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Let me continue with this discussion that I entered with last time what I want to say is when you

take the dimension of X to be r, okay so you are taking X to be an irreducible closed sub-variety

I mean irreducible closed subset of An an affine variety in An. So it is a common to use a word

sub-variety when you look at a variety inside another variety so since X is an irreducible closed

subset it is a variety and An you already know is a variety so we say that X is a sub-variety

closed sub-variety of An, okay.

And the point is that if you start with if you take any chain strictly increasing or decreasing chain

of irreducible closed subsets of X and if you take if you start with indexing it with 0 and go on

up to m and if you take the maximum supremum of all those m’s that is going to give you the

dimension of X, okay and what you must understand is if that dimension of X is r and here by

dimension of X I mean the topological dimension of X this is topological dimension of X, okay



that  is  how a  topological  dimension  is  defined,  if  that  is  r  then  you know I  will  that  will

correspond to we have strictly increasing chain that is it will start with 0 and it will go on up to r.
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So you know if dimension of X is r we have a maximal chain Z not properly contained in Z1 and

so on Zm Zr, okay and what you should understand is that Z not has to be a point, okay because

if Z not is not a point and it is maximal chain I can get a contradiction by making this chain

bigger by putting a singleton point in Z not, okay and that will contradict the maximality of the

chain so this is the maximal chain Z not has to be point and Zr has to be X, okay Zr has to be X.

So again for the same reason if Zr is not X then I can add X here and I will get a bigger chain,

okay. So corresponding to this if you look at it if you look at the corresponding diagram in the

polynomial ring namely the ring of functions on affine space what is happening is a following

you have in KX1 etcetera Xn you have I of X so this from X to this point of X that translates to

an increasing sequence I of Zr minus 1 properly contained in I of Zr minus 2 and so on and it

goes on up to I of Z not this is how it goes on and mind you since Z not is a point I of Z not is a

maximal ideal because points correspond to maximal ideals, okay.

And this smaller the smaller the irreducible closed subset the larger the ideal, okay and therefore

this point should correspond to a maximal ideal so this is a maximal ideal in fact this maximal

ideal you know it is generated by X1 minus lambda 1 X2 minus lambda 2 and so on where

lambda I are the coordinates of this point you know that already, okay. And then what is the what



is the height of IX if height the height of IX is going to be you start with IX and then you get a

strictly decreasing chain of prime ideals and look and the height is supposed to be the one that

gives you a chain of maximal chain, okay.

And so in fact what will happen is that this will be you know p height of IX properly contained

in p height of IX minus 1 properly contained in and so on and the smallest one will be 0, okay

because 0 is a prime ideal so the smallest one has to be 0 and the fact is that since this is a

maximal chain, okay and this is also a maximal chain you put these two together that will be the

maximal chain that you can get for the polynomial ring and the whole thing will add up to the

Krull dimension of the polynomial ring. 

So this whole thing will be this will be a maximal chain in k X1 etcetera Xn so as length n which

is the Krull dimension, the Krull dimension you know of a ring is supremum of the heights of its

prime  ideals,  okay and of  course  the  height  of  the  prime ideal  because  the  height  is  being

measured from the 0 prime ideal the ring here is an integral so 0 is a prime ideal so you are

measuring you are starting from the prime ideal and you are going down all the way to 0.

So if  the ideal  becomes bigger the height  becomes bigger so you can imagine  the height is

maximum for the maximal ideals, okay. So this is the maximal possible height and that is the

Krull dimension of this ring and that is equal to n, okay and therefore but you see if this is r this

part is r then this has to be n minus 1 so this is what essentially tells you is that this part is

corresponds to the fact that dimension topological dimension of X is r this is the part that tells

you that the height of IX is n minus r and this whole thing is n and this n minus r with r adding

up to n is what this formula tells where r is the ring of polynomials in n variables and what is r

mod p, p is of course the ideal of X here, and what is the r mod p? r mod p is the ideal I mean is a

ring of functions on X, okay.

