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Okay so let us continue with whatever we were doing say we were trying to understand what

removable singularity at infinity means okay and what we saw was that a function if it is

entire that is it is analytic on the whole complex plane and it is also analytic at infinity which

by definition means it has removable singularity at the point at infinity and of course that is

equivalent to it being bounded at infinity or it is also equivalent to it having a limited infinity

okay in such a function must reduce to a constant, so an entire function which is analytic at

infinity has to be constant.  

In other words a non-constant entire function at infinity cannot have a removable singularity

has to be either a pole or an essential singularity so it has to be a real singularity it cannot be a

non-singularity which is what removable singularity is, a removable singularity is actually a

non-singularity  in  disguise,  so  it  is  a  fake  singularity  a  removable  singularity  is  a  fake

singularity, it  is  not  a  real  singularity  okay. So an  entire  function  which  is  non-constant

cannot  have  a  fake  singularity  at  infinity,  it  has  to  have  a  either  a  pole  or  an  essential

singularity. Now I told you that this is essentially the same as Liouville’s theorem I mean this

is just another avatar of Liouville’s theorem and so you know the point is that somehow there

is a there is a generalisation of Liouville’s theorem okay which is exactly you know which is

exactly like the Casorati Weierstrass theorem okay see with is something that I want to say in

this connection. 

See let me recall, what is the big Picard theorem? The big Picard theorem is given function

analytic  function  which  has  an  isolated  essential  singularity  at  the  point  then  in  every

neighbourhood of that isolated essential singularity function takes all complex values except

with the exception of one value at most one value okay which means it might fail to take one

value at the most or it might take all values okay and this it will do in every neighbourhood of

an essential singularity and every value will be taken every value that it takes will be taken

infinitely many times, this is the big Picard theorem or the great Picard theorem and what is

the 1st approximation to the big Picard theorem. 



So the big Picard theorem (())(4:01) what it says is that if you take the image of or deleted

neighbourhood of an essential singularity you get either the whole complex plane or you get

the complex plane minus a point, so it is either the whole plane or a punctured plane, the

punctured being corresponding to removing a value which it will not take okay. Now what is

the Casorati Weierstrass theorem? The Casorati Weierstrass theorem is a weaker version okay

which we actually prove using Riemann’s removable singularity theorem okay and what is

the weaker version, the weaker version is that the images dense, you take any neighbourhood,

deleted neighbourhood of an isolated essential singularity and take its image onto the analytic

function, the image is a set which is dense in the plane which means it is the closure of the

image is  the  whole  plane,  the other  way of  saying that  is  that  every complex value  the

function value is come close to every complex value. 

In other words you give me any complex value I can find a sequence of points such that the

function values tent to that complex value okay, so that is the same as saying at the images

dense that the image the closure of the image contains all the points in the complex plane

which is the same as saying that every complex value can be approached by values of the

function as close as you want okay. So this is the Casorati  Weierstrass theorem which is

relatively easy to prove because you can reduce it from the Riemann’s removable singularity

theorem that we did okay. Now in the same way there is a there is a similar version of this for

entire functions okay, so you know so again let us go back to the Liouville’s theorem, what is

Liouville’s theorem? Liouville’s theorem says that a bounded entire function is a constant

okay and so if you say it in a different way, what it says is that an entire function which is not

constant is unbounded okay. 

What it means is at it  will take values with bigger and bigger modulus because if all the

values that it takes are bounded by a certain modulus that means it is a bounded function and

if it is entire end bounded Liouville will say it is a constant, so if you take non-constant entire

function, what it will tell you is that the values of the function can become arbitrarily large in

modulus  okay. Now…but  then  you  can  ask  the  question  what  is  an  image  of  an  entire

function and the answer to that is little Picard theorem the little Picard theorem says that the

image actually, the image of an entire function is either the whole complex plane okay or it is

a punctured plane namely it will omit one point at the most and that is that is the case. 

