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Okay so see what we are trying to study now at this stage of the course is the so called good

functions that you can define on a variety okay and actually these good functions are called as

regular functions okay and you know we have defined, so for any variety or a quasi-affine



variety in affine space, so if I call that as a X, X is either closed irreducible subset of some

affine space or well or I can take an open subset of course non-empty.

Open subset of such an irreducible closed sub variety that is an irreducible closed subset of

some affine space then we have defined this operation O, this operation O gives you O of X

in this case and in this case it gives you O of U and what is O of X, O of X is supposed to be

the ring of regular functions on X okay, O of U is similarly the ring of regular functions on U

so here what I am having on this side is affine or quasi-affine varieties.

These are the objects on this side okay so an irreducible closed subset of affine space is called

an affine variety if you recall and an open subset of non-empty open subset of such an affine

variety is called quasi-affine variety, okay, and for an affine variety or a quasi-affine variety I

define the ring of regular functions to be functions which can be locally written as quotients

of polynomials okay.

So what it means is that see your whether it is x or whether it is u, they are all sitting inside

an affine  space  and on the  affine  space  I  have  natural  functions  giving  by polynomials.

Polynomials in the right number of variables okay so if you give me, so in this case if it is An

I am taking polynomials in n variables and you give me a polynomial in n variables that gives

you a function from affine space into the base field k okay which of course to just to remind

you is always an algebraically closed field and so any polynomial here gives you a map from

An to k okay.

And that map can be restricted to any subset, so such a map can be restricted to X, such a

map can be restricted to U, okay and what we are saying is that we are saying that if you take

two such polynomials okay and suppose I take the quotient of these two polynomials and

suppose I look at, suppose I restrict this quotient to subset where the denominator polynomial

does not  vanish then that  will  also give me a function from that  subset  into k okay and

functions like this which I am calling as regular functions.

So  more  generally  a  regular  function  is  something  that  locally  looks  like  a  quotient  of

polynomial okay so the right way to say is that regular function is something that, it is a

function which is got by, which is locally a quotient of polynomial and it is gotten by gluing

such quotients okay and of course because of the quasi-compactness of the zariski topology

you know that that this gluing can be done on just one of finite number of basic open sets

okay that is something that we have seen last time.



And in fact  what  we prove was we proved that  you know that  whenever  the  variety  is,

whenever X is isomorphic to an affine variety okay so I am again making a statement which

is kind of retrospective kind of statement, it is a futuristic statement in the sense that I have

not defined what is meant by isomorphism of varieties so it is very strictly not correct or

pedagogically sound for me to tell you give a statement like let X be isomorphic to an affine

variety but assume it for the moment okay.

So the fact is that whenever a variety or a, so if X is already a closed sub, irreducible closed

subset of affine space it is already an affine variety by definition but if you take an open

subset of such an affine variety the beautiful thing is that it may or may not be an affine

variety what I mean by that is that it may or may not be isomorphic as a variety to another

variety which is affine.

So the both cases happen, so there are special cases when you take U when you take U equal

to, you take X equal to, if you take X equal to An okay and if you take U to be the basic open

subset defined by the locus of points where a polynomial hits in the right number of variables

n variables does not vanish then you know that this is actually an affine variety in the sense

that the, this can be identified as a closed subset of an affine space of dimension 1 more you

have seen this.

And in this case what happens is that even though U is only a quasi-affine variety in An, it is

actually isomorphic to a variety in An plus 1, so in that sense U is not only a quasi-affine

variety but it is also an affine variety it is not an affine variety in An but it is an affine variety

in An plus 1, okay and on the other hand you know I give you, if you take this statement like

this if you take An, I mean if you take a situation like this take X equal to An and take U to be

just the compliment of the origin okay.

So you take An minus topology okay now this is also an subset of affine variety and the fact

is that of course the fact is that if n is greater than 1, this is not, this can never be isomorphic

to an affine variety it is a fact, that we will see later okay this cannot be isomorphic to an

affine variety okay. So there are open subsets of affine varieties namely there are quasi-affine

varieties which can be isomorphic to affine varieties.

