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Okay so let us continue with our discussion which is, whose aim is to define what are regular

function at a point is, okay. So let me again go back to this definition, the definition says that

you know you have function f with values in k, the base field and it is defined in an open set

containing  the  points  small  x,  of  course  that  open  set  could  be,  that  open  set  is  being

considered as an open set in the affine variety or quasi-affine variety in which x exist okay.

And we say the function f is regular at that point if it is, if it can be written as a quotient of

polynomials okay that is there are two polynomials whose quotient will define a function, a

quotient of polynomials will define a function into the field, the base field, the scalar valued

function  wherever  the  denominator  polynomial  does  not  vanish  that  is  actually,  so  this

function of the form g mod h where g and h are polynomials will always define a function on

D h, on this basic open set D h, which you know in its own right is actually an affine variety.

And the fact is that you will just have to find a h such that D h intersection X capital X

contains small x and which is possible because it is basically because any open set is a finite

union of such D h’s okay for various h’s, right, which is a fact we have already seen. In fact



any open set here is the compliment of the closed set and that closed set is given by the zero

set of an ideal and that ideal is finitely generated.

And therefore that closed set is given by the intersection of the zero sets of the generators of

the ideal and therefore its compliment is given by the corresponding union of basic open sets,

namely the loci, the open sets where the corresponding generators of the ideal does not vanish

individually, it is the union of that, okay that is how every open set is finite union of basic

open sets and therefore this is my definition.

And this definition seems to be correct for, if you look at basic open set, a good function on

this is of that form okay, but the point is that whenever you make a point wise definition what

you are actually  doing is you are gluing okay and the problem with gluing is that it  can

produce new objects,  new if  you glue objects  of a certain type we can, it  can produce a

completely new object okay.

So if you glue functions of locally you might get something which is very different from what

an ordinary function is, for example if you glue topological spaces in a funny way you might

get a topological space that you, that looks very different from the ones that you started with

okay, you are going to see later that if you glue affine spaces finitely many affine spaces you

can get a projective space okay.

So for example if I take two copies of the you know if I take for example the usual topology

and take two copies of the unit disc on the real plane and you know if I make them look like

two open two hemisphere of a sphere and then glue them like this, I will get a sphere okay

and the point is that the new topological space I have got which is a sphere is very very

special because it is compact which is not a property that is shared by either of the two open

discs I started out to glue it.

So the problem is that gluing of objects in mathematics can produce new objects which have

properties that are completely different okay, the same thing happens also when you try to

glue functions and what I am saying is that whenever you make a definition point wise you

are actually doing some gluing then for all you know you might ask the following thing can

happen if I look at all the functions on affine space itself which are regular at every point they

could be very well different from polynomials, what is the guarantee that they are no different

from polynomials.



But the answer is that you are not going to get anything new, okay and that is what, that is a

surprise and it is a pleasant surprise and that is what we are going to prove okay so, so let me

try to explain that, so just to stress this gluing business, let me write out, so let me make a few

you know, let me make few notational conventions.
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So what I am going to do is, X in An k an affine variety or a quasi-affine variety, so let me do

the following thing, let me do it one by one, let X in An be an affine variety. I define O of X

to be the regular functions the set of regular functions on X, okay and so you see this is the

new notation I am using, this is a calligraphic O okay for regular functions.

Because as yet I do not know anything about a global regular function except that it is locally

a quotient of polynomials okay and certainly I do not expect it to be anything, I cannot expect

it to be anything unless I prove something about it okay, so and similarly you know if U

inside X inside An so this is irreducible closed and then U is an open inside this irreducible

closed and U is quasi-affine variety.

So a quasi-affine variety is supposed to be just an subset of an affine variety then again O of

U is defined to be regular functions on U, okay and this is, these are global definitions okay

and  how  do  these  global  definitions  come  they  come  from local  definitions  point-wise

definitions okay and so let me write down what is a definition of, so for example if you.

Suppose I write phi belongs to O U means what okay, phi is a map from U to k is a map that

is regular at each small x in U okay. I am of course I am writing this for U, but you know I



can as well write it for the same thing will also work for X where X is actually an affine

variety okay, but I am taking a quasi-affine variety right.

So what is a regular function on a quasi-affine variety it is a function which is values in the

field which is just a map but with a property that it is regular at every point that means what,

so for every x in U there exist polynomials gx, hx in k of x1 etc xn where of course your U is

being considered inside x which is being considered in some in An okay, your U is an open

subset of X, capital  X, it  a quasi-affine variety and it is being considered in some affine

space, it is an irreducible closed subset of some affine space.