So what you must understand is that this IX this part this is also equal to the so what I want to

say  so  I  wanted  to  say  that  this  is  also  equal  to  the  dimension  the  Krull  dimension of  the

functions on X, okay so this is exactly what is happening in this case, okay. 
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So now what I want to say is I want to also look at some special cases of sub varieties, okay and

but let me make one more statement here you see you know Ax is what, this Ax is actually the

polynomial ring modulo the ideal of X, okay.

So if you give me for example if you take this maximal chain and you go mod if you go mod IX

if you take the image of this this whole chain in the quotient, okay this is the maximal chain in

the polynomial ring and this is the quotient of the polynomial ring, okay if you take the image of

this chain there you will get this, this will become 0 IX will become 0 in when you quotient out

by a X and this will still be your maximal ideal in the quotient because you know given a ring

and its  quotient  the maximal  ideals  in  the quotient  correspond to the maximal  ideals  in  the

original ring which contained the kernel.

So this maximal ideal I Z not in the quotient will also correspond to a maximal ideal and you will

l get a from that ideal you will go to 0, okay but what is that that is precisely the height of a

maximal ideal in the quotient ring but that has to be the Krull dimension of the quotient ring and

that is exactly r because this is length is r that is what is being reflected here this is equivalent

that is what I want you to understand, okay. If you read this whole chain mod IX in the quotient

ring this will become 0 and you will get from 0 to this maximal ideal which is gotten by dividing

each of these by IX that will give you a maximal chain in the quotient ring so its length has to be



the Krull dimension of the quotient ring and therefore this is also equal to r because this length is

r, okay so I want you to understand this.

Okay, now so let me come back to what I was looking at there are special sub-varieties that we

are  interested  in  in  some  sense  in  algebraic  geometry  there  are  many  theorems  there  are

questions that are proved by just looking at the case when you are looking at the locus of the

single equation the locus defined by a single equation namely you look at the 0’s of the single

equation,  okay. So and this  is  called  the  hyper  surface case so many theorems in  algebraic

geometry can be proved by first looking at what happens to hyper surfaces. 

So the point is that you know from the point of view of commutative algebra why this is nice is

because this corresponds to studying one equation at a time because hyper surfaces supposed to

be the locus  given by a  single equation,  right?  So that  is  the importance  of studying hyper

surfaces, right? So but I will give a different definition of a hyper surface, so what I will say is

hyper surface is let us give a definition which comes from dimension, okay. So I will define a

hyper surface to be an X like this whole dimension is one less than the dimension of the big

space, okay.

That means it has co-dimension 1 in the big space, so co-dimension of a subspace in a bigger

topological space is just the difference of the dimension of the bigger topological space minus

and the dimension of the smaller topological space. So hyper surfaces so X is called a hyper

surface if X has co-dimension 1 so X is called a hyper surface if dimension of X is n minus 1,

okay of course when I write dimension of X I mean topological dimension, okay so I am not

going  to  keep  writing  the  subscript  top  you  must  always  remember  that  whenever  I  say

dimension over a topological space it is always topological dimension that is something that you

should not forget, okay.

So and why the word hyper surface is because you know well if you are in one variable then

there is not much because in the one variable case you are looking at A1 and the only close

subsets are finite  subsets of is  a finite  subsets of points  you know that  very well.  So hyper

surface is just a if  you want just a single point,  okay that is what you will  get is not really

anything very interesting.



If you go to more than one variable if you go to two variables then you get a curve, okay if you

go to two variables then essentially you are in a two dimensional space and you are looking at

the 0’s of a one equation the dimension should come you are essentially trying to look at 0’s of

one equation that is what you expect to happen the dimension comes down by 1 so in a two

dimensional space a hyper surface is a one dimensional closed irreducible closed subset and of

course a one dimensional object is always called a curve, so when n is equal to 2 you get a curve

in two space, okay when n equal to 3 you actually get a surface in 3 space, okay and if n is

greater than that you do not you no longer call it a surface you call it the hyper surface so the

word hyper is reserved for n greater than 3, okay.

