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Okay so let us continue with our discussion so you know we are at the stage of trying to

understand the meaning of open sets in the Zariski Topology and I told you in the last class

that an open set is always built up of so called basic as a union of basic open subsets and

these basic open subsets are subsets which are given by the locus of non-vanishing of a single

polynomial okay they are called the basic open subsets.
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Now you see there are,  there is a very important  property about open sets in the zariski

topology which is what stating which I ended the last lecture and that was quasi-compactness

okay, so let me begin from there okay. So here is the definition, a topological space is called

quasi-compact if given an open cover, we can always find a finite sub cover okay.

So this is the definition of quasi-compactness, in fact see if you general, if you study general

topology this is the definition of compactness okay in general topology, normally we, this is

the definition we give for compactness of the space, the compactness is if you give me a

collection of open subsets whose union equals the space then from that collection you can



extract a finite sub-collection whose union will also be equal to the whole space, this is what

it means when we say that every open cover you can always find a finite sub cover okay.

And this should happen for any open cover, when I say an of course it means any. So if you

want maybe I will say, I will modify this an to any which is what I mean so what does that

mean, so if you write it in symbols you know that is, if X equal to union of U of alpha where,

or let me write U lambda, lambda in capital lambda where each U lambda inside x is open

then there exists lambda 1 through lambda m finitely many indices from the set lambda such

that x is just the union of these corresponding U lambda.

So X is union U lambda i, i equal to 1 to m and we say that the sub collection U lambda 1

through  U  lambda  m  is  a  finite  sub  cover  of  the  original  cover  which  consists  of  the

collection of all the U lambdas okay now of course each U lambda is an open subset okay,

now this is the usually this is the definition of compactness in a topological space okay this is

the usual definition of compactness but if you have studied topology you will always find that

just  compactness  alone  is  not  a  very  good  property,  usually  you  should  also  have

compactness with hausdorffness.

And the most good type of spaces are spaces which is locally compact hausdorff okay these

are the nice spaces on which you can do (())(06:00) good topology okay. So but in algebraic

geometry we, especially in connection with the zariski topology, we do not use the word

compact okay the reason is, I will tell you the reason later but the more important thing is that

we use the word quasi-compact okay.

And so the first thing that I want you to notice about this definition is that this is a definition

of what a compact topological spaces in general but in the zariski topology whenever you are

in algebraic geometry you always use only the word quasi-compact,  do not use the word

compact okay and of course there should, the technical reason for that is that compactness

transfers something else and even there this something else is not called compactness it is

given a different name it is called properness or completeness okay.

So the word compact  itself  is  kind of not very suitable  for algebraic  geometry okay and

another, so you know you must remember that  this  quasi is especially  in the case of the

Zariski Topology. Now what I want to tell you is that if you now take k to be an algebraically

closed field and you take affine space over k and you look at the Zariski topology then the

topology itself is quasi compact.



I mean the zariski topology is quasi-compact for free, it is God given so it is nothing special

okay but you can remember that when we study general topology, compactness is a very

special thing okay so you know in Euclidian space a subset is compact if and only if it is

closed and bounded okay so if you take subset of Euclidian space which does not have a

boundary point then it cannot be compact, if it is not closed then it cannot be compact so

compactness means so many things when we study the Euclidian topology okay that is Rn

okay n dimensional real space with the usual topology.

But as far as Zariski Topology is concerned this compactness in the sense of every open cover

having a finite sub cover that comes for free okay so that is why we reserve the word quasi-

compact for that so this is the last statement I made last time so I should say if you want

proposition the zariski topology is quasi-compact okay, it is quasi-compact, so let me write it

okay.

Now why is this happening so the reason is actually it is because of the noetherianness okay,

it is actually because of the noetherianness which I will explain as follows so what I am going

to do is first is I am going to say that this follows this the proof of the proposition follows

from a couple of lemmas okay.