And there are quasi-affine varieties which cannot be isomorphic to affine varieties and the

point is that whenever a variety or a quasi-affine variety especially whenever you take a, so

let me begin like this if you take an affine variety okay namely an, it is already an irreducible



closed subset of An, if you calculate the ring of regular functions okay then I prove last time

that  this  is  isomorphic as k-algebras  to the ring of polynomial  functions,  the ring of co-

ordinate functions, so called affine co-ordinate ring of X which you know is defined to be just

the affine co-ordinate ring of the full affine space in which x is sitting modulo the ideal of X

which is a prime ideal.

So this is a finitely generated k-algebra and this is how I define the ring of functions on a

irreducible closed subset okay and the fact is that if X is an irreducible closed subset of An

the ring of regular functions is naturally isomorphic to the ring of, to this ring, the affine co-

ordinate ring of functions that come out of polynomials okay so what you are saying is you

are saying the following, so what does it mean? What it means is if x is an irreducible closed

sub variety of, irreducible closed subset of some An then a function on X which is gotten by

locally  gluing  quotients  of  polynomials  is  actually  represented  globally  by  a  single

polynomial function mind you, what are the elements of A X?

The elements of A X are just the co-sets of, I mean the elements of A X are just co-sets here

this is a quotient ring this is a co-set, so an element of A X is written as F bar where F is an

element of the affine co-ordinate ring of affine space namely F is just a polynomial in n

variables and F bar denotes the co-set F plus IX okay and the fact is that this F plus IX also

defines a function on X what is that function? It is just F restricted to X.

You have if you take an F here, it is a polynomial in n variables so it is a function on affine

space and X is after all a subset of affine space so I can restrict that polynomial function to X

and the resulting function on X is not F itself, I mean it is a restriction of F but it can also be

represented by a  g such that  the difference  F minus g is  in  the ideal  of X, so writing a

function here as F bar means that you are writing it upto the ideal of X.

Because if you have a function on X and you add to it a function that is identically 0 on X

okay then the resulting thing is  also going to give you the same function on X okay so

function on X is of course polynomial function on X is of course a polynomial function on

An upto an element of the ideal of S because element, the polynomial functions in the ideal of

X when your restrict them to X they are going to give you the 0 function okay.

And what is this isomorphism signifies? This isomorphism signifies that you give me, if you

take an irreducible closed subset of affine space then a function on that with values in k if it is

obtained by locally gluing quotients of polynomials then it can be represented globally by a



polynomial  as  the restriction  of  a  single  polynomial  function  that  is  what  it  says  and in

particular you know if you take X equal to An itself, what this will tell you is that if you take

a function on all of affine space which is locally the quotient of polynomial X then globally it

has to be polynomial and that polynomial has to be unique.

Because in that case you will get an isomorphism of O X namely O An with A An itself

because  I  An  will  be  the  zero  ideal  okay  so  that  is  the  significance  when  you  get  an

isomorphism when you apply the O and A okay mind you, you can apply O and A has been

defined only for some certain special objects in this side okay so you know if you remember

if you take basic open set like this okay then you know I have defined A of that basic open

set, the functions on that basic open set to be just the localization of the functions, the ring of

functions on the ambient space at h.

So and this is, so this is very simple when you take a ring and you put a subscript saying you

are localizing at that element it means you are just inverting that element and that makes

sense because, basically because on D h, h does not vanish so 1 by h and all powers of 1 by h

are also valid functions on D h and therefore a general valid function on D h will be some

polynomial by a power of h and that is exactly the kind of elements that you have in this

localization so we made this definition okay.

And  in  fact  I  justified  that  this  definition  is  correct  in,  at  least  I  gave  three  partial

justifications as to why this definition is correct of course you know one justification was that

it is correct to invert h because h is non-zero on D h which is a locus where h is not zero

therefore a general function on this should be some polynomial divided by a power of h okay

which makes sense and when you collect all these things together and identify them properly

you will get the localization at H that is one justification.

What is the other justification? The other justification is that D h is also as I told you an affine

variety because it can be identified with a closed subset of An plus 1 so you know this D h if

you recall this D of h which sits inside An okay can be identified with the zero set of hY

minus 1 in an affine space of dimension 1 more okay where Y is the extra co-ordinate which

you are adding okay and this identification comes because of the projection.