For example if you take E power Z it will omit the value 0, so and I told you that this is called

the little Picard theorem or the small Picard theorem and this is supposed to be we would like



to derive it as the corollary of the big Picard theorem okay but then the big Picard theorem

has a weaker version which is the Casorati Weierstrass theorem and similarly the little Picard

theorem  also  has  a  weaker  version  and  that  weaker  version  is  the  generalise Liouville

theorem and what is a generalise Liouville theorem? Generalise Liouville theorem says that

you take the image of an entire function then the image is dense okay that is the that is the

weak version of little Picard theorem is called the generalise Liouville theorem okay. 

(Refer Slide Time: 07:35) 

And so the reason why I am trying to bring it at this point in the in our discussion is because

just to tell you that this is a circle of ideas with the with the generalise Liouville theorem is to

the little Picard theorem what we Casorati Weierstrass theorem is to the big Picard theorem

okay is a similar thing. Both the Picard theorem tell you what exactly the image will be okay

that the image will be the whole plane or the plane minus 1 point and the both the Casorati

Weierstrass theorem and the generalise Liouville theorem will tell you that the image is that

the image is dense that is the point okay and how do you prove the how do you prove the

generalise Liouville theorem is also it is actually the same proof as the same tactics that we

used to prove the Casorati Weierstrass theorem except that you use Liouville theorem okay so

let me write that down.



(Refer Slide Time: 8:35) 

So here is the generalised Liouville’s theorem the image of an entire function is dense in the

complex plane and of course it is very important that all these theorems are valid only for

non-constant functions okay, so whenever you should not miss saying there is a non-constant

type of function because a constant function always the image is a single point and it is entire

okay, so you should this non-constant should always be carried through if you want your

statements to be accurate okay you might you might tend to miss it but if you miss it, it is a

big miss okay, so let me write that the image of well a non-constant, so this is very important

the image of a non-constant type of function is dense is dense in the complex plane, what

does it mean? 

Let us say it includes different ways, it means that any complex value and be approached by

function values that is one way and that if you want to say it more clearly you can say you

can find a sequence of points such as the function values at those points approach the given

value  okay. So let  me write  that  in  other  words,  in  other  words  given W naught  in  the

complex plane there exist sequence is at the n in there is a sequence in the complex plane

such that the f of Z n the sequence the image of the sequence under f distance to W not where

f is the given non-constant entire function okay. So this is another way of saying what I said,

now this is the generalise Liouville theorem and this is… 

So let me write this this is the analog of the Casorati Weierstrass theorem okay this is the, so I

will write it as analog of the Casorati Weierstrass theorem okay and I am still putting this

analog of Casorati Weierstrass theorem in quotes in some sense but it is actually Casorati

Weierstrass theorem but you know the only thing is the case where it is actually a Casorati



Weierstrass theorem for infinity as an essential singularity justifies this name actually and I

will explain that to you later okay but what I want you to at this point to understand is that

statement  of the generalise Liouville  theorem is  similar  to  this  statement  of  the Casorati

Weierstrass theorem and these are both weaker version of the stronger theorems, the stronger

version of the Casorati Weierstrass theorem is the big Picard theorem, stronger version of

generalise Liouville theorem is the little Picard theorem okay that is the point. 
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Now let us try to prove the proof method is exactly the same as we have been doing for the

Casorati Weierstrass theorem. Proof, so you prove by contradiction, you assume that there is

a value which the function does not come close enough to and then get to prove that the

function is a constant and you are done okay, so suppose there exist W naught which is not

which is not in the closure of f of C, f of C is actually the image of F. The image of f is this all

this set of values of f okay, of course f is entire okay and of course let us assume that f is

entire non-constant okay. 

Suppose there is a point here suppose there is a value W naught which is not in the closure

that means f this W naught cannot be approached by function values okay that means there is

a neighbourhood surrounding W naught which is which does not intersect the image okay, so

W naught is not in the closure of the of the image means W naught is outside the closure of

the image okay and the closure of the image is the closed set okay and anything outside a

closed set is an open set and anything which is in an open set is contained in a small disk

which is also in that open set, so I can find a small disk surrounding W naught which does not

intersect the image okay. 