So here is, so let me write that the proof follows from the following the next two lemmas

okay, so the first one so here is the lemma and the lemma is any noetherian topological space

is quasi-compact okay this is the first thing which says that you take a topological that is

noetherian then automatically it is quasi compact alright and in the zariski topology is you

know is noetherian in this sense that if you take any affine variety of all that matter you take

any closed subset, any algebraic set in affine space then you know that the, it can be broken

down, it has noetherian decomposition and affine space is of course noetherian okay.

Affine  space,  if  you  take  affine  n  space  over  k  okay  which  is  just  Kn with  the  zariski

topology, Kn algebraically closed field okay then you know the affine space is noetherian

topological  space  for  the  zariski  topology  that  is  just,  because  that  just  translates  to  the

noetherianness of the ring of functions of affine space which is the noetherianness of the

polynomial ring in n variables which you know is true because of Hilbert’s Basis Theory

okay.
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So I am saying that the quasi compactness just is a result of the noetherian property so how

does one prove this? The proof is pretty easy, a proof is well what do I have to show, I will

have to show I have a topological space which is noetherian then I have to show it is quasi-

compact, so I assume that the topological space is called X, I assume that U lambda is an

open cover for X, I have to cook up for U a finite sub cover I have to find finitely many

indices lambdas such that the corresponding U lambdas, finitely U lambdas their unions is

also equal to X okay that is what I have to do.

So what I will do is, so let U lambda, small lambda and capital lambda be an open cover for

X, that is X is union over lambda U lambda okay I will have to show that there is a finite sub

cover from this collection for X okay, so what do I do? I do the following thing I use, I try to

somehow make use of the hypothesis, my hypothesis is that it is noetherian topological space

now what is the definition of noetherian topological space is if you recall, there are several

definitions, equivalent definitions.

One definition is perhaps the basic definition or the usual definition is that there is DCC for

closed sets that is if you have a sequence of closed subsets one becoming smaller and smaller

that is every next one contain the previous one then this sequence has to at some point it has

to stabilize, that means if it is a strict sequence then it has to stop and if you do not demand its

a strict sequence then all the terms in the sequence becomes the same beyond a certain finite

stage okay.



This is the DCC that is the descending chain condition for closed sets okay and you know

when you put this condition for affine space you know affine space in affine space closed sets

correspond  to  radical  ideals  in  the  polynomial  ring  and  therefore  the  descending  chain

condition  for  closed  sets  will  correspond  to  the  ascending  chain  condition  for  the

corresponding ideals in the polynomial ring which is true because the polynomial  ring is

noetherian by Hilbert's Basis Theorem and this is what gives you the fact that affine space is

with the zariski topology is a noetherian topological space.

So that is one definition that there is DCC for closed sets, there are other definitions, the other

definitions is that since open sets are the compliments of closed sets okay you can say that

there is ACC for open sets okay that is one equivalent definition and then there is another

definition of, there is yet another equivalent definition that is given any non-empty collection

of closed sets, there is always a minimal element with respect to inclusion.

This is one more definition, equivalent definition of noetherianess of the topological space

which in the case of n space actually translates to the polynomial ring having the property

that  you give me any you know if  you give me a collection  of  ideals  there is  always a

maximal element if you give me a non-empty collection of ideals there is always a maximal

element that is for example the ring theoretic definitions of one of the equivalent definition of

noetherian ring okay.

And then there is yet another, yeah so probably I use, I will try to use that so I will try to use

the fact that in this since the topological space is noetherian if you give me a non-empty

collection of open sets there is always a maximal element, so what I will do is so I will have

to apply to a collection,  what is the collection? I will take the collection of consisting of

unions, consisting of finitely many members from here okay.

I will take all finite subsets of lambda capital lambda, I will take the corresponding unions

and take that collection okay, that is a collection of non-empty open sets and that should have

a  maximal  element  and my claim is  that  maximal  element  which  will  be a  finite  union

anyway by definition will be all of X and then I am done okay.

