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Alright so you see so just now we have seen we have these examples of quasi affine varieties

is not affine alright and then the what I am going to do is to tell you about more general

varieties which are called projective varieties and open subsets of such projective varieties

which are called quasi projective varieties ok. Then our definition of variety will  include

affine,  quasi-affine,  projective  and quasi  projective  ok,  and these  projective  varieties  are

completely  different  class  of  specimens  ok,  whose properties  are  very different  from the

properties of affine varieties ok.

But to tell you where they come from I just want to tell you that they come from a process of

gluing ok, so let me give you some motivation. So you see lets look at the usual topology ok

and look at well for example look at the complex plane or the real plane alright and so you

know let’s do the following thing. 
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We take the usual plane and then suppose I draw this sphere here ok, so here is my sphere. So

this is unique sphere in three space ok. Assume that your in R3 ok, assume you are in R3 and

what you do is well you have this is the origin this is the point 1, 1, 0 ok and or rather 1, 0,0

and you know.



So what I do is if I take the if I call this point as a north pole and if I call this point as a south

pole ok you would have heard of the so called stereographic projection in complex analysis

which identifies so if I call this sphere as S 2, so S 2 minus the north pole can be identified

homo-morphically with R2 ok by projecting from the north pole and S2 minus the south pole

can be identified homo-morphically with R2 by projecting from the south pole ok.

So these are the so called Riemann stereographic projections from the Riemann sphere ok to

the  plane  and  therefore  the  sphere  minus  the  north  pole  is  compactified  the  one  point

compactification of the sphere minus the north pole is a sphere and that corresponds to that

will  correspond  to  the  extended  plane  by  adding  a  point  at  infinity  under  this  homo-

morphism. So what it tells you is that the real plane can has a one point compactification

which is just the sphere and so there are these two stereographic projections.

Now what you must understand is that if you consider each of this things they are you can

call them as two open subsets of the sphere both are open subsets of the sphere ok and they

cover this sphere and each open subset looks like R2 because looks like R2 means it is a

homo-morphic to end the homo-morphism is via the stereographic projections so what has

happened is so what we say is this a standard example of what is called as gluing.

So what you do is you take two copies of the plane ok and you glue them together ok, so

basically you take a copy of the plane and then you fold it to get the sphere minus the north

pole take the other copy of the plane fold it to get the sphere minus a south pole and you

know just glue them together and you get the sphere ok.

Now this is standard procedure you have some spaces you glue them together to produce new

spaces but the point is when you do this the new space that you get will have completely new

properties. So for example in this case if you take the sphere the new topological property

that  you get  is  that  it  is  compact  whereas  you know neither  of  the  two copies  that  you

originally started with to glue to get this sphere is compact of course you know both R2’s are

both copies of plane are non-compact because you know the nucleon space something is

compact a subset is compact depend only if its both close and bounded with respect to the

usual topology.

So moral of the story is that you know actually you are able to by gluing spaces you are

getting spaces with your properties ok and so this gluing process is the process that is used to



produce new spaces from old spaces alright and basically another good example of gluing is

well you know there are several examples.
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For example you know I can take yeah so you know I can just take I can take the compact I

can take the plane ok and thinking of this as a complex plane let me say something if you

glue it correctly ok then you can make sense instead of like thinking of S2 as just the real

sphere.

You can think of S2 as a surface on which you can do complex analysis you can make it into

a Riemann surface ok and you can make sense of holo-morphic functions and then (())(7:51)

theorem will tell you that there are no global holo-morphic functions it will tell you every

global holo-morphic function will be constant. So the beautiful thing is that on the plane you

will have so many holo-morphic functions ok you have so many entire functions whereas this

glued object there are no entire functions the only entire functions namely the functions of

holo-morphic are everywhere or constant. 

And you know so you are basically having two affine spaces you have glued them together to

get the space and this space is compact and it has no global non-constant functions ok. The

same thing happens in algebraic junction. A projective space is gotten by gluing bunch of a

fine spaces  ok and on the projective  space you will  see that  there are  no global  regular

functions. The only global regular functions are in the projective space will be constants ok

and it is a complete analogy to what is happening here.



So it is a gluing process. So projective spaces are gotten by gluing affine spaces ok just like

this sphere has gotten by gluing two copies of R2 alright. Of course some other examples of

gluing or for example you know if you take horizontal strip or a vertical strip for that matter

and then you know if you or for that matter you know well if you glue the top edge or the

bottom edge what will happen is that you will get a cylinder and that is by identifying the top

edge and the bottom edge you cut of you cut the strip and then you identify the top edge of

the strip with a bottom edge of the strip and fold it out you will get a cylinder you will get an

infinite cylinder.