Of course if n is 3 you call it just a surface, okay if n is 2 then it is a actually a curve in two

space, okay. Now you see there are so again this is another very important thing in algebraic

geometry  you  can  make  a  definition  from the  on  the  geometric  side  you  can  also  make  a

definition on the commutative algebraic side and then the question is the natural question is are

these  two definitions  equivalent.  So  if  I  want  to  define  a  hyper  surface  as  co-dimension  1

irreducible closed subset then that is the definition on the geometric side. On the other hand if

you want to intuitively use the fact that something that has one dimension less than the bigger

space  has  to  be  given  by  a  single  equation  then  that  will  tell  you  that  the  you  know  the

commutative algebraic definition will be you are looking at the 0 locus of a single polynomial,

okay.

So  I  can  give  a  commutative  algebraic  definition,  okay  that  X  is  a  hyper  surface  in  the

commutative algebraic sense if the ideal of X is generated by a single polynomial, okay so you

see now I have two definitions, so this is definition 1 then let me write let me also put it like this

X is called hyper surface in the commutative algebraic sense if ideal of X is equal is generated by

single polynomial f for f in the polynomial ring, okay. 

So these are two ways of defining what a hyper surface should be, this says hyper surface is

given by only one equation the fact that you are using one equation is says that you are using

only one polynomial so it is commutative algebra and the topological are geometric idea of a

hyper surface is that you are cutting it is a dimension based definition you are cutting by 1, okay

and you can ask whether these two are the same the answer is yes and that the proof of that



involves significant amount of commutative algebra and I will tell you what the results are that

leads to the proof of that.
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So you see suppose X is a geometric hyper surface suppose X is geometric hyper surface so

mind it geometric hyper surface means is a hyper surface in a geometric sense according to this

definition,  okay. So  again  let  me  reiterate  this  is  what  I  mean  by  geometric  hyper  surface

something that has dimension one less than the dimension of the ambient space, right? I would

like to show that X is commutative algebraically also a hyper surface namely that X is defined

only by one equation, why is that true because of the following thing, see I of X is prime of

course because X is irreducible so I of X has to be prime we are only worried about varieties,

okay.

Then you also know that height we have just now seen the height of I of X plus the dimension of

X is n, right? The height of I of X plus the dimension of X is n which is the dimension of the

Krull dimension of the whole polynomial ring which is same as dimension of the affine space,

okay. So let us write that height IX plus dimension of X is equal to n we know this, alright? Of

course we know it means because of this theorem here this formula I have written down is a

theorem if  r is a finitely generated k algebra namely a quotient  of the polynomial  ring in n

variables over a field and suppose its quotient by an ideal is a prime ideal so that the quotient is

actually an integral domain then the Krull dimension of the quotient plus the height of the prime



ideal by which you gone modulo to get the quotient should add up to the Krull dimension of the

ring, okay that is our theorem, okay that is what is being used here.

Now what is given is since is geometric hyper surface dimension of X is n minus 1 so dimension

of X is topological dimension of X is n minus 1 we will tell you that height of IX is 1, okay. Now

this is a theorem in commutative algebra, okay so theorem a Noetherian integral domain is a

unique factorization domain it is written UFD for short or some time it is also written as factorial

ring in some books, okay if and only if every prime ideal of height 1 is principal, okay this is the

theorem from commutative algebra, okay.

So what it says is you start with a ring commutative ring with 1 which is Noetherian, okay which

means every ideal is finitely generated or the ideals satisfy ACC ascending chain condition and

assume that it is also an integral domain that means it has no 0 devices it is same as saying the 0

ideal is prime then to conclude that it is a UFD unique factorization domain, okay namely that

the there is a notion of irreducible elements prime elements and any element can be uniquely

factored  into  a  finite  product  of  irreducible  elements  to  certain  finite  powers  and  this

factorization is unique up to permutation of the factor and up to units, okay.