So what I am going to do is put script S to be set of all U lambda 1 union U lambda n such

that lambda 1 through lambda m or elements of lambda and m is an integer, m greater than

(())(16:41) take this collection, what I am doing is I am just taking finite unions from this

direction okay and I am putting all these thing together and hitting this family of subsets then



this of course this family of subsets is non-empty okay because of course my X is a non-

empty topological space and there is at least one open set and that one open set will occur

here okay.

This m could be 1, small m could be 1 in which case even the single terms are there okay.

Now since X is noetherian S has a maximal element okay, let that maximal element be well U

lambda 1 union let me call it, let me give some special names lambda 1 prime to U lambda L

prime where lambda 1 prime through lambda L prime are all elements of lambda okay.

So there is some finite collection of lambdas which I want to call lambda 1 prime through

lambda L prime and the corresponding open sets in there that union, that union that finite

union is a member in this collection and that is the maximal element now take any U lambda

okay then you see U lambda 1 prime union U lambda L prime union if I put together is U,

this U lambda also that will contain this element U this maximal element lambda 1 prime

union U lambda L prime okay this is obvious because I have just added, I have taken union to

bigger set with another set.

So this is contained in this but mind you this is in script S because this is also a finite union

okay but this is supposed to be maximal so what it will tell you is that this is equal what is the

property of maximal element the property of maximal element is that if it is, if there is an

element bigger than that then it has to be equal to that okay. So this element is bigger than

that so it is to be equal to that.

So this gives that U lambda is actually contained in U lambda 1 union U lambda prime 1 to

lambda prime L. See if this is equal to this then this extra set I have taken union with has to

be already contained in this only then I will get equal to okay. So but this U lambda I took

was arbitrary, the small lambda subscript I took was arbitrary so what this tells you this is true

for all small lambda and capital lambda.

So this tells you that X which is a union of all the U lambdas because all these U lambdas are

a cover for X that also contained in this U lambda 1 prime union U lambda prime L which is

of course contained in X okay and this will tell you that X is actually this maximal element

okay and I am done that is the end of the proof. I have proved that there is a finite sub cover

okay.



So this is how I get very easily that noetherian topological space is always quasi-compact

okay. Now I  will  give you another  lemma,  here is  another  lemma and what  this  lemma

actually tells you is that the property of a space being noetherian is a hereditary property

namely if a topological space is noetherian then any subset of that topological space given the

induce topology also automatically becomes noetherian okay.

So let me write that down if x is a topological space is noetherian topological space and Y in

X is a subset okay then Y is noetherian for the induced topology okay. Any soft space over

noetherian topological space is also noetherian that is a property of topological space being

noetherian is a hereditary property okay. Now how does one show this? So that is the proof of

that is also but easy.
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So proof, so you know I will have to show that Y, so Y is subset of X I have to show that I

know that capital X is noetherian I have to show that capital Y is noetherian so what I will

have to do is for Y I will have to verify DCC for closed sets okay. So what do I do is I take a

descending chain of closed sets in Y okay, let T1 containing T2 and so on be descending

chain of closed sets in Y, okay take a descending chain of closed sets in Y.

Now what you do is you take closures of these sets in the bigger space X okay then their

closures, then taking closures in X gives the descending chain T1 bar containing T2 bar and

so on, okay so I am just I have a, I am taking closure in the bigger space X okay, so what you

must understand is  that  you see T1 closure is the closure of T1 in capital  X, T2 closure

similarly is the closure of T2 and capital X and see T1 closure contains T1 which contains T2



so T1 closure is a closed set in capital X which contains T2 and therefore it has to contain T2

closure because T2 closure is the smallest closed subset of capital X which contains T2 that is

how this descending chain gives rise to this descending chain okay.

But then what you know about capital X you know about capital X that it is noetherian and

therefore this descending chain has to stabilize at some point, so since capital X is noetherian

there exists an i, i not such that Ti is equal to Ti plus one for all i greater than or equal to i not

I have this, this is a simply the definition of the noetherian property that you have if you have

a descending chain then it has to stabilize. 