So let me write that down thus there exist an Epsilon greater than 0 such that mod of f Z

minus W naught is greater than or equal to Epsilon okay I mean this is this is same as saying

that the disk mod W minus W naught less than Epsilon does not intersect f of C, so this this

does  not  intersect  f  of  C  means  that  it  complements  f  of  C  can  at  most  intersects  its

complement okay and well but now you know what to do? You see again the trick is that you

know F, f of Z is analytic everywhere it is entire, so f of Z minus W naught is also analytic it

is also entire okay because it is just the constant minus W naught added to an entire function

and you know some of analytic function is analytic, a constant function is analytic for f minus

W naught becomes a entire function but it never vanishes, it is always greater than Epsilon. 

So it means that it  is reciprocal which is defined because it does not vanish and you the

moment analytic function does not vanish, it is reciprocal is define and that also turns out to

be analytic, so one by f Z minus W naught also turns out to be analytic okay and because the

denominator which is f Z minus W naught doesn’t vanish and that is because it is always

greater than (())(16:14) Epsilon in modulus okay and Epsilon is a positive quality right, so I

get is function 1 by Z minus W naught which is on the one hand analytic and on the whole

plane plus I also get that its modulus are bounded by 1 by Epsilon, so it is an entire bounded

function and  Liouville’s theorem will tell you that it is a constant okay and so one by f Z

minus  W naught  will  become a  constant  that  constant  cannot  be 0  okay because  if  that

constant is 0 your f Z minus W naught not be a finite quantity okay. 

So the constant is nonzero and once it is nonzero the reciprocal of that constant will become f

Z minus W naught, so it  will tell  you f Z minus W naught is a constant so f itself  be a

constant and that will contradict if with the assumption that f is non-constant okay and that

ends the proof and if you really see this is exactly the same roof as the same technique of

proof as we probably you know the Casorati Weierstrass theorem okay. So let me write this

down now f Z minus W naught is entire and non-vanishing, so 1 by f Z minus W naught is

also entire and non-vanishing but has modulus bounded by 1 by Epsilon, so is constant by

Liouville’s theorem and of course the fact that one by f minus W naught does not and this

will tell you that this constant cannot be 0 okay because after all this this constant is the value

is the function itself okay. 

So this constant, this constant is nonzero because one by f Z minus W not is equal to that

constant and 1 by f Z minus W naught and never vanishes and so f becomes constant and that

is the end of the proof, so I am not the way you should read this proof is that either you



assume that f is a constant and get to the end of this proof which will say that you have got a

contradiction or you assume that f is a function an entire function which misses a value I

mean which stays away from a value then it has to reduce to a constant that is what this proof

says okay, so this is the generalise Liouville’s theorem okay and I just want to say that this is

an this draws an analogy with the Casorati Weierstrass theorem okay fine. 

Now you see so what we have now at the moment you have at the moment the idea of a

function adding a removable singularity at infinity okay and then of course you can ask all

you can ask regular questions that you would ask usual questions that you can ask for a

function which is analytic at a point okay, so for example so to begin with suppose you have

a function which is analytic at a point in the complex plane in the usual complex plane then

what you know about? What are all the things that…what are all the basic things that you

know about such a function? 

So  the  1st thing  is  that  you  know  that  it  is  infinitely  differentiable  okay  in  fact  all  its

derivatives exist and they are also analytic at that point okay this is one thing. In the 2nd thing

is  you  have  Clausius  theorem  that  you  take  a  neighbourhood  sufficiently  small

neighbourhood to the point stop in fact you take you take any disk surrounding that point or

even a domain surrounding that point containing that point where the function is analytic and

the integral over of the function over a simple closed curve such that the function is analytic

on the curve and in the interior of the curve also will always be 0 that is Clausius theorem

essentially and then of course you have that the function can be expanded as a Taylor series,

this is Taylor’s theorem okay and you have a converse criterion or a necessity which is given

by Morera's theorem which says that if you have a continuous function and if the integral

over a very simple closed curve is 0 then the function is analytic okay. 