And there are polynomials such that D of hx contains x and phi is the same as gx by hx on D

hx, this is the, you see this is the definition, on D hx or rather I should say D hx may not be

all of on an open neighborhood of small x contained in D of hx, this is what it means for give

me a point x, I can the function phi in an open neighborhood of that small points small x is

the same function that I would get if I evaluate quotient of polynomials with the denominator

polynomial  out-vanishing and the  polynomials  being  taken  in  the  appropriate  number  of

variables in which dimensional affine space you are considering U and x okay.

So you see this definition is, you see this is the problem with this definition, the problem with

this definition is that it is so arbitrary in a certain sense see I could have you know the same

affine variety x could sit in so many affine spaces, see if I, if x for example is a two plane

then x could be A2 or x could be 2-plane in A3 maybe the XY plane or it could be the 2 plane

in some An it could be anywhere.

And depending upon on where it is I have to take polynomials in as many variables and then I

will take a quotient so you see it is a there is so much arbitrary in a sense definition and that

sometimes is a little scary okay but the point is that you have this for every point x so now

you see note that the D hx where x is in x where x is in U is an open covering of capital X

right.

Because I said for every point small x, I am getting this hx such that their affine open set D

hx contains x okay and this affine open set basic affine open set D hx is considered in this

affine space that affine space of that dimension in which is that number of variables in which,

number of variables you have taken the polynomial hx, okay, and of course since I say this

such a hx exist for every x in U it means that all these D hx’s they cover U okay.



But then what do we know about the zariski topology? We know that it is quasi-compact

therefore what it will tell you is that out of this collection of D hx’s I can just be content with

having only finitely many okay so by the quasi-compactness of U okay, U is afterall a subset

of x which is in turn a subset of An and then you know when you take subsets and take the

induced topology the noetherianess goes down, it is hereditary so U becomes a noetherian

topological space and you know a noetherian topology is quasi-compact as we saw in the last

lecture.

So U is quasi-compact and that means every open cover has a finite sub cover so what it

means is that there exists x1, etc, xm in U such that U is D hx1 intersection, sorry union, U is

contained in the union of all these D hxi hxn and well of course phi restricted to phi, phi is g

xi by hxi in a neighborhood of xi contained in D of hxi for every i, this is what it means.

So you see what it means, so what it means when you say that you are having a regular

function what it  means is it  you are actually  taking quotients of polynomials  and finitely

many such quotients such that these quotients they agree on the intersections you see if you

take the intersection of D hxi with D hxj then in that intersection phi will locally be both gxi

by hxi and it will also be equal to gxj by hxj.

So what you are saying is, you are saying that a general regular function is simply gotten by

taking  finitely  many  quotients  of  polynomials  with  the  property  that  these  quotients  of

polynomials agree the functions that they define upon evaluation agree on these intersections

okay and this is exactly what gluing is, gluing is you take functions locally and then so many

functions  with  a  certain  property  glue  to  give  a  bigger  function  if  they  all  give  on  the

intersections the functions should agree.

So what you are saying is just take finitely many quotients of polynomials such that the locus

of the non-vanishing of the denominator polynomials covers your space that is U in this case

and such that these quotients wherever the loci where the denominator polynomials do not

vanish intersect  the quotients  evaluate  to  the  same functions  okay such a,  this  is  what  a

regular function on U is, okay.

It is got by locally, so what you, so global regular function on open set is actually gotten by

gluing finitely many quotients of polynomials so it is a gluing process and now so this is how

it is for U it is a same definition instead of U, I can put capital X also same definition works



for any subset in fact of affine space but particular in fact instead of U, I could have put any

subset of affine space okay.

And I could have said regular functions on that set but we are interested only in regular

functions on either open sets or on closed sets either they should be regular functions on

irreducible open sets they are open subsets that is either they should be, we are interested in

functions on either irreducible closed subsets that is functions on affine sub varieties or we

are interested in functions on open subsets of such affine sub varieties okay.

So U is an open subset of x and of course whenever I am considering a subset I am certainly

not looking at empty set so U is a non-empty open subset and mind you a non-empty open

subset is both irreducible and dense okay because capital X is both irreducible and dense, I

mean because capital  X is irreducible  okay. So you see what we have defined as regular

functions is something that is very strange it  is,  these are gotten by gluing finitely many

quotients of polynomials.