Now the original strip is topologically different from the cylinder because the original strip is

simply connected. Any nice any simple closed curve in the original strip can be completely

you know shunt to a point whereas the cylinder is not simply connected because the any loop

that goes around the cylinder that cannot be continuously shunt to a point. So you see again

you have produced by a gluing process you have produced a new topological space with

topological properties are very different from the original space alright.
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Another example is of course you know you could have taken you could have done also

something like this you could have taken just a parallelogram ok and then you could have

glued the parallel opposing edges and the result is that you will get a torus because if you

glue the upper edge with the lower edge will get a cylinder with two circles on the two ends

which need to be further identified if you identify them you will get a torus and the beautiful

thing is that this is simply connected but this is not ok.



So the gluing process is a very standard process it is a process that allows you to produce new

spaces with new object with new properties ok and you must think of projective space also as

coming out of a gluing process ok. So I will explain how projective N dimensional complex

space is gotten by gluing N plus 1 copies of N dimensional affine space ok and on what we

are going to do is that we are going to define as Zariski topology on the projective space ok. 

So we are going to define algebra subsets you’re going to define irreducible sets we are going

to define closed subsets of projective space call them projective varieties and then whatever

we did for affine varieties lot of similar results like the Nullstellensatz etc will also work for

the projective case ok. But of course certain things will go wrong alright and I will explain in

the coming lectures this and the coming lectures what is going to wrong and what is not

going to go wrong.
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So let me start with the definition of projective space so the, so P N c so this is complex

projective N dimensional space here is complex projective N dimensional space and how is it

define it is the space of lines in affine space so complex projective N dimensional space is a

space of lines in A n plus 1 ok and through the origin and that is true not only for complex

numbers for any Phi and how do I get it as a space the reason I have to consider lines in N

plus 1 space is because you see I want an N dimensional object ok and if I take lines in N

space ok by taking lines I am cutting down by one dimension so the resulting space will be N

minus 1 dimensional. 



So if I take space of lines in N space I will get an N (dimen) N minus 1 dimensional space ok.

Because I am actually moding out by scalars. So if I want an N dimensional projective space

I should take lines in n plus 1 space ok. So how does one get it one takes points in A n plus 1

and then you go modulo equivalence relation, what is an equivalence relation? equivalence

relation is very-very simple so you know if you give me a point lambda 1 etc lambda N ok

then the that point defines the same line as some other point if and only if the two points have

coordinates which differed by a non-zero constant multiple ok.

So you know if I take a point lambda 1 lambda N so I will call them as lambda knot to

lambda N right so I am in A n plus 1 so the coordinates are N plus 1 coordinates which I am

not labelling the coordinates 1 through N plus 1 I am labelling them from zero through N

which is the standard convention whenever you do studying projective space. So the line

passing through this point so this is the line the line passing through the point lambda 1,

lambda 0, lambda N this is the line passing through that and this is what I am going to do I

am going to take this point lambda 0, lambda N and simply going to map it to the line passing

through lambda 0, lambda N.

And of course through the origin that is the line that joins the point this point to the origin I

am simply mapping this point to that line ok and what I want you to understand is that this is

an equivalence relation in the sense that if you take this L lambda 0 is the same as L Mu 0 etc

Mu N that means both these points lie on the same line and you know both these points lie on

the same line if and only if this is a non-zero multiple of that by a single scalar non-zero

scalar ok. 
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So this is if and only if there exists T non-zero element of the field such that Mu I is equal to

T lambda I for every I ok. So you know between N plus 1 triples of points you put this

equivalence relation is an equivalence relation that two points, one point is multiple of the

other point by an non-zero element of the field that is an equivalence relation and if you go

model of that equivalence relation what you are going to get is possessive T projective space

which is the space of lines ok.

Two points here if they are they are equivalent namely they will differ by their coordinates

differ by one and the same scalar non-zero scalar multiple if and only if the lines that they

define through the origin and the same ok. So space of so what has happened is that we have

gotten the projective space as a quotient ok it is a set modulo and equivalence relation so it is

a quotient and this is very-very good because once you have this for example if I have a

topology here I can transport the topology here by giving this quotient topology alright.

So it  is  always  good that  whenever  you have  a  quotient  kind  of  situation  then  you can

transport from the source lot of things to the target right. So well you know I have this a

Zarisky topology on this because this is after all this is just after all sitting inside A n plus 1

which is a Zarisky topology which is affine N plus 1 space and therefore this has the Zarisky

topology and I  can put the quotient topology on this  and that will  give me as a Zarisky

topology on P N alright and what it will happen that this map will be an infact an open map

ok and of course it will be continuous for the Zarisky topology alright. 