Of course you know if I am assuming that the original chain is not a strict chain if I had

assumed it is a strict chain then what I will, then I will have to show that the strict chain is

only it terminates, it is only finite okay but I am not assuming that, what I am assuming is

that I am not assuming that these containments are all strict okay so these containment also

need not be strict okay and then I am just trying to use the noetherian condition to say that

stabilizes at some point, now what I want to tell you is that this holds with the bars and it also

hold without the bars okay.

Why is that? So because you see if you calculate if you calculate Ti plus 1, Ti plus 1 is

actually Ti plus 1 bar intersection with Y okay so you take a closed subset of Y okay it is not

closed in the bigger space X then you take its closure in X and then you intersect it with Y

you will get back the closed subset Y because when you take closure in X you are adding

limits, you are adding the boundary even in X which is in the bigger space.

And then if you intersect it back with Y you are only looking at those boundary points in X

which are already in Y but then the original set is closed therefore it contains all its boundary

points in which are already lying inside the sub space therefore Ti plus 1 is Ti plus 1 bar

intersection but then Ti plus 1 bar is actually Ti bar intersection Y and that is equal to Ti, this

is true for all i greater than equal to i not and I am done.

So what I proved is that the fact that the T bars descending chain of T bars stabilizes implies

that the descending chain T stabilizes okay, so that is the end of the proof of this lemma

which  says  that  noetherianness  is  a  hereditary  property  okay. Now apply  both  of  these

lemmas to the zariski topology okay, first of all notice that if I take affine space any An is a

noetherian topological space that we have already seen, that is just as I told you reflection of

the fact that the polynomial ring in n variables is a noetherian ring.



So any affine space is a noetherian topological space, now since it is a noetherian topological

space any subset of An given the induced topology is also a noetherian topological space

because of this lemma, the second lemma okay and if you now apply the first lemma that

subset given the induced topology is noetherian implies that subset is quasi-compact.

So what this altogether will tell you is that, it will give you this proposition that you give me

any subset of affine space, any subset of affine space it will be quasi-compact in the induced

topology okay and that  is  what is  meant  by the statement,  the zariski  topology is  quasi-

compact okay.

So you see for any subset of affine space quasi-compactness is just comes for free okay it is

nothing, it is not, it does not have a speciality that compactness, the usual compactness as per

Euclidean Spaces okay and that is the reason in a way that you know it calling this kind of

compactness, the compactness here is quasi-compactness kind of justified okay.

So  when  you  say  quasi  it  means  that  this  something  is  left  out  okay  and  in  this  case

something serious is left out okay, so how serious that is a something that you will understand

when we define what is meant by completeness or properness which is a correct analogue of

compactness  in  algebraic  geometry  okay  but  for  the  movement  that  is  the  proof  of  this

statement okay.

So now fine so this is, so this kind of ends the discussion about open sets in zariski topology,

so let me summarize, the summary is that any open set in the zariski topology is a finite union

of basic open sets okay and these basic open sets are very special in the fact that these basic

open sets are actually themselves affine varieties okay, they are isomorphic affine varieties

okay.

And  you  also  have  this  property  that  the  open  set  in  zariski  topology  have  the  quasi-

compactness property namely you give me any subset of affine space, if it can be covered by

a collection of open sets then I can extract from that finite sub cover okay, so this is about the

open sets in the zariski topology okay. Now what I am going to do is I am going to shift,

focus to something else which also was there in this discussion and that is trying to define the

so called functions on an open set of an affine variety okay so you know.

So the next part is defining functions on open sets okay, so of course when I say functions I

put it in ports because what kind of functions we want is something that we have to decide



upon and so you know let me recall, so what we did was if you take affine space and you take

X inside affine space of course small k is an algebraically closed field and this is the affine n

space of the zariski topology.

And I am taking X closed sub variety there okay that is an irreducible closed subset so this is

irreducible closed and if you remember we defined the ring of functions on X so called affine

co-ordinate ring to be nothing but the affine co-ordinate ring of the bigger space namely the

set of polynomials in n variables modulo the ideal of X okay which is a prime ideal.