The projection map from An plus 1 to An if you are restricted to this closed subset you will

get this and what is so you know if you belief I asked you to check that it is a matter of

topology to check that this identification is not only bijective but it is not a bijective map of



sets but it is also a homeomorphism of the zariski topology which I hope you check okay but

the fact is you can go one step further in fact this is an isomorphism of even varieties okay.

And that is again statement that you will have to, that we will have to fix up later on when we

come to the notion of isomorphism but if you believe that then it tells you that since this is an

irreducible closed subset of an affine space, this is an affine variety and this is something that

is isomorphic to an affine variety and therefore it is correct to define A of this to be the same

of A of this and the A of this is actually isomorphic to because of properties of localization in

commutative algebra A of this is precisely this okay.

Because A of Z of hY minus 1 is just A of An plus 1 divided by hY minus 1 which is the ideal

of Z of hY minus 1 because hY minus 1 is an irreducible polynomial and this is actually

isomorphic to A of An localized at h okay because this is k x1 through xn, Y by hY minus 1

and that is  isomorphic to kx1 through xn polynomial  ring localized at  h okay this  is  the

property from commutative algebra and I was just trying to tell you that this isomorphism

between these two rings is actually commutative algebraic translation of this isomorphism of

variety okay.

And therefore I told you that is the justification as to why you can define A of D of h to be

this  okay  that  was  the  second  justification  okay  and  the  third,  there  was  yet  another

justification that I gave and that justification was the third justification was that if I take this

A so you know it is the, third justification is that whenever for example I start with An okay I

go to A of An if I take max spec I get back An okay.

So which means so I am just saying max spec of A of An is the same as An that is just the

nullstellensatz if you really but it is not just nullstellensatz set theoretic bijection, it is actually

I told you to check that this is even and in fact we check I think we actually check that this

identification of max spec of A of An k which is the set of maximal ideal is in A of An with

the zariski topology for the maximal spectrum which is induced by the zariski topology and

the  prime  spectrum  that,  with  that  topology  max  spec  of  A of  An  and  An  itself  are

homeomorphic  and  again  let  me  go  one  step  further  we  will  see  it  is  a  fact  that  this

homeomorphism, it is just not even a homeomorphism, it is an isomorphism of varieties in

the most general sense okay.

So the fact is that, similarly if I take an irreducible closed sub X then I will check that if you

take max spec of Ax then that is isomorphic to x itself at least you could have, you would



have, you must have check that it is homeomorphic to X topologically but the fact is it is

even isomorphic to X okay, so moral of the story is that somehow if something is affine if

you, then you define the A of that okay and then if you apply the max spec you should get

back that thing okay.

So the fact is that if I take D h if I apply A to that I get A of D h which is this okay if I take if

this is a correct definition if I take max spec of this I should get back D h and that is again a

fact I asked you to check at least topologically that you get it back okay so these are three

justification as to why this is the correct definition but then here is yet another definition, the

for D h I can define O of D h okay and then it  is  a fact that  O of D h turns out to be

isomorphic to this okay.

So this  is  part  of  this  philosophy that  I  was trying  to  tell  you that  you know whenever

something is affine if you apply O to it and you apply A to it. A is always defined whenever

something is affine okay and O is defined whether something is affine or not and the fact is

that the characterization that something is affine is given by the fact that when you apply O to

it and apply A to it you should get the same thing if you get the same thing then and only then

is  that  thing  affine  okay, that  is  then  and  only  then  is  that  object  can  realizable  as  an

irreducible closed subset of some affine space okay.

So the fact that an object is, can be realizable as an irreducibly closed subset of affine space

okay is captured in checking whether O of that and A of that are isomorphic okay and I told

you that well, the so you know if I take O of U okay I should not say O of U is not, so in this

case if you take affine space minus the origin I should not say O of U is not isomorphic to A

of U, the fact is that I do not define A of U because I know it is not affine okay so A is

somehow defined only in cases where you know things are affine okay.