So these are all the things that you know about analytic  function.  This is all  know for a

function  is  analytic  in  a  domain  in  the  complex  plane  but  now we  are  interested  in  an

analyticity at infinity okay, so you can ask all these questions of function which is analytic at

infinity okay you should see what happens, so the 1st thing is there is one point we are to be

very careful about.  See you cannot  define the derivatives  of the function at  infinity, it  is

troublesome because you know I cannot really write limit Z tends to infinity f of Z minus f of

infinity by Z minus infinity means it really does not make any sense okay but there is a tricky

way of doing it. 



See the tricky way is well you how we define a function to be analytic at infinity, we cleverly

said that it has to have a removable singularity at infinity and for having it, making it have a

removable singularity at infinity, we found that either you say it is bounded at infinity or it

has limited infinity or it is continuous at infinity, you just put one of these weak conditions

okay and that  all  these 3 are  good enough and they are powerful enough is  because the

inspiration comes from the Riemann’s removable singularity theorem, so you can ask this

question suppose a function f is analytic at infinity then are all its derivatives also analytic at

infinity okay, so and the answer is yes, the answer is yes so it is funny you are saying that the

function is analytic at infinity, all the derivatives are analytic at infinity what you really do

not go and define the derivative at infinity, in fact there through this the derivative at infinity

will always be 0 okay except at the worst it can be your constant okay I mean at the best I

mean it can be a constant all the time most of the time is 0 okay, so you know so let me 1 st

answer that question.
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So remarks number 1 if f of Z is analytic at infinity then so is every derivative of f okay, so if

f is analytic at infinity then all its derivatives are also analytic at infinity that is the that is the

1st statement okay and the truth is that the moment you say something is analytic at infinity,

its value at infinity as to be defined and the fact is that all the derivatives vanish okay. In fact

in fact in fact all derivatives of f at infinity vanish okay except possibly f itself not vanishing

at infinity it may be a constant and f is (())(24:33) if you want to think of f as 0 derivative of

itself okay then the 0 derivative can (())(24:39) can be a constant which is nonzero but all

other derivatives have to be 0 okay so why is this true? So this is true because of basically



there are many ways to see it, the easiest way to see it is by looking at the by looking at this

philosophy that if a function is I mean the behaviour of function at infinity f of W at infinity

is the same as the behaviour of g of Z which is f of 1 by Z at 0 okay. 

So if you use that you will  see that the then you use the theorem that for a point in the

complex plane if  function is analytic  at  a point in the complex plane then it  is infinitely

differentiable there. All the derivatives are also analytic at that point okay and that gives you

a result okay, so let me explain that so proof is f W so I will change this Z to W, f W is

analytic at infinity when only if g of Z is equal to f of 1 by W1 by Z is analytic at 0 and 0

okay and the point is that you know so g of Z is analytic at 0, so g is given by a Taylor

expansion okay, so g has a Taylor expansion at the origin, so this is the otherwise called the

MacLaurin expansion, the MacLaurin expansion is actually the Taylor expansion at the origin

at 0 okay and what is the Taylor expansion, it is just g of Z is equal to this is f of 1 by Z and

that is Sigma and equal to 0 to infinity a n Z power n. 

This is what the Taylor expansion is and you know that the a n are the derivatives, the a n are

the derivatives of well you know a n is just the nth derivative of g divided by factorial m, nth

derivatives of g at 0 divided by factorial n this is what the a n are, so you know that okay and

this g upper n let me put the bracket, the bracket is supposed to be derivative,  see round

bracket upper around bracket n (())(27:31) okay. Now you see now see the point is that this is

where is this valid? This is valid in valid in mod Z is less than R okay where R is radius of

convergence. 

R is the radius of convergence of this power series in Z okay you know whenever power

series converges, it converges in a disk with Centre the center of the power series and the

radius is call the radius of convergence okay and this radius of convergence is actually the

distance from the center of the of the series to the nearest singularity of the function that is

what the radius of convergence is For example of the function has no singularity then the

radius of convergence is infinite that is what happens when you write out Taylor series for an

entire function okay the fact that you write out Taylor series and you get an in finite radius of

convergence is a proof is equivalent to saying at you have the function that you are really

dealing with is actually an entire function okay. 