So an example of unique factorization domain is of course the polynomial  ring because you

know the polynomial  can always be factored,  okay. This  so the condition  that  a  Noetherian

integral domain is a UFD is equivalent to every prime ideal of height 1 being principle that

means you take a prime ideal if it  has height 1 then it  has to be generated only by a single

element, okay this is the theorem now if you use this theorem use the fact that this IX is prime

and it is a prime ideal in this polynomial ring the polynomial ring is a UFD and there is a prime

ideal it has height so 1 its principle. That means the ideal is generated by a single element, okay

and that element has to be irreducible, mind you because if that element breaks up as f1, f2 then

IX the X will breakup as 0 of f1 union 0 of f2 it will so it will not be irreducible.

So the fact that X is irreducible which is equivalent to the fact that IX is prime tells you that this

f which generates IX has to be an irreducible element, okay. So put all this together so this will

tell you that I of X is equal to f where f is an irreducible polynomial and of course non-constant it

has to be non-constant because you know if it is constant you know if it is a non-zero constant

then it is a unit the ideal generated by that will be the whole ring, okay it cannot and the whole



ring is not a prime ideal and if it is the 0 constant polynomial then if you take the 0 prime ideal

its height is 0 because there is nothing smaller than that.

So f has to be a necessarily an irreducible polynomial it has to be non-constant polynomial. So

what this tells you, this tells you that X is commutative algebraically a hyper surface, okay. So

what this tells  you is that if  you require a close variety to be a hyper surface geometrically

namely it has to have one dimensionless than the ambient space the ambient affine space then it

is then it means that it has to be also commutative algebraically a hyper surface namely it has to

be defined only by one equation and that one equation has to be an irreducible non-constant

polynomial, okay.
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Now we can go the other way also, the other way is probably a little easier conversely let X be a

hyper surface in the commutative algebraic sense start with this, so ideal of X is f it is defined by

hyper surface in a commutative algebraic sense means it is defined by a single equation. So ideal

of X is f I will again reiterate that f has to be an irreducible polynomial if f is equal to f1, f2 then

X will become X which is 0 of f will become 0 of f1, f2 which is actually going to be 0 of f1

union 0 of f2 and X irreducible will tell you that this cannot happen one of them has to be the

whole space, that mean it has to be X itself.

So X irreducible will imply that f is irreducible X irreducible as a topological subset you will

imply f is irreducible as a polynomial, okay. Now what I want to prove? I want to prove that X is



geometrically hyper surface that means I have to show that it has height I mean it has dimension

n minus 1 what is dimension of X again we use this formula dimension of X is equal to n minus

height of IX, okay. 

So now we need another deep theorem another deep in the sense rather fundamental theorem it is

called the Krull’s Hauptidealsatz, okay it is called the Krull’s principle ideal theorem, okay so let

me state that theorem Krull’s principle ideal theorem it is also written as Hauptidealsatz, and

what does it say? It says let if an element f in a commutative ring with 1 is neither a 0 device nor

a unit, then every minimal prime ideal containing f has height 1 I just say that the commutative

ring is assume Noetherian is assumed let me put that for safety sake, okay.

So this is another important thing algebraic geometry the fact is that the most sophisticated part

of algebraic geometry is supposed to work over anyway not even over Noetherian rings but at

least when you are doing decent amount geometry you really want to work only with Noetherian

rings because you get Noetherian decomposition for example, okay. So for example you know

the  Noetherian  decomposition  in  affine  space  which  told  you that  any algebraic  set  can  be

decomposed uniquely into a finite union of affine closed sub-varieties which are unique if the

decomposition is not redundant that is no such closed sub-varieties contained in any other in the

decomposition, this comes out of the Noetherian property of the topological space, okay.

And therefore in it is usual that you always work with at least in the first course in algebraic

geometry you always work only with Noetherian rings so it is harmless to assume things are

Noetherian, of course it is a matter of technical expertise to see which of the theorems will still

go through if you remove the Noetherian hypothesis, okay but the point I want is to say is that

look at what this says, see the beauty with commutative algebra is that if you translate it  to

algebraic geometry it actually has a meaning, okay and it is as follows see at least in this case see

you see if so what it says you take a commutative ring with 1 assume it is Noetherian if you want

take an element f, okay assume the element is not a 0 device, okay and assume it is not a unit,

right? 