And the fact is that for all those things that are affine if you apply O also you will get the

same result as you would get when you apply A okay. Now yeah so this is the story so far

alright and so I was trying to just tell you that so here I should say here U is not affine U is

not affine if n is greater than 1, by that I mean U is not isomorphic to any affine variety

provided n is greater than 1, of course n is 1 then you know then you are going to get A1

minus the origin and A1 minus the origin is affine because it is just D of x what is D of x? D

of x is the set of points where x does not vanish and the set of points where x does not vanish

on A1 is precisely A1 minus 0.



So when n equal to 1 it is actually affine because it is a D of x and all I am trying to say so

when n is 1 it is actually even basic open affine okay but when n is greater than 1 this is very

very far away it is not even affine okay it is very far away from being affine. So alright so

you know now somehow you know I am, now let me go back and try to tell you that in all

this things you know I have been using the statement that some variety is isomorphic to some

other variety okay so I have to define what an isomorphism of variety is.

And you know in general philosophy, the general method to define an isomorphism is to

define a morphism which has an inverse which is also a morphism okay this is how you

define  an isomorphism alright,  so basically  isomorphisms can be defined if  I  can define

morphisms and so what I am going to do next is how do I define morphisms okay so let me

make that statement here.
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So let me put that as a title here morphisms of varieties so by varieties I mean either affine

varieties  or  quasi-affine  varieties  how  do  I  define  what  are  morphisms  right,  now  to

understand this let me give you a, let me go back to something more basic let me go back to

topology okay so see let me take so motivation is you know let X, Y be topological spaces

okay and let mod X, mod Y be the underlying sets okay.

So you see what I am trying to do, do not confuse mod X with the cardinality of X which is

usual notation okay so here for me mod X is not the cardinality of X and mod Y is not the

cardinality of X when I write mod x I mean throw away the topological space structure on X



and think of X only as a set so mod X is just X is a set mod Y is just Y as a set okay now what

I am going to do is there are two categories.

There  is  a  category of  topological  spaces  and there is  a  category  of sets  okay so in the

category of sets the object is sets and the maps, so just to recall  a category very naively

basically consists of two pieces of data one piece of data specifies the so called objects of the

category and the second piece of data is the maps between these objects, maps with certain

properties and that is why the word morphisms is also used in subsets maps okay.

So every category is specified by defining what the objects are and what the maps are okay so

when I say category of sets, the objects are sets and the maps are just maps of set okay just

functions  from one  set  to  another  without  any  other  properties  when  I  say  category  of

topological spaces the objects are topological spaces and what are the maps? The maps are

not just maps of sets but they have to be continuous maps okay.

And you can go on like this for example if you take the category of rings, the objects then are

rings and the maps are not just set theoretic maps of rings they are ring homeomorphisms

okay and so on and so forth but I am only interested in these two categories with respect to

these two guys so you know if you take the object x okay and if you take a topological space

X then I have the corresponding I have the corresponding underlying set mod X okay.

And if you give me a topological space Y I have the underlying set mod Y okay and then well

if you give me another topological space Z okay then I will again get the set mod Z okay and

now well you see I start with so I do the following thing if you give me a map f from X to Y

of topological spaces okay then I will get this map mod f which is a map of from mod X to

mod Y and the point about mod f is that I forgotten the continuity of f.

Here f is a map is a morphism from X to Y is a morphism in this category so it has to be

continuous map where as if I take mod f, I am looking at the map as a set theoretic map okay

and then well if you give me any map g any continuous map g from Y to Z then I get the

composite map which is first apply f then apply g and you know composition of continuous

maps is continuous therefore if g is continuous then f followed by g is also continuous.

And the corresponding diagram here will be, here I will get a mod g and here of course I will

get mod of g circle  f which is of course mod g circle  mod f I  am simply forgetting the

continuity alright and see the fact is that, that is a functor like this and this functor is called



the forgetful functor it is a functor that forgets the topological space structure okay it is called

the forgetful functor because you are forgetting everything connected to the topology given a

topological space you are attaching to your, you are just associating to it just the underlying

set.
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And  given  a  continuous  map  of  topological  spaces  you  are  just  associating  to  it  the

underlying set theoretic map okay, now what we get from this diagram is the following you

get so you know let me let me give some symbols okay so let me do that here so you see what

I am trying to say is you have a home okay or let me not write home I think home alright so

let me use mor, so this mor is supposed to be abbreviation for morphisms so when X and Y

are objects of a category mor XY is a set of morphisms from X to Y okay in that category.