So you have this, now let us put W equal to 1 by Z and you will get a similar expansion for f

of W in a neighbourhood of infinity, so what you will get is you will get f of W equal to

Sigma well n equal to 0 to infinity a n W to minus n valid in mod Z mod W greater than 1 by



R okay this is what you will get because I just put Z equal to 1 by W that is the relationship

between Z and W okay and if I put that I will get mod W greater than 1 by R and you easily

recognize that mod W greater than 1 by R is a neighbourhood of infinity okay in the extended

complex plane alright and there you have this function and this is kind of this is very nice for

f because you see when you write I told you that this is how you should read this as an

expansion function at infinity okay which is good. 

See if you want to expand a function at infinity you use the powers of the variable just as you

will when you want to expand it at 0, so the only thing is that at infinity it is the negative

power that behaves well okay at 0 it is the positive power that behave well K so you see that

this expression has only negative powers of W, it does not have any positive power of W and

that is the proof that it behaves well at infinity because you know if I let if I let W tends to

infinity then this expression every term this expression is going to go to 0 and this it is going

to go to 0 uniformly because you know whenever these things converge whenever see this

converge they all was converge whenever power series converges or Laurent series converge

they always converge normally, they converges uniformly on compact sets okay. 

Therefore  see  the  fact  is  that  this  is  very  well-behaved  okay  the  moment  you  see  only

negative powers of the variable in series you must really understand that you are looking at a

function which is actually analytic at infinity okay, so For example the simplest case is if you

if you are looking at 1 by Z okay which is the same as 1 by W if you want if you think of W

as a variable, 1 by W is good at infinity it is bad at 0 okay it has a pole at 0 whereas (())

(31:21) is very good. Similarly if you take one by W Square that is a bad at 0 but it is good at

infinity all the negative powers are good at infinity okay. 

So the fact that your f has an expansion a series of negative powers of W tells you that it is

good at infinity okay and the fact I want to say is that if you well now if you if you take this

expansion for f okay and you can differentiate this expression for f the series for f of W term

by term that is because of normal convergence okay and if you do that what you will get is

again expressions of the same type okay because when you differentiate of course you know

when I put n equal to 0 I will get a naught and what is a naught? a naught is the value at the

center see if you write a series, power series centred at Z naught okay and you plug in Z equal

to Z naught what will you get, you are supposed to get the constant okay if you if you write

out a power series in Z minus Z naught it will be of the form a naught plus a 1 times Z minus

Z naught plus a 2 times Z minus Z naught square and so on. 



When I plug in Z equal to Z naught which is the center of the series all the terms except the

1st vanish and I get the constant term, so the constant term is the function value at Z naught at

the Centre okay and in the same way if you look at this expression or f of W at infinity in the

neighbourhood of infinity  you see a naught is  what you get  when you again W equal to

infinity okay you plug-in W equal to infinity means you take the limit as W tends to infinity,

what happens is only a naught survives and this is in this is in perfect analogy that when you

as you go to the center of the expansion what you get is the constant term okay and so in

some sense what I want you to understand is that this this expansion a negative powers of Z is

like the good expansion that is the reason why it is called analytic part at infinity okay. 

All the negative powers along with the constant they form the analytic part at infinity and the

positive power of the variable  they form the singular part  at  infinity  okay this  is  exactly

upside down or what happens at the finite complex number okay, so well now what I want to

tell you is that this f can be differentiated, you can differentiate f and if you look at all those

derivatives, the derivatives the moment the moment you differentiate it even (())(34:10) the

constant will go away okay and then you further differentiate it the constant is not going to

remain even the 1st derivative of constant will go away and mind you when you and you can

do the differentiation term by term okay if you do it term by term you are only differentiating

negative powers of W and if you differentiate negative powers of W you will get further

negative powers of W you are not going to end up with a positive power. 

