring

of projective variety is similar to the affine case.

Namely in the affine case you take the all the polynomials on the ambient affine space in go

modulo  the  ideal  of  the  variety  ok.  Here  also  you  do  the  same  thing,  you  take  the

homogeneous coordinate ring of the ambient projective space and go modulo the ideal of the

projective  variety  and  you  get  what  is  called  the  homogeneous  coordinate  ring  of  the



projective variety. But the fact is that this is not an invariant of the projective variety. It will

depend on which projective space into which you are putting the projective variety.

So you see the geometry of projective varieties is far more complicated than the geometry of

affine varieties,  this  is  what  the complications  due to one is  because there are  no global

regular functions which are different from constants, there are no non-constant global regular

functions  that’s  is  one  point  of  difficulty.  The  second  point  of  difficulty  is  that  the

homogeneous coordinate ring of projective variety is not its not an invariant ok.

So this adds lot of richness to an variety to the geometry of projective varieties ok. So and

that is what more serious algebraic geometry is about studying projective varieties ok. So will

stop here.