So you see if you have morphisms from if you take morphisms as topological spaces from X

to well, so let me do the following things I will take morphisms as topological spaces from Y

to Z okay and if you give me a morphism of topological spaces from Y to Z namely g, I get a

morphism of topological spaces from X to Z which is g circle f and this map which is going

in the reverse direction, one writes this as f star okay.

This is called the pull back of morphisms okay, it is very simple you have two objects in the

category  okay  you  have  a  morphism between  them and  what  you  are  doing  is  given  a

morphism on the target  you compose it  with this  to  get  a  morphism on the source so a

morphism, a map, a morphism from one object to the other object pulls a morphism on the



target to a morphism on the source you are pulling back morphisms, it is called the pullback

induced by a morphism.

So f star is the pullback induced by f okay so it is simply g going to g circle f okay so this is

the pullback functor, this is a pullback induced by a map alright and you have similar map

here so you have mod f star which is the same as mod of f star it is not, probably I should not

say mod of f star, so this mod f upper star, it will go from morphism as sets from Y to Z to

morphism as sets from X to Z okay and this is give me any h it will send h to well g circle h,

h circle mod f this is what I will get okay this is, if you give me, so mind you h is just the

morphism of sets it is just a set theoretic map from Y to Z.

You give me a set theoretic map from Y to Z since I have a map f since I have a map mod f

from X to Y, I composite with this set theoretic map h from Y to Z and I get this composition

which is this okay and the fact is that as you can see that this, this is a subset of this, of course

maps of topological spaces are certainly maps of sets but they are not just maps of sets they

are continuous maps okay.

And similarly this is subset of this here also this set is the set of all possible maps functions

from Y to Z but these is the subset which consists of only the continuous functions okay so

and you know two maps of topological spaces are equal if and only if they are equal as maps

of sets because whenever you see equality of maps you only check at the set theoretic level

okay so this is the subset of this, this is a subset of this okay.

And now what I am going to do is I am going to go in the other direction so I am going to say

suppose I  have a  suppose I  have  two topological  spaces,  so let  me begin by saying the

following thing if f is a continuous map from X to Y okay then the pull back of f induces a

map from, it induces a map which takes continuous functions to continuous functions okay so

g is a continuous function from Y to Z, the pull back of g this if you want I will call this is as

f upper star g this is also a continuous function from X to Z okay.

So let me sum it up like this you start with the continuous function from X to Y then the

pullback induced by that takes continuous function to continuous functions that is what it

says okay now this is the model for defining what are morphisms okay so the rule is, this is a

very general philosophy, you want to define a certain map as a morphism the rule is you

specify that the pullback induced by that map must take good functions to the good functions

okay.



So whenever  you are in  a  situation  where you know what  good functions  means so for

example in our, in the case of topological spaces good functions are continuous functions if

you are working with for example in our case of algebraic  geometry  good functions are

regular functions okay so you can define a morphisms to be a map with the property that its

pullback has the property of taking good functions to good functions, the pullback of good, so

a map is a morphism if it  is pullback takes good functions to good functions, this  is the

general philosophy.

And this works, it not only works in algebraic geometry, it works everywhere it works in

analysis works in manifold theory, works universally okay, so keeping that in mind let us do

the following thing let us make a, let us test this, so here is a remark, so let me make that

remark here, clearly if f from X to Y is continuous so I am abbreviating continuous to cts then

f upper star of a continuous map is equal to a continuous map okay that is what this say f

upper star of a continuous map is again a continuous map.
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And this  is  just  if  you want  in  this  case  it  is  just  a  result  of  the  fact  that  you know a

composition of continuous map is again continuous it is nothing more than that okay but the

beautiful  thing  is  that  the  converse  to  that  statement  holds  and that  is  the  power  of  the

statement so here is a lemma, let g, okay let me write something else let me use phi from X to

Y from mod X to mod Y be a map of sets okay.