So the moral of the story is that you can keep on sharing this as many times as you want and

you are going to get functions which are analytic at infinity because you are going to get

analytic in our neighbourhood of infinity and they will all go to 0 at infinity because in all

only negative powers therefore you see that all the derivatives exist and they are all 0 and that

is the that is the remark okay, so I am just using the fact, I am just using the simple fact that

you know whenever a functional series converges normally that is it converges uniformly on

compact subsets of a domain and if you know that every in the series is analytic then the

series converges to an analytic action and the derivatives and be computed by doing term

wise differentiation okay so that is all I am using okay. 

So that is the 1st remark, so you know it is very uneasy you must understand that we do not

define what derivative at infinity is okay but we indirectly define function being analytic at

infinity  as  being  continuous  at  infinity  are  being  bounded at  infinity  are  having limit  at

infinity and then we get that all the derivatives also are analytic at infinity and we get in fact



also that all the derivatives is 0 okay so you see it is very funny you are not able to define

derivatives at infinity okay but other derivatives at infinity you are getting an expression they

are all 0 okay. 

So well then let us go to the 2nd remark okay so in this regard let me actually tell you that in

some sense Clausius theorem fails okay Clausius theorem will fail for function analytic at

infinity okay and the idea is very simple you see in the function f of W equal to 1 by W okay

1 by W is one of…is the best I mean all the negative powers of W are the best functions at

infinity okay. Now if I integrate 1 by W over a curve contains 0 then I am certainly not going

to get 0 because 0 is a pole but 1 by W is analytic at infinity okay, so Clausius theorem will

fail so the moral of the story is at you have to be careful when you try to apply integration

theorems in you want to work with the point at infinity you have fully little careful okay. 

(Refer Slide Time: 37:15) 

So let me write this here Clausius theorem fails which is in a way sad because but then you

cannot you should see this as inevitable because you cannot define the derivative at infinity

okay (())(37:32) right so what is the example, the example is you take f of W equal to 1 by W

this function in you take you take the extended complex plane C union infinity okay and

mind you it is also analytic at infinity its value at infinity is 0 that is you make it continuous

at infinity by putting f of infinity equal to 0 okay and it is defined in the punctured extended

plane okay which is the exterior you throw out 0 (())(38:05) infinity okay this is a mind you

this  is  an  open  set  in  the  extended  complex  plane  given  the  you  know  1  point

compactification topology as we have seen earlier. 



Now you take this function now it is not true that (())(38:21) every closed curve is 0 okay, so

well take mod W equal to 1 okay you take mod W equal to 1 for that matter this is unit circle

okay and what is Clausius theorem? The usual Clausius theorem is take a function which is

analytic on and with then a simple closed contour okay and you integrate over the contour

you should get 0 okay. Now the point is that if you take mod W equal to 1 if you give me the

positive orientation if you give me the positive orientation then the interior of the unit circle

will  be the interior  of the curve as usual and the exterior of the unit  circle  which is the

neighbourhood of infinity will be the exterior of the curve okay, so and if you give it be

positive orientation okay then is the function analytic in the interior? 

No cost if you give mod W equal to 1 the positive orientation then the interior is the interior

of the unit circle with a mod W less than 1 it contains W equal to 0 where it is not analytic, so

you should not give it the positive orientation if you want it to be analytic, so what you do is

you take mod W equal to 1 but put the negative orientation okay that is a curve for which the

interior of the curve which will be the exterior of the unit disk will be a domain where the

function is analytic but still if you calculate the integral over that I am going to get minus 2 pi

I and that is not 0 so Clausius theorem fails okay. 

So let me write this down take mod W equal to 1 gave it is negative orientation so that its

interior lies in C union infinity minus 0 its interior is actually is given by mod W greater than

1 this set along with the point at infinity and this is the interior okay that is actually the

exterior because if you change the orientation you know the interior and exterior will get

interchange and again now this point let me recall 1st course in comics analysis, what is an

interior and exterior? So the ruler is the following you say the interior of the region is actually

the region that lies to your left as you walk along the curve okay. 