Then you look at the ideal generated by that single element f, okay and you can talk about the

minimal you can talk about prime ideals which contain that element f there are such in fact any

non-trivial  ideal  in  a  commutative  ring non-zero  commutative  ring  is  always contained in  a



maximal  ideal  any proper  ideal  is  always  contained  in  a  maximal  ideal  this  is  if  you want

consequence of zones lemma, okay but therefore you know if you take the ideal generated by f it

is a proper ideal it is a proper ideal because f is not a unit, alright? And the ideal generated by f

contains a it certainly it is contained in a maximal ideal more generally you can look at prime

ideals also which contain the ideal f ideal generated by f and what the theorem says is that if you

look at any minimal prime smallest amongst this set of primes which contain f the height of such

a prime is 1, okay.

So it is what it says is that you take a minimal prime containing f then between then from that

prime that prime has height 1, okay between that on the smallest possible prime, okay f is caught

there in between these two, okay of course the smallest possible prime will be the 0 ideal if the

ring is in integral domain, okay in which case you are saying that the ideal is generated by f is

caught between the 0 ideal and the smallest prime which contains f each of the smallest primes

which contain f.

So there are two facts that I want to tell you, let us first apply to our situation in our situation our

commutative  ring is  of  course the polynomial  ring in  n variables,  okay and here is  and the

element f is the single non-constant irreducible polynomial, okay. If you take the ideal generated

by f that is already a prime ideal mind you, the ideal generated by f single element is always a

prime ideal in fact the truth is that if you take any unique factorization domain and you take a

irreducible element there that is an element which cannot be factored into smaller elements, okay

into non-trivial factors which we tend to call as smaller elements, okay smaller factors such an

irreducible element if you take the ideal generated by that that will be prime, okay.

So since the polynomial ring is unique factorization domain and since you have started with an

irreducible polynomial which is an irreducible element in a unique factorization domain the ideal

generated by that element will be a prime ideal, so this is certainly a prime ideal. So if you look

at this any minimal prime ideal which contains this it has to be this itself if when you look at the

minimal prime ideal generated by an element f it will be different from f it will be different from

the ideal generated by f only if the ideal generated by f is not a prime ideal, if a ideal generated

by f is a prime ideal then the minimal prime ideal which contains the ideal generated by f is at

the ideal generated by f itself.



So if you apply Krull’s principle ideal theorem what it will tell you is that the height of f is 1 the

height of the ideal generated by f is 1 but the height of the ideal generated by f is the same as

height of IX, so it will tell you so this will tell you that height that dimension of X is actually n

minus  1 which  will  tell  you that  X is  geometrically  a  hyper  surface  it  will  tell  you X is  a

geometric hyper surface, okay. So what you have got is that if you start with a hyper surface in a

commutative algebraic sense you get a hyper surface in geometric sense and we have already

seen the other way we start with the geometric hyper surface then it is a hyper surface in a

commutative algebraic sense so both these definitions are the same this definition is completely

geometric it is gotten by saying that it is one dimensionless its co-dimension one this definition is

commutative algebraic you are saying you are looking at only 0’s of one equation and they are

one and the same, okay this is again I mean this is what you should always appreciate there is

something going on here which has complete translation in this side, okay. 

And of course these two theorems here which come into the picture they are very very important

and at some point if you have not already seen them in a course in commutative algebra you can

you should make it a point to set aside some time for extra reading and if you can when you can

do that try to look at the sketch of a proof of theorems like this but what I want to tell you is that

there is geometric significance, so for example suppose f is not so let me explain more generally

what this statement is saying suppose f is not an irreducible polynomial, okay what does this

statement say it has a geometric meaning what is it it is the following let me write that. 
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Let me try to explain that you see suppose f in the polynomial ring is non-constant and f is equal

to let  us write  f1,  f2 etcetera  fm be its  factorization  unique factorization,  okay with each fi

irreducible.