Let phi from mod X to mod Y be a map of sets suppose for every topological space Z, the

map  morphism as  sets  from Y to  Z  so  I  should  here  maybe  be  very  strict  when  I  say



morphism are sets I should probably put this parallel bars to tell you that I am just looking at

morphisms of sets okay but you should have understood that even if I did not put it, I am

anyway taking morphism in the category of sets so I am only worried about the underlying

sets okay.

The map from, the pullback map, see so this is a pullback map from the morphisms of sets

from Y to Z to morphisms of sets from X to Z which is given by h going to, you first apply so

it is this h circle phi okay so the diagram is like this so here is, so here is mod the underlying

set  of  X,  the  underlying  set  of  the  topological  space  X,  this  is  the  underlying  set  of

topological space Y and then I have Z and this is underlying set of topological space Z.

And I have this map if you give me a h from Y to Z, I have a phi from mod Y to mod Z if you

have a h set theoretic map, if you give me a set theoretic map phi from mod X to mod Y, I

have this composition which is just first apply phi then apply h and its composition okay, this

is just phi upper star of h, this is a pullback okay, see this pullback map okay that is the

following has the following property I have here as subset, I have here the subset which is

morphism as topological spaces from Y to Z okay mind you the way I am considering this as

subset here is by associating a morphism topological spaces from Y to Z as a set theoretic

map from Y to Z by forgetting the topological structure and forgetting the continuity okay.

That is how I am identifying this with the subset of that okay that is what this inclusions

mean when I say this is a subset of this and this is a subset of this I am actually identifying a

map  with  its  mod  right,  so  this  morphism  takes,  the  map  takes  this  into  morphism  of

topological spaces X, Z you see it is a property then there exists a unique continuous map phi

tilde from X to Y with the associated map phi tilde set theoretic level to be equal to phi.

So this  gives you a criterion as to when a map is  continuous,  suppose you give me two

topological spaces X and Y and you give me a set theoretic map from X to Y that means you

take give me a set theoretic map from the underlying topological space of X to the underlying

topological space Y. How do you check that this set theoretic map is actually a continuous

map? The power of statement is whenever it pulls back continuous functions to continuous

functions then it is automatically a continuous function okay.

So this tells you that this philosophy of defining a morphism to be the, to be a map which

pulls back good functions to good functions is the right definition it works even to define the

continuity of a map between two topological spaces okay so this is the, it is a very simple



observation  but  it  is  a  beautiful  philosophy  to  work  with  and  it  is  exactly  this  kind  of

philosophy that we are going to use to define regular morphism of variety okay.

We are going to define morphism of varieties exactly in this field and well so what is the

proof? See the proof is, the proof is very very simple, the proof is well you see put Z equal to

Y okay and you put h is equal to the set theoretic map connected associated with the identity

map on Y okay so you see the diagram is that the diagram is as follows I have X, I have Y

okay this is underlying set of X, this is underlying set of Y okay and here is my phi set

theoretic map and then well the Z, I am going to put is just equal to Y so this Z is just Y okay.

So the underlying set of Y is same as underlying set of Z and then the map h that I am going

to take from the underlying set of Y to the underlying set of Z is the identity map on Y okay

and the claim is that when I do this what I will get here is phi upper star of identity map on Y

okay and what is the claim? The claim is that, notice the identity of Y, the identity map on Y

is of course a continuous map, as a topological, as a map of topological spaces from Y to Y

the identity map on a topological space is always a continuous map because after all the

inverse image of and a set that is open is a set itself and that it is anyway open.

So inverse image of open sets are open therefore the identity map on a topological space is

always  continuous  okay  therefore  this  Id  Y identity  map  on  Y is  a  continuous  map  of

topological spaces and so you know and what is the, so what is a conclusion that the pullback

by phi takes continuous maps to continuous maps so it tells you that phi star of identity Y is

will give you a map from the underlying space of X to underlying space of Y and that map is

actually a continuous map.
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But what is this map? This map is a map which set theoretically is the same as phi so you

know if I set this as if I call this as phi tilde okay if I, so all I am trying to say is that phi tilde

is actually this map okay so then so the proof is very very clear since identity map on Y

belongs to it is a topological map, continuous map from Y to Y, its image under phi upper star

namely phi upper star of Id Y actually lands in the set of continuous maps from X to Y with

underlying map phi itself and that is the proof.

