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Okay, so welcome to this first course on algebraic geometry. So let me begin by trying to tell you

what algebraic geometry is all about in its greatest generality it is trying to study the geometry of

the set of common 0’s over bunch of polynomials, okay. 
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So you know let me write that down, so that is in one line what algebraic geometry is, okay. So

beginning with this let us try to take the discussion further, so when I say a set of polynomials of

course I should tell you where this polynomials are from, okay and then I shall also tell you by

that I mean I should tell you these are from polynomials in how many variables, okay.

So you must have fixed number of variables and then I should also tell you about the coefficients

of these polynomials because of course for example we are used to writing polynomials over real

numbers which means polynomials of the real coefficients and if for example also with complex



coefficients, okay or sometimes we also look at polynomials with just the integer coefficients,

okay. So the coefficient usually come from a ring, okay.

So what is happening is that you see in this way the ring of polynomials in several variables over

a given ring comes into the picture, okay. 
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So you see so what you do is so we pick or rather we are given we should not say we pick so we

are given a collection of polynomials let me say a subsets of polynomials so let me write them as

f sub alpha of X1 etcetera Xn S is the set of all polynomials f sub alpha X1 etcetera Xn and this

is each one of these f alpha is a polynomial in a polynomial ring, okay. So this ring is the ring the

commutative  ring  that  consists  of  polynomials  in  the  variables  X1  through  Xn  and  with

coefficients in the commutative ring R, okay.

So  of  course  I  will  not  repeat  this  often  we  are  always  going  to  be  worried  only  about

commutative rings and the commutative rings are assumed to be with a unit element that is with

1 and we had always assumed that homomorphism is a commutative rings carry one to one,

okay. So R is a commutative ring with 1, okay and X1 through Xn are variables n variables and

this is the polynomial ring over R in n variables and each f sub alpha is a polynomial it is ring

and you take some of these a subset of these polynomials so this is alpha is some indexing set let

me put it is as lambda if you want, okay in which case I add another change it to small lambda

for more coherence.



So this is S is a subset of the ring of polynomials in n variables over R, okay and we want to

study the geometry of the subset is Z of S the set of common 0’s of S and that is defined to be the

set of all r1 etcetera rn n tuples of elements of r, okay so this just r cross r n times this is just the

Cartesian product of r taken with itself n times. So these are n tuples of elements of r each one

each ri is an element of small ri is an element of capital R such that the if you plug in Xi equal to

Ri, okay that is if you substitute for Xi the corresponding Ri in this tuple, okay or in other words

if you substitute for the tuple X1 etcetera Xn the values r1 etcetera rn in that order then you will

get and when you evaluate this polynomial, okay then you will get an element of R and that has

to be 0 and that should happen for every lambda, okay then and only then is a point of rn in this

set, okay.

So such that f lambda of r1 etcetera rn is 0 for every lambda belonging to capital R, okay. So

maybe this I will just write it as such that, okay. 
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So you see so basically what is happening is that you already have two objects here on the one

hand you have rn which is R cross R cross R n times, okay and on the other hand you also have

the polynomial ring over R in n variables, okay. And what is happening is that I am given a

subset S of the polynomial ring and I am associating to that subset the set of common 0's of that

subset which is a subset of rn, okay.



So and the purpose of algebraic geometry is to study the geometry of this common set of 0’s,

okay. So this is the general picture, so you can see that already there are two sides to the picture

there is one side which is the geometric side, okay where you have this space where you the

space were you are looking at the 0’s, okay. And you have here the algebraic side which consist

of  essentially  your looking at  the polynomial  ring,  okay. So you can already that  there is  a

commutative algebraic side and there is an algebraic geometry side.

So algebraic geometry is all about going from this to that and that to this based on the properties

on both sides, for example you could have a properties of this set which is geometric properties,

okay and they would translate into some properties into some properties connected on this side

and the properties that are connected on this side a ring theoretic properties or which maybe ring

theoretic properties or they therefore they could be ideal theoretic properties or more generally

they can also be module theoretic properties, okay because modern commutative algebra is not

just the study of the rings and ideas but it is also the study of modules because the notion of a

module generalizes the notion of an ideal and also that a vector space at the same time and is

more versatile, okay.