So this is again the fact that any polynomial can be if it is not irreducible you can break it down

into a product of factors each one of which is irreducible and of course I am writing it like this

but there could be some factors could repeat, okay. So you know let me write it so you know

maybe I should put powers to be very accurate so you know if I will have to put something like n

so n1 f1 power n1 f2 power n2 fm power m sub m, so if I write it like this then you know I mean

that no fi is the same as any other fj, okay and these you know these powers are all uniquely

determine this is just like the fundamental theorem of arithmetic where you say any integer can

be uniquely factored  into product  of prime powers  the primes occurring  are unique and the

powers of each prime that occur are unique and it is the same thing that is happening in the

polynomial ring (())(40:17), okay and that is way it is unique factorization domain.

Now of course here I can always push in or pull out here constant so this factorization is unique

up to a unit which is a non-zero element of k, okay. Now if you look at the 0 set of f, okay then

this you know it is just going to be 0 set of f1 union 0 set of f2 union 0 set of fm this is what is

going to be this is what you are going to get, right? Because 0 set of f will be 0 set of f1 power

n1 union 0 set of f2 power n2 and you must understand the 0 set of a power of f is a same as 0 set



of f itself because the set of point where a power of a polynomial vanishes is same as set points

where the polynomial vanishes.

So when I go to the 0 set all these powers are gone I do not care about the powers, now if you

watch look at each Z fi each Z fi is irreducible as a subset it is an irreducible closed subset, why?

Because each fi is already an irreducible polynomial and you know since each fi is an irreducible

polynomial and it is an irreducible element in the polynomial ring which is a UFD the ideal

generated by an irreducible element is a prime ideal so the ideal generated by each fi is a prime

ideal and the 0 set of that prime ideal is therefore an irreducible subset, okay.

Therefore each Z fi is irreducible and what and of course no Z fi is contained in some other Z fj

that is because no fi divides any other fj they are all distinct irreducible polynomials, okay that is

what  unique  factorization  means  when  you  write  in  product  of  factors  the  factors  are  not

repeating suddenly, okay it is only to take care of reputations that you put the powers, right?

Now watch these are our irreducible closed subsets, okay if you look at this what is this? This is

actually the Noetherian decomposition of f this the way I have written it this is the Noetherian

decomposition of f mind you Z of f is an algebraic set Z of f is not an irreducible algebraic set

because f is not the ideal generated by f is not a prime ideal that is because f is not irreducible,

alright?  And  by  and  you  know  the  Noetherian  decomposition  is  unique  the  Noetherian

decomposition says that if you have a Noetherian topological space you have a close subset then

the  close  subset  can  be  written  as  a  finite  union  of  irreducible  closed  subsets  and  this

decomposition is unique if you assume that none of the subsets is contained in any of the others,

okay.

So this is the Noetherian decomposition of course up to a permutation of the Z fi’s, okay. If you

watch if you take the if you take the if you go to this case go to what we have proved so far that

geometric hyper surface is same as a hyper surface in the commutative algebraic sense what will

tell you is that each of these has dimension n minus 1 each of this is a hyper surface. So what it

will tell you is Z of f is a union of hyper surfaces, okay it is a union of hyper surface and if you

look at let me look at the following let me do let me give a tentative definition how did I define

the coordinate ring I mean the ring of functions on a close subset I simply defined it as the ring

of functions on affine space modulo the ideal of that set, okay.



Now what I will do is I will just put A of Z of f, okay so as polynomial ring modulo the ideal

generated by f make this definition, okay make this definition this is not a very good definition

for the reason that since the ideal generated by f is not prime you are going the ideal modulo

which you are going is not a prime therefore this  crazy thing is not an integral domain this

quotient ring is not an integral domain.

So for example in this quotient ring f1 you see f1 bar, f2 bar, fm bar which are the images of f’s

the fi’s in this quotient you see there if you raise them to the powers these powers and multiply

them you will get 0 but individually they are not 0 they are so each f1 if the image of each f1

here is a 0 device mind you and but the point is in this ring see in the if you look at so let me

write that this is a quotient of k X1 through Xn, okay now take a prime ideal p which contains f,

okay a prime ideal p contains f if you go down here, okay it will give rise to a prime ideal p bar

which will contain a 0, okay it will be a prime ideal p bar which will contain 0.