But then there is another way of defining the Zarisky topology on this you know very in a

slightly analogous way to the definition of the Zarisky topology on affine space so you see so

the point I want to make is that you know of course I can for example you know I could have

put K equal to forget algebra get closed I could have taken K to be real numbers and then I

will get real projective space ok and then I can study things on this I can simply take the

usual topology on top and then you know give this quotient topology alright. 

I could have done that and similarly I could instead of K I can take complex numbers and

then will get complex projective space and on the complex projective space I could have

again put the usual topology I have the usual topology here I could have given the quotient

topology ok and because the complex numbers are also an algebraic close field I have another

topology here which is a Zarisky topology that also I can use to give a quotient topology here.

So  complex  projective  space  has  two topologies  one  is  the  topology  which  comes  as  a

quotient topology for the usual topology in the other topology comes as a quotient topology

for the Zarisky topology on this punctured affine space above ok.

So now let me go back to how we define this Zarisky topology on N plus 1. See the Zarisky

topology on affine space was defined by giving closets and the closets were given as zero sets

of I mean common zero loci of a bunch of polynomials ok. Now what we are going to do is

we are going to do implement the same thing here what we are going to do is we are going to

look at common zero loci of a bunch of homogeneous polynomials ok and then you see it will

make sense you see if you take a polynomial function for a polynomial function of course if

you take a polynomial in N plus 1 variables if I change if I evaluate that polynomial on a line

alright  of  course  a  polynomial  the  values  will  change  ok.  But  if  the  polynomial  is

homogeneous the property of it vanishing or not will not change ok.
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So this is the first observation if F of X knot X n is a homogeneous polynomial ok say of

homogeneous of degree D then either F restricted to line through lambda knot lambda N is

identically zero or otherwise ok. So what I am trying to say is because this is because you see

F of lambda knot lambda N suppose I put T lambda or knot etc T lambda N is T4 D F of

lambda knot etc lambda N for T non-zero constant.

So you know if the polynomial vanishes at one point of the line then it will vanish at every

point of the line ok. So in other words so I can make sense of whether a polynomial vanishes

on a line or not but what is the line? A line is a point here. So I can make sense of whether a

polynomial  vanishes  at  appoint  here  or  not  ok  and  then  I  define  the  closets  here  to  be

common zero loci of the bunch of points where the polynomials vanishes. All those points

where a bunch of homogeneous polynomials vanishes ok. 
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So what you do in other words it makes sense to look at the zero set of F in P N ok. What is

the zero set of F and P N? Point in P N where F does not vanishes corresponds to a line on

which F does not vanish. Point in P N where F vanishes corresponds to a line on which F

vanishes ok. So let me repeat, I can make sense of a zero set of a polynomial in projective

space namely it is all those lines on which F vanishes. So all those lines on which F vanishes,

and I  though to  have  to  just  do it  for  one  polynomial  I  can  do  it  for  any collection  of

polynomial.

So what you do is, more generally you may define a projective algebraic set in P N to be the

common zero locus of a subset of homogeneous polynomials in K X knot etc Xn ok. The fact

is that we get a topology on projective space that topology will be the so called (risk) so

called the Zarisky topology ok, you can check that this gives the (topo) check that we get a

topology  called  as  the  Zarisky  topology  on  projective  space  by  taking  close  sets  to  be

projective algebraic sets ok.

If you take projective algebraic sets to be close sets you get a topology on projective space

and that is called as the Zarisky topology and the fact is that is the following the fact is that

topology is the same as the quotient topology that you get from this a Zarisky topology on the

top ok. This topology is the same. 
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Check also that this topology is the same as the quotient topology for Pie I will call this map

as Pie the projection using quotient topology for Pie from the Zarisky topology on A n plus 1

ok. So the moral of the story is that you can get as a Zarisky topology you can get a topology

on this the Zarisky topology on this that came here in two ways either you take the quotient

topology I mean it is a topology that you put that makes this map continuous ok and that is

one definition ok. The other definition is that you define the topology directly on this to be

given by closed sets  which are given by common zero loci  of a  bunch of  homogeneous

polynomials.

The only difference with the projective case in the affine case is that in the affine case you

consider all polynomials but in the projective space the projective case you consider only

homogeneous  polynomials  and  you  know  why  you  have  to  consider  homogeneous

polynomials because only for a homogeneous polynomial you can say for sure whether it will

vanish  uniformly  on  a  line  passing  through  the  origin  ok.  If  it  is  a  non-homogeneous

polynomial it could vanish at some points on the line it could be non-vanishing at other points

on the line ok. 

If you take a non-homogeneous polynomial and take it zero’s set that zero set will be hyper

surface ok which will be N dimensionally in N plus 1 space and the hyper surface could hit

the line at not at all points it need not contain the line. So it could hit the line at some points

and it could not hit the lines at some points. So a non-homogeneous polynomial could vanish

at some points on the line and not vanish at some other points of the line.