So you know this is an integral domain and it is a finitely generated k-algebra and then I told

you that in this way we actually have very deep correspondence which can be made sense of

as bijective correspondence or even as an equivalence of categories okay which goes on one

side  from affine  varieties  to  the  other  side  being finitely  generated  k-algebras  which are

integral domain okay.

So but the point is for every irreducible closed subset this is the ring of functions we defined

and this is a very legitimate definition because see what you are doing is the ring of functions

on the affine space is defined to be just the polynomial ring in that many variables because

every polynomial in n variables can be thought of as a function on the affine space because

you can evaluate at each point of the affine space, it gives you as scalar, okay.

So these polynomials in n variables are certainly bona fide algebraic functions on the affine

space and then when you want the affine, when you want the functions on a closed subset, an

irreducible closed subset then you have to go modulo the ideal of that closed subset and that

is because two functions on the full space on the full affine space, two polynomials on the full

affine space will define the same function on the subset, closed subset x if and only if their

difference is zero on that closed subset and that is the same as saying that the difference lies

in this ideal and so you have to identify functions modulo the ideal and that is the reason why

you are taking this quotient and therefore you know this definition absolutely fine.

This definition is intuitively correct and it is also technically correct okay, so this is fine so

long as  you are  trying  to  define  the  algebraic  functions  on an irreducible  closed  subset,

remember the question is what are you going to do if you want to define algebraic functions

on an open subsets okay and more seriously in the spirit of analysis how you are going to

define a function to be algebraic at a point okay see what is it that we do normally in analysis

when we want to define continuity you can define continuity at a point okay.



If you want to define differentiability you can define differentiability at a point similarly if

you want  to define  analyticity  or holomorphicity  you can define at  a  point.  So all  these

properties you can always define at a point alright whether a function has that property at that

point or not okay so in the same way you can also ask an algebraic geometry, give me a

function on some subset okay.
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When will you define it to be a good function an algebraic function at a point okay, so this is

the, in the spirit of analysis how do you do this okay so the clue is, so basically we want to

study functions on open sets okay so you know, so the question is if you, so here is a question

U inside An open subset okay or you know I will, let me say that after the statement so take

an open subset of An and the question is what is A of U, what is this?

How do you define functions of U? Alright and then more generally I can do the following

thing, take x inside An to be an affine variety so this is an irreducibly closed subset so this s

an affine variety in An it is closed sub-variety of An and take U an open subset here okay of

course in all these cases I am assuming U is non-empty because nobody want to work with

empty set.

Take a non-empty open subset not an affine space but take a non-empty open subset of an

affine variety and the question is how you are going to define the good functions on U? How

you are going to do this? How to define functions? So the key to this is, the key to this is the

following is this is trying to look at try to define what are the functions on the whole open set

but now I can make it point wise and say give me a point of an open set.



How do you define a function define in a neighbourhood of the point to be a good function

okay, so given so here is a point wise version, the point wise version is given small x in U

which is an open subset of X which is an irreducible closed sub variety An okay, when do

you say that a function v, let me call this is as f from v to k where v is an open containing x is

good.

By good I mean algebraic function okay, a bona fide function, a function that comes in the

algebraic  sense okay how do you define function to  be algebraic  at  a  point okay, so the

answer to all this is that, first of all I cannot keep always saying good good all the time and so

we need a notation for that, we need a terminology for that and the terminology is regular so

the our, we define good functions to be the so called regular functions, okay.

We define the good functions to be regular functions, so my aim is give me here as a, give me

an open, give me a point on an open subset in an open subset of a closed sub variety and give

me a function defined in the neighbourhood of that point okay, when do I say that it is regular

at that point okay that is my question and how do you answer this question? The answer to

this question is already there we only have to dig it out, it is already there in the discussion

that we have had so far, in fact see if you go back we already proved that any open set is a

union of affine open subsets okay basic affine open subsets, okay.