So  the  properties  on  this  side  are  geometric  properties  the  properties  on  that  side  are

commutative algebra properties and it this dictionary is setting up this dictionary which is the

subject of algebraic geometry, okay. And but of course there are several things that I will have to

explain to you, first of all I have not so let me write that here so this is the geometric side and

this  is  the commutative  algebraic  side,  okay. And in some sense therefore  you can  say that

algebraic geometry and commutative algebra are kind of married to each other in that sense,

okay there are two sides of the same coin, okay.

So but then I will have to explain to you what you mean by geometry by of subset, okay because

that you know several things but for example it is at the base level it will involve some topology

and then on top of that it will involve further properties topological properties and on top of that

it will involve some properties connected with manifold theoretic properties, okay and so and so

forth which we will try to explain but let me at this point go to something else, okay.

So first of all  you know if you give me an equation like this forget even a set  of equations

suppose I give an single equation over a ring, okay it might turn over that this set maybe empty,



okay that is the problem this set if it is going to be empty it does not there is nothing interesting

to study because there is nothing to study first of all. So that can happen very easily, for example

you know if you take the ring R to be real numbers and you know if I take something like just

one variable, okay and if I take the and if I call that variable so I just take real numbers with one

variable X1 and if I take the equation X1 square plus 1 then you know that it has no 0’s in real

numbers, okay because obviously you know because the 0’s are non-real they are complex, okay.

So in so it is very possible that if you work over a general ring, okay you are this is particular set

the 0 set it turn out to be empty and then you are there is nothing to study, okay.

So at this point there is a I should say a dichotomy the subject actually breaks into or rather can

be divided into two parts, so there is one question that tells you that if you are going to work over

rings such that this is never going to be empty, okay then of course you have these are good rings

over which you can do this kind of study, okay. The other thing is the question that what you do

if this ring does not have those properties.

So the answer to that is there is an answer to both, so if you so the first question the first part is

you restrict to rings which are algebraically closed fields, okay if you restrict to rings which are

algebraic closed fields then this set is never empty for this n collection of polynomials, okay I

will explain what this means later and you can do geometry, okay. So that is called variety theory

and that is what is usually done in a first course in algebraic geometry. Then the other thing is

what you do with the general ring, okay for example I would like to have I would love to work

over the integers, for example you know questions like Fermat's last theorem it also involves a an

equation in three variables it is an equation with coefficients in integers then you are trying to ask

whether there are non-trivial integers solutions apart from the easy solutions, okay.

Then you also need to solve questions like that and to solve questions like that of course there are

equations over integers which to have solutions, for example x square plus 1 equal 0 is variable

and equation  with integer  questions  and it  has  no solutions  in  integer  it  does  not  have any

solutions even in real numbers so how can it have solutions even in integers. So the question is

how  do  you  deal  with  such  things  so  there  is  a  part  of  algebraic  geometry  slightly  more

sophisticated area of algebraic geometry which deals with such things and that is called scheme

theory and this scheme theory is the it is the modern language of algebraic geometry and that is

usually what is covered in a second course in algebraic geometry because it involves far more



machinery, okay but what we will be doing in this course is that we will be safely restricting

ourselves to the cases when this set is non-empty, okay.
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So what I am going to do is that I am going to tell you something about I am going to tell you

about solving equations or rather, okay 0’s of equation. So well so the first thing is you know I

see what I have come across in any first course in algebra normally the usually we start with

integers and then you know you extend them to rational numbers where of course you could also

take natural numbers before this, okay you can well maybe I can even do that it is not a big deal I

can take natural  numbers then I  can extend them to integers  then there are  there is  field of

rational numbers, then there is a field of real numbers, there is field of complex numbers this is

how it goes and every time you have a bigger number system and that is because essentially you

want to solve equations.