But if  you have homogeneous polynomial  it  either  completely  vanishes  on the line  or  it

vanishes at no point on the line ok. So if you take a homogeneous polynomial it is very easy

to define the zero set of that in projective space and then if you take a bunch of homogeneous

polynomials then the common zero locus of this bunch of homogeneous polynomials is what

is called an algebraic set and that is how a closed set is defined ok and this gives us the risky

topology on the projective space. And now you know lot statements that we know for the

usual affine space the same statements will carry over for projective space.

The only thing is  for example in  the affine case you deal  with ideals  general  ideals  and

general  polynomials  in  the  projective  space  you  will  deal  only  with  homogeneous

polynomials and you will deal with ideals which are generated by homogeneous polynomials

and this are special they are called homogeneous ideals ok. So just an in the affine case you

have a bijection between radical ideals and algebraic subsets in the projective case also you

will have a bijection between radical homogeneous ideals of this ring polynomial ring in N

plus 1 variables and algebraic projective algebraic subsets but you will have to throw out one

ideal which is called the irrelevant maximal ideal and that is the ideal generated by all the

variables.

That is the one that you have to throw out and you have to throw it out because on top you

have thrown out the zero of the zero set of that which is the origin ok you have to throw that

out. So and just like in the affine case where you have the affine Nullstellensatz which says

that if you take an ideal which is you know a proper ideal then the zero set in non-empty.

Similarly you will also see here that if you take a homogeneous ideal which is not which is

essentially not whose radical is not the irrelevant maximal ideal then its zero set will be non-

empty.

So you get a projective version of the Nullstellensatz. So lots of this correspondence between

ideals and closed subsets that you had for a fine space will also hold for projective space and

we will review that in the next lecture but this one point of caution the point of caution is the

following. You can go and start defining regular functions on a projective variety ok on an

open subsets of a projective variety we will call an irreducible closed subset of P N as a

projective variety alright and it will turn out that it will be closed subset will be irreducible if

and only if it is ideal is prime.

The ideal will be homogeneous ideal but you will require that it has to be prime and what will

happen  is  of  course  that  you know in  the  projective  case  also  if  you  look  at  so  in  the



projective case also you can define regular functions the only thing is that in affine case your

regular  functions  where  quotients  of  polynomials  ok.  Now you  have  to  define  them as

quotients of homogeneous polynomials ok. 

If we take quotients of two homogeneous polynomials and assume that the both polynomials

are homogeneous of the same degree then that will define a proper function on (affine) on the

projective space because you know if I divide two such polynomials then the T power D is

and if they have the same degrees the T power D’s will get cancelled and therefore a quotient

of homogeneous polynomials of the same degree will define a nice function on the projective

space.

 Functions that look locally like this will be called relay functions on the projective space and

then beautiful thing is that if you try to look at any global regular functions on a projective

space it will turn out to be constant.
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Just like if you try to look at a global holomorphic function on the Riemann’s sphere it has to

be constant ok. So these projective and it is true for any projective variety if you look at any

global regular functions it will be a constant will prove that ok and this is in sharp contrast

with  the  case  of  affine  variety  when  the  global  regular  functions  are  given  by  all  the

polynomials restricted to that affine variety and there is so many of them.

Whereas if you go to projective varieties there are no non-constant regular functions ok. So

and of course I also forgot to tell you just like in this case S2 is a union of two R2’s.
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I will show in the next class that P N is union of N plus 1 copies of A n, so the projective

space locally it is covered by N plus 1 open sets. Each open sets looks like A n affine N

spaces. So what you have done is you have taken N plus 1 copies of affine N spaces and

glued them in a nice way to produce the projective space and the beautiful  thing is  that

though  each of  the  pieces  that  you glued with  have  lots  of  you know regular  functions

polynomials.

On this glued object there is no global regular functions which is not one such ok. So we will

see all this aspects in the forth coming lectures and let me also tell you one more point of

difference that is that you know for affine variety the coordinate ring of the affine variety is

invariant namely two affine varieties are isomorphic if and if only if their coordinate rings are

isomorphic and now this will completely going to be false for projective varieties ok. So the

same projective variety can be embedded into different projective spaces and if you try to

define  the  ring  of  functions  on  that  as  the  this  polynomial  ring  modulo  the  ideal  the

homogeneous ideal we will see that ring is capable of changing.

So the embedding of a projective variety in some projective space could be very different I

mean alright so you don’t have the beautiful analogue of coordinate ring for affine varieties

you don’t have the correct analogue in that sense for projective varieties ok and for that

matter  that  is  what  leads  one  to  study  line  bundles  and  sections  of  line  bundles  etc  on

projective varieties which are probably the content of a second cosine algebraic geometry ok

but I will stop here and we will continue in the next lecture. 