So that is the role so you know if I take the unit circle and if I walk along and give it the

positive orientation and if I walk along it which means I am going to walk in the anti-clock

wise sense then what lies to the left is the inside of the unit circle okay which is the interior

okay and if I give it the clockwise orientation means I am going to walk clockwise around it

and then the interior what lies to my left will be there exterior of the unit circle and that is the

reason what lies towards the left will be the interior and that will be the exterior of the unit

circle okay. It will be so let me again say this just to relieve you of some confusion. 

The interior of mod W equal to 1 if the clockwise orientation is the exterior of the unit circle

okay because it lies to the left okay, so fine so now you know if you take but integral over



mod W equal to 1 fw dw is going to be minus 2 pi okay and mind you I am getting this minus

because this mod W equal to 1 is given the clockwise orientation you know you have done

this  computation with anticlockwise orientation in  a 1st course complex analysis  and you

always get 2 pi i but since I have changed the orientation to clockwise I will get a minus

because you know after all if you change, if you change the orientation of the part of the

integration then the integral will change by a minus sign you know that okay so the point is

that the Clausius theorem fails okay. 

So you should not expect anything out of Clausius theorem here, so for a function which is

analytic at infinity Clausius theorem ills then the next thing I want to talk about is about

Morera's theorem okay, so thankfully Morera's theorem works and Morera's theorem works

just for the case just because of the fact that Riemann’s removable singularity theorem works

and basically Morera's theorem works because we cheated by saying that analytic at infinity

is same as continuity at infinity okay. 
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So let me say that Morera's theorem Morera's theorem works so what is this so you know so

let me recall what is the usual Morera's theorem or a domain in the complex plane mind you

Morera's theorem is supposed to be it is supposed to be a converse Clausius theorem okay

now the only beauty about Morera's theorem is that whereas in Clausius theorem you always

try to apply it  to simply connected domain okay you do not allow any holes and that  is

because cautious theorem says integral over a curve is 0 provided the function is also analytic

inside the curve okay there should be no point inside the curve where the function has a

singularity or is not analytic. 



So there should be no holes in the domain of analyticity with inside that curve okay whereas

Morera's theorem is valid even for non-simply connected domain is  this  is the beauty of

Morera's theorem is slightly stronger in that sense but it is converse to Clausius theorem, so

what is Morera's theorem for a domain in the complex plane it is just that suppose I know I

have I have a continuous function on a domain in the complex plane and suppose I know the

integral over every simple closed curve is 0 then the function is analytic okay and the proof

actually is very easy, what it does the proof is actually that because the integral 0 okay you

can fix the point and then you can define an anti-derivative. 

The anti-derivative will be dependent of the path it can be defined as an integral, the integral

is independent of the path because the hypothesis of Morera's theorem is that the integral

over any closed curve is 0, the integral over any closed curve is 0 mind you it is equivalent to

integral being independent of the path okay and therefore you can define an anti-derivative

and is anti-derivative will be a function whose a derivative is the given function okay but the

moment, the fact that anti-derivative as the derivative as the given function 0 that the anti-

derivative is analytic and you then use the theorem that the derivative of an analytic function

is analytic therefore the original function which you are assumed to be continuous is also

analytic, so this is how Morera's theorem works okay. 

Now you will have to modify this this more or less works also for the for a domain in the

extended complex plane okay, so of course you are you have a domain the extended complex

plane and suppose integral over any closed curve is 0 and suppose you have a function which

is continuous okay then you forget the point at infinity for whatever is left Morera's theorem

still works and tells you the function is analytic, so infinity is becomes a singular point but

then it is continues at infinity and we have cheated by saying that continuity at infinity is as

good as analyticity at infinity so it becomes continues everywhere I mean it becomes analytic

everywhere and you are done okay. 

So Morera's theorem works or a domain in the extended complex plane also, so it works at

infinity Morera's theorem works at infinity okay. So only thing you should be careful is about

is that you should not try to integrate over a curve which passes through infinity which does

not make sense, okay. By a curve we always mean a curve in the finite complex plane okay

not involving the point at infinity, okay. So I will write this down in more detail in the next

talk.