What you should understand is that for each of this prime ideals I can take the ideal generated by

fi’s, okay you take the since fi divides f the ideal generated by fi will be multiples of fi and f is

also multiplied by fi, so ideal generated by fi will contain the ideal generated by f, okay anything

which is a multiple of f is also multiple of any fi. So I can take a prime ideal which contains fi,

okay that will correspond to the prime ideal generated by fi bar in the quotient ring, okay and the

fact is that these fi’s they will be the smallest prime ideals which contain f that is because of this

unique factorization you will have to do a you have to convince yourself that this smallest prime

ideals which contain f in this ring are precisely the fi’s, okay.

And what does Krull’s principle ideal theorem says? It says that in the polynomial ring itself the

smallest prime ideals which contains this f have height 1. In other words what it says is if you

commutative algebraically look at only 0 of a single equation but do not insist that the 0 set is

irreducible you will not get a geometric hyper surface but you will get a union of geometric

hyper surfaces that is what it says that is the full content of this theorem, okay see you can ask

this question, right? A commutative algebraic surface if you want to just define it as a surface

which is given by single equation since I already want something that is irreducible that single

equation has to be irreducible but if I relaxed the condition that the locus is not irreducible then it

is just an algebraic set. So you are looking at single 0 you are looking at the 0 locus of the single

polynomial the polynomial is necessarily irreducible.



Then what this says is if it is irreducible then it is a hyper surface, if it is not irreducible it is

union of hyper surfaces that is what it says that is why that should tell you why this statement of

this theorem involves the minimal prime ideals which contain f you see they become relevant in

this non-irreducible case the minimal prime ideals that contain f they correspond to the ideals

that correspond to the irreducible components of the 0 set of f that is the connection geometric

connection to this statement, okay.

And the importance with this theorem is that you know you can ask more generally this question,

so this is also part of algebraic geometry you have something nice happening, okay for us we

have always started with the polynomial ring in n variables you can work with more general

rings if you work with more general rings you can ask the question when will this be true you

start with a geometric hyper surface is a same as a hyper surface in the commutative algebraic

sense for what kind of spaces will it be true based on the ring of functions on those spaces and

that is the answer given by that is the geometric content of this theorem what it says is if you

space has a ring of functions which is a unique factorization domain, okay if your space is such

that  it  is  ring of  functions  the unique factorization  domain  there  is  no difference  between a

commutative algebraic hyper surface and a geometric hyper surface that what it says that is the

geometric content of this theorem, okay.

So what you should understand is this is the point about algebraic geometry you have some

statements which are completely statements in commutative algebra but if you translate them

they  translate  into  something  very  geometric.  So  you  know  how  to  define  what  a  unique

factorization domain is in a commutative algebraic sense it is a you know it is an integral domain

we have unique factorization every element can be written as a product of powers of irreducible

elements  in  a  unique  way,  okay  that  is  what  a  unique  factorization  domain  is  this  is  a

commutative algebraic definition, but what is it geometrically mean? So geometrically you can

say if you geometrically you also think of rings as rings of functions on some space.

So algebraically geometrically how to define a unique factorization domain one way is you say I

mean look at all you can ring of functions if you want to think of ring of functions is a UFD then

the space must have the property that the geometric hyper surfaces should be the same as the

hyper  surfaces  in  the  commutative  algebraic  sense,  it  is  for  those  spaces  that  the  rings  of

functions can be called unique factorization domains, okay.



So  what  you  must  understand  is  that  this  unique  factorization  which  is  a  very  you  know

completely algebraic statement it is a purely commutative algebraic kind of statement that has

the geometric significance that we find loci defined by single equations are the same as loci

which  have  co-dimension  1  you see  that  is  the  that  is  how you geometrically  interpret  the

completely  algebraic  definition  of  what  unique  factorization  domain  is,  okay see  the  whole

beauty of algebraic geometry lies in this you take something completely commutative algebraic

completely see what it means geometrically and you do the other way also so this is an example

as to how you can make this translation, okay. So in my next lecture what I will do is I still have

to explain how the inverse of this A function is the max spec function so I will have to do that so

I will do that in the next lecture. 