So number system become bigger and bigger because you have some equations for which you do

not have solutions so you have to make your set of numbers bigger, okay. So for example natural

numbers the counting numbers 1, 2, 3, 4 does not have 0, so an equation like x plus 1 equal to 1

which has a solution x equal to 0 will not have a solution here and an equation like x plus 1 equal

to 2 I mean x plus 1 equal to or rather x plus 2 equal to 1 which is solution x equal to minus 1

also does not have a solution here so you are forced to go to integers and then you have a

equation of integers which does not have a solution of integers which have solution only in



rational numbers for example things like 2 x equal to 3 its variable and equation over integers,

okay but the solution is 2 x equal to 3 the solution is x equal to 3 by 2 which is a rational number

so you have to extend.

So finally what happens is that you see that you come to fields and you come to field extensions,

okay and the point is that every time you ask the question when you get a bigger number system

you ask the question well if I write a polynomial in that with that questions will the 0’s the

polynomial  always  lay  there  and  if  the  answer  is  yes  at  some point  then  that  is  called  an

algebraically closed field, okay. So the fact is C is an algebraically closed fields, okay C is an

algebraically closed field.

So and what does this mean that is so that is any polynomial in one variable with C coefficients

has a 0 in C, okay. So and in fact you know if a polynomial has a 0 if you call the polynomial as

fx f of x of course it is one variable so I should just call it as f of x where x is a variable and if it

has a 0 which means it has a value lambda such that f of lambda equal to 0 then you know x

minus lambda is a factor of the polynomial and by the divisional algorithm you know that the

polynomial becomes x minus lambda times another polynomial of lower degree of one degree

less, okay and in this way you can continue and well (())(20:12) polynomial of lower degree that

you get that also will have a 0 in the complex numbers and you can factor that near factor out

and if you do like this what it will tell you is that finally any polynomial can be completely split

into linear factors, okay that is what it says.

And this is the property of the field of complex numbers which makes it algebraically closed and

in general this is the definition of what and algebraically closed field is and algebraically closed

field is a field such that you take any single polynomial in one variable over that field then all its

0’s are in that field that it means that you can find all the 0’s in the field itself you do not have to

extend the field, you do not have to extend your number system to a something bigger that you

will get the 0’s, okay.

So basically what it tells you is that you know if your so what it tells you if you go back to our

setup what it tells you is that if I take R equal to C if I take my ring to be C which is in fact a

field, okay and if I take n equal to 1 then I have C here and here I will have C of X, okay

polynomial ring in one variable and then it tells you that you give me if you give me a single



polynomial if this set S is single polynomial then the 0 set of that is non-empty in fact it will

have the number of 0’s will be equal to the degree of the polynomial but of course you have to

count the 0’s with multiplicity okay you have to the count the 0's with multiplicity after all the

polynomial maybe x minus 1 to the power of 5, okay.

And then well if you want to count the 0’s with multiplicity then you can think of them as five

0’s but well if you think of it as a subset here you get only point namely the point 1, okay. So

what this tells  you is if  you are working on algebraically  closed field and there is only one

variable involved and you are looking at only one polynomial then you end up in a situation

where this set is 1 set is non-empty, okay.

Now the question is mind you our original question is we are not looking at a single polynomial

we are looking at a bunch of polynomials, okay and this (())(22:33) even be finite this collection

of polynomials will not even be finite. And not only that we are not looking at a polynomial in

one variable  we are looking at  the polynomial  in several variables,  okay what the algebraic

closure property tell you is that if you are looking at the polynomial in one variable and if your

coefficient ring is an algebraically closed field then if you look at the 0’s over single polynomial

then it is not going to be empty, okay but we want something very very general to happen, okay

the  answer  to  that  is  so you might  expect  that  should  you put  something more  some more

conditions than just the field being algebraic closed for such a thing to happen and the answer is

no, the amazing answer is yes the amazing answer is this itself will ensure that so long as this set

S is good in decent way if R is an algebraically closed field then Z of S can never be empty, okay

and this is a very deep fact and this is called the this is one form of the Hilbert Nullstellensatz,

okay.



(Refer Slide Time: 23:50)  

So let me write that down so fact so if we take a for R a algebraically closed field then for f in Rx

Z of f is non-empty of course provided f is non-constant of course you know when you are

looking at the 0’s of polynomial suddenly you are not looking at a constant polynomial, okay

what that means is if you are looking at a constant polynomial if that constant is non-zero then

there are no zeros and if the constant is 0 then the whole space satisfies the citation, okay.