And therefore you can say that give me a point x and an open neighbourhood to the point this

open neighbourhood can be is a union of basic affine opens and therefore one of the basic

affine opens will contain this point and therefore you can restrict the function to that basic

affine open and then I have to define what is a regular function what is a good function on a

basic affine open but that I have already done, I have already defined what is meant by a

regular function, a good function on a basic affine open set namely it is just localization it is

the ambient ring of function localized at that that function, okay.

So recall if f is polynomial then A of D of f is defined to be equal to the polynomial ring

localized at f okay this is our definition okay and what is D of f, D of f is supposed to be, it is

the compliment, it is An affine space minus the zero set of f, it is a open set given by the

compliment of the hyper surface defined by f of course you know if f is irreducible then you

really get a hyper surface but if f is not irreducible then Z of f will be a union of hyper

surfaces.



Those that correspond to the irreducible factors of f okay and we have already defined A of D

of f to be this of this form okay and just so that I do not mess up notation let me do something

here, let me call this is as h okay because I have already used f there let me call this as h, put

h everywhere.

And now you know what I am going to do I am going to say that give me a point give me

okay, so I need to still make one more statement this is for an affine open set in the, it is a

basic affine open subset in the whole of affine space okay but I can also look at the basic of

affine open set intersected with a closed subset okay and it is not very difficult to see what the

ring of functions on that will be.
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That is something that can be written out so let me go to this side and do that, so it is again

given by the appropriate localization so you know, see if you take, so here is my An and here

is my locus D h okay and the as far as the co-ordinate, at the co-ordinate ring level what

happens is that if I apply this A, this A function to this side what I will get is I will get A of

An which is k of the polynomial ring in n variables and here I will get A of D of h which is

the localization of this A of x1 through xn localized at h, this is what I will get.

And of course you know this inclusion as an open subset shows up here as a the localization

map, it is a localization map, this is a natural map from a ring to its localization okay and well

now if I take a subset x irreducible closed, if I take an irreducible closed subset x then I can

also look at D h intersection X which is inside this.



So you see this is closed, this is open and this is open okay this is how the diagram looks, this

is closed inside this because this is the, this is intersection of a closed subset there and this is

open inside this therefore this is an open inside this okay by the definition of the induced

topology okay so the point is sometimes one can also write this as Dx h, one can write it like

this if you want it is and this D h will be D h in An.

So this is D An k h that is what this is okay and you know what you are going to get here

what I am going to get here is, see this irreducible closed subset this corresponds to this

quotient going to the affine co-ordinate ring, the ring of good functions, regular functions, the

ring of functions on x which is just the polynomial ring divided by the ideal of x okay and

you know what this is going to be this is just going to be the localization of this ring and the

image of h here which is h bar.

So this is going to be simply k x1 xn modulo I of x localized at h bar, where h bar is simply

the image of h here, h is here it goes to the element h bar okay and if you actually look at it

this way it is a quotient by I and this way also it is a quotient by I this is a quotient by the I x

localized at h bar.

So this is mod I x and this one is mod I x localized at h bar this is localization of an ideal at

an element, so these two are quotients that corresponds to these two closed subsets okay and

these two are localizations,  this is  also a localization,  they correspond to these two open

inclusions this diagram commutes, this diagram commutes that means this followed by this is

this followed by this, this followed by this is this followed by this okay.

So this is what happens when you apply the A functor to this side so what I want to tell you is

that you already know what are the good functions on an affine open subset intersected with a

closed subset okay so you already have definitions for what are good functions in affine space

namely  the  polynomial  ring,  what  are  the  good functions  on  a  irreducible  closed  subset

namely the polynomial ring modulo the ideal of the closed subset is a prime ideal.

What are the good functions on a basic open set in affine space, it is just localization at that

element which defines the basic open set and what are the good functions on the this, the

open set that you get by intersecting a basic open set in affine space with a closed irreducible

closed subset which is simply given by the localization of that corresponding I mean it is just

given by either the correct localization or the quotient in whichever way you want to set okay.