So now I can ask what will I get if I put O of, if apply this O to An itself what will I get, if I

apply O to D h what will I get, if I apply O to x what will I get, if I apply O to D h intersect x

what will I get? The answer is very beautiful, the answer is you will get exactly what you will

get if you apply A okay that is the beautiful thing okay and the fact is that is the sophisticated

way of saying that is that describes that is why all the four are actually affine varieties okay.

So in more general algebraic geometry you can define A the A for objects which are affine

objects okay and then you can define the O for any general object and then the theorem is that

the general object is an affine object if and only if the O is the same as the A okay and that is

exactly what is happening here alright. So I mean that is saying it in very loose terms okay to

understand the exact import of that statement you should study scheme theory which should

be a second course in algebraic geometry okay.
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But nevertheless does not do any harm in while stating it here so if at all you go ahead to

study scheme theory you can come back and try to remember this statement okay so let me

make that statement, let me make this remarkable statement. So here is theorem O of An is

equal to A of is isomorphic I should say okay let me put isomorphic.

Okay so here is the theorem, the theorem is that what you define as regular functions are

going to give back exactly these functions which are given for, which are given when you

apply A to these objects here affine space or affine varieties or basic open subsets of affine

space  or  basic  open  subsets  of  affine  varieties  okay  this  is  the  statement  right,  so  the

technique of proof is  literally  the same it  is a basically  it  is a technique in commutative

algebra.

So what I will do is I will, let me first prove the first one and in fact you can see that you can

deduce the remaining if you little careful and just apply the same philosophy as proof of the

first okay. So what I will do is let me prove let us prove O of An is isomorphic to A of An let

us prove this alright let us prove this, so how does one do it, so what I will do is I will do the

following thing.

So I will define a map, define a map A of An to O of An by very very simple map take the A

of An is just the polynomial ring in n variables over K and simply send it, send a polynomial

g to the function g from An to k so it is a very very simple map so what you do is take an

element  here what  is  it?  It  is  a  polynomial  in  n variables  over  k and a  polynomial  in n

variables over k is a function.



It is a function from An to k by evaluation, you can evaluate the polynomial at every point

and that is in certainly a regular function because a regular function is something that is

locally given by quotients of polynomials and this is globally given by a single polynomial

and the single polynomial g can be written as g by 1 if you want, you can think of g as g by 1

and the locus where 1 does not vanishes everything okay.

And  therefore  it  is  also  a  regular  function  so  all  I  am just  trying  to  say  is  that  every

polynomial is certainly a regular function there is no doubt about it,  a regular function is

something that locally look like a quotient of polynomials but something that is globally a

polynomial is also a regular function because it is a polynomial divided by 1 if you want and

1 is a constant polynomial which always makes sense okay.

Now the fact  is  that  you see just  like  all  the polynomials  form a ring you can add two

polynomials, you can multiply them and then they form a vector space over k and then, the

ring of polynomials is a k-algebra okay, it is a finitely generated k-algebra in fact it is a free

polynomial algebra in so many variables, in the same way the ring of regular functions is

also, the set of regular function is also a ring that is the first thing you have to realize.

Because you see you take some of two regular functions okay the sum will also be regular

because if you take local, regular function locally given by quotient of two polynomials and if

you take two such regular functions and add in a suitable neighborhood the corresponding

quotients of polynomials the sum of quotients of two polynomials is again a quotient of two

polynomials okay in the correct neighborhood where the denominator does not vanish and the

product of two quotients of polynomials is again a quotient of polynomials right.

So the moral of the story is that when I define this O of something whatever it is, the regular

functions  on  that  thing  that  is  a  ring,  in  fact  that  is  a  k-algebra,  it  has  addition,  it  has

multiplication, it is a vector space over k you can easily see that if you take a regular function

multiplied  by a  scalar  the result  is  again  a  regular  function  because locally  you are just

multiplying  the  numerator  polynomial  by that  scalar  okay in  the  expression  locally  as  a

quotient of polynomials for that function okay.

And it is also clear that that is a k-algebra and so on. So these isomorphism that I have written

here, they are not just isomorphism of rings and they are isomorphism of k-algebras, okay

they are isomorphism, they are ring isomorphism, they are isomorphism of vector spaces also



okay that means scalars go to scalars, scalar lambda in k thought of as a constant polynomial

lambda goes to the same constant function lambda thought of as a regular function okay.