So if you take a non-zero constant and consider that as a polynomial then it has no 0’s so the 0

set is empty if you take 0 as a constant polynomial then this 0 set is a whole space, okay. So what

it says is that if you take for R an algebraically closed field and this set S to be a single term

consisting of only one polynomial which is of course non-constant then the 0 set is non-empty.

So you ensure that this is non-empty so you can do some geometry, okay but then here is the

important thing so what we want is not for one variable X but we want it for several variables

and we do not want it for a single polynomial in several variables but we want it want it for a

whole collection of polynomials in several variables, okay.

So that is our deep requirement and that is what (())(26:09) and that is what the Nullstellensatz

as it is called Hilbert’s Nullstellensatz that is what it promises. 
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So let me write the following down, so first let me say the following team suppose so here is a

very simple let me call it a lemma I will write a very simple lemma if the set S is such that does

not exist a finite subset let me write f lambda 1 except lambda m and polynomials g lambda 1, g

lambda m in the polynomial ring such that sigma f lambda i g lambda is equal to 1 i equal to 1 to

m then so I should say and only then, sorry I should say the following this so there is one part of

the  lemma  which  is  very  trivial  there  is  the  other  part  of  the  lemma  which  is  actually  the

Nullstellensatz when R is an algebraically closed field, so let me say that correctly I have to

modify this statement a little bit, yeah so let me make a small modification if the set S is such

that is that of S is non-empty then that cannot exist a finite subset such that this is equal to 1 so

this is a statement, okay.

So I am saying that suppose so you see the whole point is a following the whole point is we are

trying to look we are trying to study this set of common 0’s, okay we do not want that to be

empty we do not want that to be empty and the statement I am making is if it is non-empty then

no finitely no finite subset of S can generate 1, okay no finite subset of S can generate 1 that

means you cannot get finitely many elements of S and finitely many polynomials from the ring

of which this capital S is a subset of such that you take multiply them and then add them you get

one that cannot happen that is obvious because you see if the 0 set is non-empty that means there

is a value small r1 etcetera small rn in the 0 side and this value small r1 etcetera small rn when

you substitute it in each of this f lambdas it is going to vanish, okay.



So in particular if I substitute it in this relation on the left side, okay the left side is going to

vanish and I will get 0 equal to 1 and in a ring if 0 equal to 1 the ring is a 0 ring, okay it has only

one element which is 0 ring and suddenly we are not interested in working with 0 ring, okay. So

if the ring is not the 0 ring then what this tells you is that if the 0 set is non-empty this can never

happen, okay it is obvious it is a very very simply thing, okay but the converse to this that the

converse  to  this  holds  when the  ring  is  algebraically  closed  field  is  the  is  one  form of  the

Hilbert’s Nullstellensatz.
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So let me write that the converse is true if R is an algebraically closed field and that is the that is

one form of the Hilbert’s Nullstellensatz. So maybe so let me keep it like this let me not state it

the converse will be that if the subset S if R is an algebraically closed field and if the subset S of

polynomials in the polynomial ring over R in n variables is such that no finite subset of that can

generate  1 then this 0 set defined by that subset is non-empty, okay that is one form of the

Nullstellensatz which is usually called the weak form of the Nullstellensatz, okay.

So maybe I will write it down, so what is that? So if k is an algebraically closed field and S is a

subset of polynomials over k in n variables of course small n is greater than or equal to 1, okay

then such that that does not exist a finite subset let me write f1 etcetera fm in S and polynomials

so let me continue here g1 etcetera gm so this is m again in the same ring such that sigma fi gi is

equal  to 1 i  could gone to m, then the 0 set  defined by S in kn is non-empty you can find

solutions.  See  what  you  must  understand  is  that  the  Hilbert  Nullstellensatz  is  a  grand

generalization of the property of being algebraically closed you know if you put in the Hilbert's

Nullstellensatz if I put small n equal to 1 that I am looking at polynomials only in one variable

and if I take the subset S capital S to be a singleton set, okay then this statement is obviously true

if for an algebraically closed field.