So I am saying that we already have the value of this A for four kinds of objects, we have it

for affine space, for affine space we know what are the good functions, for x we know what

are the good functions for an irreducible closed subset, we know what are the good functions

on a basic open subset of the affine space and then we also know what are the good functions

on the intersection of the basic open subset of affine space with an irreducible closed subset,

now from these four we have to cook up the correct definition of a regular function okay and

the definition of obvious but the surprise is the following.

With this new definition if you look at, so what you have done is you have defined regular

functions at a point and once you define it at a point, you can define regular functions on any

subsets okay the moment you define it for a point you can define regular functions on any

subsets, so the question is if I start looking at regular function of a whole affine space what

will I get okay will I get back my polynomials or will I get more, the answer is you would not

get any more that is the beautiful thing.

Beautiful thing is on the affine space the regular function will still be only (())(48:33) on any

irreducible  closed  subset,  the  regular  functions  will  still  only be  this  quotients  okay you

would not get anything more and this tells you that your definition of regular functions is

correct. That your definition of regular function gives you the right thing when you for these

known objects okay, so I will make that definition now.

Definition let f be a function defined in an open neighbourhood of a point x in an affine

variety okay or a quasi-affine variety okay. A quasi-affine variety is just open subset of an

affine variety. Okay we say f is regular at the point x if there exists polynomials f, g with g

not equal to 0 in an open neighbourhood of x and such that f is equal to I am sorry I think I

should use not f and g, I should use g and h which with h not equal to 0 such that f is equal to

g mod h in that open neighbourhood of x okay.

So look at this definition this definition is, this is what tells you when a function defined in an

open neighbourhood of a point is a good function it is a regular function at that point it is

very simple all you are saying is that to say that the function, see the function is when I say a

function define a neighbourhood of a point, it is a function of the values in k which is the

field, scalar valued function okay.

And all I am saying is that you can deem the function to be a regular at a point if the function

in a neighbourhood of the point is a quotient of two polynomials that is all, you can, you are



able  to  find  two polynomials  g  and h such that  the  function  you get  by  evaluating  this

quotient of polynomials is the same as your original function f in a neighbourhood of the

point and that neighbourhood of the point obviously should be in the locus where h does not

vanish otherwise it cannot evaluate if h vanishes at a point then I cannot evaluate g by h at a

point because I will be dividing by 0 okay.

So it is a very very simple definition, it is a lot to write down but the idea is very simple you

are saying a set theoretic function is good, is regular at a point if it can be written if it is the

same function as you get when you evaluate a quotient of polynomials in a neighbourhood of

that point okay that is all and what you must understand is that if your point is lying in a basic

open set then you know that already the functions, the good functions you are defined on a

basic open set are just localizations, functions here.

And what are the functions here, they are of the form g by h, in fact they are of the form g by

h power m where you know you also allow a power of you do not only invert h but you also

invert  powers  of h  because inverting  h automatically  will  also invert  powers of  h,  so in

general element here will be look in the form, will be of the form g by h power m okay.

But any case it is one polynomial divided by another polynomial with the bottom polynomial

not vanishing that is how the functions look like and you are saying that that is the kind of

inspiration to define a general function to be regular and why is that inspiration correct? It is

correct because every open set is always broken down into a finite union of basic open sets

like this in fact if you take any open subset in An it is a union of finitely many D h for finitely

many h.

And if you take any open subset of x, a closed sub variety that will also be a finite union of

such D h’s intersected with x, all this just follows because of the fact of that you know that

these are all noetherian topological spaces and therefore the subsets are all quasi-compact so

any open cover that means a finite sub cover okay, it just follows from that right.

Now I will have to justify that after with this new definition of what a regular function is I

will have to show which is amazing thing, the amazing thing is if you take affine space and

look at all the regular functions in affine space, so I am looking at all functions on affine

space that locally look like quotients of polynomials okay that looks a little more complicated

than just looking at all the polynomials in n variables.



But the fact is they are all the same that is the surprise and that is what I am going to prove

okay I am just going to show that this definition is correct if you take affine space or if you

take a closed subset, irreducible closed subset of affine space okay that kind of tells you that

this  definition is in the right direction okay. So I will  stop here and continue in the next

lecture.  