So this is  overall  k-algebra homomorphism okay, so this  map that I  have written here is

actually it is very easy to see that it is obvious to see that it is a ring homomorphism because

g you know f g1 plus g2 what g goes to and what I mean this this association will preserve

addition, multiplication it will, it is k linear and all that so this is a ring homomorphism it is a

k-algebra homomorphism okay.

And then the fact I want to make is that I will have to prove two things, I will have to prove

that it is injective, I have to prove it is surjective, if I prove that then I get that this is an

isomorphism of k-algebras which is what I want okay so it is, so let me write that it is a k-

algebra homomorphism, that is obvious, no doubt about that, then how do you show it is

injective? It is injective, why is it injective? Well if you take two polynomials g1 and g2

which as functions are different.

It means that there is a point in An where the values of g1 and g2 are different that means the

difference polynomial g1 minus g2 does not vanish at that point okay and that should tell you

that g1 and g2 cannot be the same okay, so it is very clear that it is injective, the injectivity is

just very severe okay, in other words you now I am, another way is to say it is that I am

saying that if you take polynomial and if I evaluate it as a function and suppose as a function

it is a zero map as a function then the polynomial has to be the zero polynomial okay.

So this is something that is obvious probably it just requires the fact that the field k is infinite

okay which is true because filed is an algebraically closed field and an algebraically closed

field  is  infinite  okay,  of  course  the  problem  is  over  finite  fields  you  can  always  find

polynomials which are non-zero polynomials but which evaluated as functions end up being

the zero function okay that can happen for finite fields, but small k is not a finite field, it is an

algebraically closed field and an algebraically closed field is always infinite.

And for an infinite field if you have polynomial which if it is, if upon evaluation it is zero

map then the  polynomial  has to  be zero polynomial  okay that  is  the statement  that  it  is

injective okay but what is really crucial is the fact that it is surjective, so that requires a little

bit of proof so let me do that, so that is why a little bit of commutative algebra will come in

and you will recognize what is going on if you have done a course in, an earlier course in



commutative algebra and where you have proved that you know the, you proved the quasi

compactness of the zariski topology when you take the prime spectrum of a ring okay.
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So let me do this, it is surjective, so what I will do is I will start with, so let phi be a regular

function okay take a regular function right so phi is map from An to k and by our definition

of what a regular function is there exist finitely many points okay and such that the union is a

whole affine space and such that phi is quotient of polynomials in this sense okay so let me

write that down.

There exists points same such that An is D h1, h sub x1, D sub hxm okay where hx1 through

hxm are polynomials in n variables and phi is equal to gxi by hxi on D hxi for every i and of

course  gx1 through  gxm they  are  also  polynomials  in  n  variables  okay this  is  from the

definition of what are regular functions okay, now you see the first thing is that this has a

meaning in terms of commutative algebra, the meaning that it has in terms of commutative

algebra is that the ideal generated by the hxi is the unit ideal okay.

So this means commutative algebraically, so you know it is a translation, it is a translation of

all these geometric facts into commutative algebra okay and the extracts of information from

commutative algebra so the fact that A is union of all this means that the ideal generated by

hx1 etc hxm is 1 is ideal generated by 1, namely it is a whole polynomial okay, this is the first

thing that needs to be noted.

And why is this true? Why this is true is because well if this ideal is not the unit ideal then it

is a proper ideal and then we know that every proper ideal is contained in a maximal ideal



okay and that you know the maximal ideal is corresponds to a point okay so what will happen

is that if you, that point will have some co-ordinates okay but that point will be here, it is a

point of An so it has to be in one of these so that means that at least one of the hxi’s does not

vanish at that point but that will contradict the fact that this is contained in the ideal of that

point okay.

So this is exactly what I am going to prove if not hx1 ideal generated by hx1 etc hxm is

contained in a maximal ideal which is of the form say x1 minus lambda 1 etc x, n minus

lambda n okay this will tell you that you see it will tell you that, so you know if I apply the Z

you know if i1 is contained in i2 then Z of i1 contains Z of i2 where z is the operation that

associates to an ideal zero set.