See what you must understand is Hilbert Nullstellensatz when you put n equal to 1 is true just by

the definition of algebraically closed field because what happens when you put n equal to 1 and

when you take the set S to be a singleton consisting of only one polynomial and then if you have

this  condition  that  then  this  condition  will  become  that  polynomial  multiplied  by  no  other

polynomial gives you 1 which is the same as saying that the polynomial is not constant, okay

then you are saying that this 0 so that polynomial in k1 which is just k exist.

So  you  are  just  saying  that  every  polynomial  has  a  0  which  is  the  definition  of  what  an

algebraically closed field is. So what you must understand is that Hilbert Nullstellensatz is a

grand generalization of the definition of algebraically  closed and it  is  a very very important

theorem and this is the theorem that guarantees that if you are working over algebraically closed

fields then you can daily do geometry, okay.

So and this is the called the weak form we will come to the stronger form later on, okay and I

will see later on if I can hint at a proof of the Hilbert's Nullstellensatz usually a proof of the



Nullstellensatz is given in course in commutative algebra but there is also a way of looking at

that proof completely in algebraic geometric terms. So this is something that keeps happening

that you must always keep at the back of your mind there are many things that can be said in this

on the language on this side which is the algebraic geometry language and this there are same

things can be said with the language on this side which is the language of competitive rings and

modules and ideals and things like that, okay.

So proof here will involve a you know ring theoretic arguments ideals and homomorphisms and

modules and things like that, whereas the same proof when you translate it here it will have

geometric mean and its this it is trying to go from one to the other that really enriches both the

sides,  okay. So okay so incidentally  I should tell  you what this  Nullstellensatz  is. So this  is

German you know Hilbert's Nullstellensatz was a German mathematician and of course one of

the greatest of all time and Null stands for 0 and stellen stands for position or point and satz

means theorem or statement.

So if actually so if you translate it properly it means Hilbert's theorem on zeros on zeros of

polynomials of a bunch of polynomials, okay fine. 
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So okay so what we are going to do is so from now on we will always work over an algebraically

closed field k that is we take R equal to k. So if you want for convenience you can even think of



the algebraically closed field as complex numbers so that you know if it makes easier for you to

think about things and visualize things, okay.

So what we are going to do so our picture becomes so our picture goes from that generality into

something more concrete so we have the following picture on the commutative algebra side we

have k of x1 etcetera xn this is the polynomial ring in n variables and on the geometric side we

have kn which is k cross k cross k n times, okay. Now well how do you think of kn you are used

to kn from linear algebra I mean they always one would the simplest way one would look at it as

the vector space of dimension, okay for people who have done module theory Rn can be thought

of as the end dimensional free module over R, okay. So in fact we do not use the word dimension

from modules so I should amend my statement to Rn is the a free module of rank and over R,

okay so dimension is usually reserved for fields so kn is an n dimensional vector space over k a

module over a field is a vector space, okay.

So but it is not the vector space properties we are interested in, so you see the vector space the

properties of vector space are here this 0 vector and then you know have additional vectors and

so on and so  forth.  So  in  that  sense  you know the  vector  space  studying the  vector  space

properties is literally studying linear algebra but that is not what we are interested, what we are

interested in is actually trying to study the points of the space, okay without any regard to the

vector properties, okay so you so it means that all points of the space are alike I mean if you take

the plain and through away the vector space structure that means you take the plain and how do

you get the vector space structure you have to first have an origin because for a vector you need

initial point and then you need a terminal point.

So normally what we do is we have an origin and every other point to every other point we

associate the vector which starts at the origin and goes to that point we call it the position vector

of  that  point  and  then  we  study  all  these  question  vectors  and  add  them  as  usual  with

parallelogram law and then so on and so forth. But what we are going to do now is not call any

not worry about doing all this we gonna think all points as equal as one and the same. So think of

kn but do not think of the axis, do not think of the origin as origin in.