So the  moral  of  the  story is  that  a  set  theoretic  map between two topological  spaces  is

continuous if and only if it pulls back continuous functions to continuous functions okay a set

theoretic  map phi of topological  spaces  is  a  continuous map if  and only if  it  pulls  back

continuous functions to continuous functions okay, so more generally you this is the method

define morphism, a morphism is a map such that under pull back it takes good functions to

good functions  and now you know what  I  am going to  do how am I  going to  define  a

morphism between two varieties.

Two varieties can be affine quasi-affine does not matter, so what am I going to do, I am going

to do the following I am just going to say a map is a morphism, a morphism between two

varieties is a set theoretic map which pulls back good functions to good functions and what

are  good functions  of  varieties?  They are  regular  functions,  so I  am going to  just  say a

morphism between varieties is a map of varieties, a set theoretic map of varieties that pulls

back a regular functions to regular functions alright.



And the beautiful thing is that there is a small glitch in this proof, in this definition the glitch

is that I have to specify for avoiding certain pathologies that the map that I start with is not

just a map of sets I should already specify that the map is already continuous okay so you see

here what we did was the base structure, the base category was the category of sets and the

topological and the category with more structure was the topological category.

So here you had, these were just sets and these were sets with topological structure okay but

if you go to varieties it is even more, it is one step even more because as far as varieties are

concerned they not only have the topology namely the zariski topology but it is not just a

topology that  describes  all  the  geometry  of  varieties,  the  geometry  of  varieties  far  more

higher than just the topology of varieties okay.

To study the geometry of varieties the first step is to study the topology of varieties so when

you look at a variety you should look at it at three levels, the variety as a set is the base level

you are looking at it at the category of sets, then the next level is you look at the variety as a

topological space in which case you are looking at it at the zariski topology okay, then there

is a third level which is the variety as a variety itself okay the variety as a variety itself is

something more it is not just a topological space okay.

And therefore if you will, so the point is that in that situation the philosophy, this philosophy

will work you will have to replace this forgetful functor from topological spaces to sets to the

next higher level which is from varieties topological spaces so what you must assume at the

base is not just a map of sets which you already assume something that is a map at the level

of topological spaces.

So  what  is  the  correct  definition  of  a  morphism  of  varieties,  it  is  a  morphism  of  the

underlying topological spaces namely it is a continuous map which under pull back takes

regular functions to regular functions, that is the definition okay so with that definition you

can define what a morphism of variety is and all this, in all the previous lectures whenever I

said isomorphism of varieties I meant a morphism like this okay namely a continuous map

that pulls back regular function to regular functions with an inverse which also is a morphism

namely which also pulls back regular function.

So that is the very easy definition of what an isomorphism varieties has to be, it has to be a

bijective  map  and  both  the  forward  map  and  the  reverse  map  should  pull  back  regular

functions to regular functions okay that is what it means to say that map is an isomorphism of



varieties okay and I should tell you with a word of caution that there are many categories in

which usual categories in which a bijective morphism is also an isomorphism that is if you

have morphism which is bijective in the inverse map is also a morphism okay but it is not

true with varieties unfortunately okay.

So for example if you have a bijective linear map then the inverse is automatically a linear

map so it is an isomorphism, if you have a bijective homomorphism of rings the inverse map

is automatically a homomorphism of rings so it is an isomorphism of rings okay but not all

bijective morphisms are isomorphisms for example as I told you I think one of these, I do not

know that I told you but if you take the map from the real line, if you look at maps from real,

the real line to the real line which are with the property that they are not just continuous but

with the property that they are differentiable then you know if you take a bijective differential

map need not be a differentiable isomorphism it is inversely need not be differential.

For example if you take X going to X cube then that map is bijective differentiable map but

the inverse map is X to the 1 by 3 is not derivable at the origin okay so bijective morphism

never it is not necessary that it is an isomorphism namely the inverse map need not be a

morphism okay and it is also true with varieties that a bijective morphism need not be an

isomorphism okay so that is the word of caution alright, so I will stop here and continue next

in the next lecture.