So this will tell you that Z of hx1 etc hxm contains Z of this maximal ideal which is actually

the point which is actually simply the point singleton point lambda 1 through lambda n okay

alright that means what this tells you is that this point is you know it tell you that this point is

a common, this point is a common zero of all these h’s okay and if this point is a common

zero of all these h’s that contradicts  the statement because this point is here okay and by

definition every point you has to be contained in some locus where a certain h does not

vanish.

But then you are saying that but I have been able to find a point which is not in any of these

okay it is a contradiction, to An is equal to D h1, D hx1 union D hxm okay right. So the moral

of the story is that indeed this condition, the fact that the affine space is a finite union of

certain basic affine open sets means that the equations corresponding to those basic affine

open sets, those polynomials actually generate the unit ideal okay so what all these will tell

you is that these generates the unit ideal so what it will tell you is there exist you know, let

me give me some other names okay.

So let me use f so there are f1 etc fm polynomials in n variables such that sigma fi hxi is

equal to 1, I get this okay, in other words the 1 is in ideal generated by the hi’s so 1 should be

generated by a ring linear combination of the hi’s and that is what I have written here, these

fi’s are L ring elements, the co-efficient from the ring okay so of course I is equal to 1 to m

okay.

Now you see now the point is that I will have to show that let us go back to what I started

with and what I want to show I started with regular function on An okay and I am just trying



to prove surjectivity of this map, so I am starting with something here, regular function An

and  I  am trying  to  find  that,  show  that  comes  from here  so  I  will  have  to  cook  up  a

polynomial which is equal to that function okay.

So I will have to use this information to cook up a polynomial g such that if I consider g as a

map I get this phi that is what I will have to do okay and that is pretty easy to see, so the trick

is you multiply both sides by phi okay, multiply both side by phi so what I will, so let me do

that so sigma i equal to 1 to m fi hxi into phi is equal to phi okay I get this just by multiplying

both sides by phi and then I use the fact that you know you see phi is chi xi by hxi on D hxi

but if I cross multiply I will get phi times hxi equal to gxi not only on D xi I will get it

everywhere okay.

So  I  am  using  the  following  fact  if  two  polynomials  are  equal  on  an  open  set  if  two

polynomials treated as functions they coincide on a non-empty open set if the two functions

define by two polynomials if they coincide as a function on a non-empty open set then the

polynomials are equal okay so what this equation tells me is that on this non-empty open set

D hxi the function phi times hxi and gxi they are the same okay and I want to say from that

that they are the same phi times hxi and gxi are the same if you want as regular functions on

the whole space.

So I am using, so in fact let me restate it more correctly I am saying that if you have two

regular functions which are, which coincides on an open set then they have to coincide on the

whole space if two regular functions coincide on a non-empty open set then they coincide on

the  whole  space  the  reason  is  topological,  the  reason  is  because  regular  functions  are

continuous and open subsets are dense, it is very simple, the reason is topological okay.

So if two, so all I am saying is that if I have two regular functions, okay and if they, the fact

that they coincide on an open set means that they the difference regular function is zero on an

open set okay alright but the set of points where a function is zero is a closed subset because

the function is continuous therefore this open subset is contained in a closed set but the open

subset is dense which will tell you that the open subset that, it will tell you that these two

regular functions are the same everywhere okay.
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So let me write that down so that you know, so let me rub this side I still want this side of the

board, so let me write that down so that it becomes clearer to you so what I do is here is the

lemma,  lemma  1  any  regular  function  is  continuous  so  here  is  the  lemma,  any  regular

function is continuous so you see, so what is the proof? So the proof is take psi in O of U if

you want okay or let me take O of something, okay so let take O of U right.

Then so psi is actually a map from U to k psi looks like g mod h locally okay where you

know g and h are polynomials, they are polynomials in the right number of variables and you

are considering U inside that affine space okay and then you see to show psi is continuous, it

is enough to show psi inverse of a closed subset is equal to a closed subset okay alright so psi

inverse of a closed subset of here this is a closed subset of k and is a closed subset of U, this

is what I will have to show alright.

But then what is the close? You know the zariski topology on k which is A1, the zariski

topology is just the compliment finite topology namely the only closed set of finitely many

points so to, so psi inverse of a closed set is psi inverse of finitely many points and to show

that that is and psi inverse behaves well with respect to unions psi inverse of a union of sets is

the union of psi inverse of those sets, psi inverse behave well with respect to the operation of

taking unions.