So you just think of it, for example if n is equal to 2 think of the plain but without the two axis

there is point called the origin but that point is not you do not try to for every other point you do



not try to draw position vector and think of it as a vector. So you know this process of trying to

think of kn as a space not of points but not as space of vectors is what makes it into what is

called an affine space, okay.

So the affine space kn is different from the vector space kn in the affine space we are only

worried about the point not about the vectors, okay. So you will see often in algebraic geometry

people use a word affine and that is the whole point, okay. So the first important thing is do not

ever think of this as vectors, okay though it is a vector space of dimension n but that is not what

we want, right? So well so this is the affine space literally and given a subset S to get the 0 set of,

oops yeah that is right yeah, so here is our this is the picture we are going to look at and we are

going to see what is there on both sides, okay.

So the first thing that I am going to do is so that brings us to the following question what are we

going to do with this set we have thrown away the vector space structure is just a set and what I

am going to do with it. So the first step is to give it a topology, okay and that topology is called

as Zariski topology, okay so I will explain what that topology is. 
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So well  so let  me write  that  so let  me write  the following thing kn along with say Zariski

topology is called affine n space over k and denote it kn, okay. So the first thing that we do to get

some geometry on the left side is first of all have at least the topological space, okay. So we

make kn into a topological space, what does that mean? It means that you have to specify a



topology on it and specifying a topology on it means what you try to give a collection of subsets

which  you make all  as  open subsets  and this  collection  has  to  satisfy  the  (())(44:17)  for  a

topology and what are the (())(44:18) for a topology the whole space should be an open set the

null set which is the empty set should be an open set an arbitrary union of open sets should be

open a finite intersection of open sets must be open.

So these are the four conditions for a collection of subsets of a space or of a set to make it into a

topological space, okay. So I have to explain what the open sets are, okay but then you know

when you go to topology there are two ways to approaching a topology, one way is by open sides

the other ways is by using close sets, okay because close sets are just commonly means of open

sets, so I can also give a topology on a set by giving a collection of subsets called closed sets but

then the conditions will be complimentary, okay because of De Morgan’s laws so the conditions

will be that the whole space is a closed set then the empty set that is the null set is a close set any

if you take finite collection of closed sets their union is again a closed set, okay.

And if you take an arbitrary collection of closed sets there intersection is again a closed set these

are just translations using De Morgan's laws for the corresponding schemes for open sets. So

basically  what I  will  have to do is  that  I  have to  tell  you either  I  should either  give you a

collection  of  open  sets  or  I  should  give  you  a  collection  of  closed  sets  which  satisfy  the

corresponding schemes. And what happens in geometry is that is easier to begin with by looking

at collections of closed sets and guess what, what are going to be the closed sets the closed sets

are going to be just common zeros of functions of this type.

So you see the so the idea is a following you look at this space d look at kn think of this as

functions  on kn,  of  course you take  any polynomial  here  and you take  a  point  here if  you

evaluate the polynomial at that point you get a value. So certainly a polynomial the elements

here which are polynomial that are certainly functions on this space and what you do is you call a

subset here to be closed if it is the if the 0 locus common 0 locus of a bunch of polynomial

functions which is exactly what this is, okay. 

So  the  moral  story  is  that  if  you  declare  subsets  of  kn  of  this  form 0  loci  of  a  bunch  of

polynomials common 0 loci of a bunch of polynomials call them as closed sets then you get the

Zariski topology that makes this kn into Zariski topology. So what that will tell you is that what



are the open sets, open sets will be loci where certain where functions do not vanish the loci

where the functions vanish for example the loci where a single function vanishes is a closed set

and the compliment of that locus where this (())(47:37) does not vanish is an open set, okay and

this is in tune with our common sense, okay because if you take a real valued function on some

subset of Rn or you take a complex valued function with on a subset of n dimensional complex

space Cn.

Then the set points where the function takes the value 0 is going to be a closed set provided the

function is a continuous function because it is a point is always a closed subset and if a function

is continuous the inverse image of a closed subset is closed therefore the set of points where the

function is 0 is exactly the inverse image of the point which is 0 and that has to be closed, okay.

So it agrees with our usual intuition so the idea is to give the Zariski topology in that way, okay.

So we will look at that in more detail in the next lecture, okay.                