So to show that psi inverse of a finite set of points is closed it is enough to show that psi

inverse of a single point is closed okay so enough to show psi inverse of a point lambda in k

is a closed set, a closed subset of U it is what I will have to show okay so but you see, but



then given x in u there exists gx hx with x belonging to D of hx and psi is equal to gx by hx

okay so what this will tell you is that you know it will tell you that, so in a neighborhood of x

contained in D hx, this is the definition, local definition, alright.

But  then psi  inverse of lambda intersection  this  neighborhood is  just  gx mod hx inverse

lambda in intersection this neighborhood and this is just equal to Z of, so gx mod hx has to be

lambda so gx has to be lambda hx so gx minus lambda hx has to be 0 so it translates to Z of

gx  minus  lambda  hx  intersection  this  neighborhood  which  is  of  course  closed  in  this

neighborhood and you are done.

Because you know, to check that a subset of a topological space is closed it is enough to

check it on an open cover okay so what I have done is I have for every neighborhood, every

point I have shown that psi inverse lambda intersection that neighborhood is a closed subset

in that neighborhood okay and if I vary x I get an open cover and for each of the sets in the

open cover I verified that the inverse image intersected with that set of open cover is a closed

subset okay.
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So this proves the lemma, now let me prove another lemma, which is the lemma that I want

to apply there so of course you know I am here I am looking at regular function on either on a

affine variety or quasi-affine variety mind you okay so here is lemma 2, in fact yeah if two

regular functions agree on a non-empty open subset then they are equal, if you have two

regular function they are equal or non-empty open subset then they are equal everywhere



proof is two lines, proof is trivial, two functions agree on a non-empty open subset means the

difference function is zero on a non-empty open subset.

But any non-empty open subset is dense okay for the zariski topology, so you have function

that is, you have a condense function that is zero on a dense open set so it has to be zero

everywhere so it is obvious, so proof is any non-empty open subset is dense and it says and a

function which is zero on a dense, continuous function which is zero on a dense open subset

has to be zero everywhere simple topology.

So if you apply these two lemma I mean I need this lemma now you look at now you look at

this equation I have written here, in this equation you know if I calculate if I look at the

product hxi times phi, the product hxi times phi is gxi on D hxi okay but hxi times phi is also

a regular  function so product  of two regular  functions  and gxi  is  also a  regular  function

because you already seen every polynomial is a regular function.

So you are saying the regular function phi times hxi is equal to the regular function gxi on the

non-empty open subset D hxi therefore by this lambda x the same everywhere, therefore for

hxi times phi I can put gxi okay so what I will get is I will get sigma i equal to 1 to m fi gxi

equal to phi and that tells you that phi is actually that polynomial given by the (())(52:29) that

is the polynomial that I wanted okay.

So now I will let me continue, so let me rewrite that sigma i equal to 1 to m fi hxi phi is equal

to phi this is equality as regular functions okay but hxi times phi is the same as gxi because

hxi times phi is equal to gxi on D hxi and therefore on whole affine space because of this

lemma, therefore I can replace hxi times phi as gxi everywhere so what this will tell you is

that it will tell you that phi is actually sigma i equal to 1 to m fi gxi and that is the end of the

proof.  I  have  proved  that  the  regular  function  is  actually  the  function  that  you  get  by

evaluating a polynomial what is that polynomial? g is the polynomial okay, that is the proof.

So you see there is a tricky bit of commutative algebra coming inside the proof okay, so the

moral of the story is there is no difference between the ring of regular functions on affine

space and polynomials in affine space okay. So every regular function on affine space which

is define locally by gluing polynomials,  by gluing quotients of polynomials if you take a

regular function on the whole affine space which have gotten locally by gluing quotients of

polynomials, the resulting regular function is actually a polynomial, in other, what that means

to say is that it is the function that is gotten by evaluation of single polynomial.



And that  this  is  the that  fact  written in  the form of an equation okay so you do not get

anything  new  okay  now  you  can  use  the  same  technique  of  proof  to  prove  the  other

statements okay, all the time you will use this fact that whenever the corresponding space is a

union, is contained in the union of finitely many basic open affines then the corresponding

equations, polynomials that occur in those, that define those basic opens the ideal generated

by that is (())(54:45) that is the key.

And then from that by applying this lemma you can get this, you can get the proof for all the

other cases okay so in the case of, so in all these cases your regular functions agree with the

ring of functions that we defined, the co-ordinate ring of functions that we defined okay so I

will stop here. 


