
Advanced Complex Analysis - Part 2: Compactness of Meromorphic Functions in the
Spherical Metric, Spherical Derivative, Normality, Theorems of Marty -Zalcman-

Montel-Picard-Royden-Schottky
Dr. Thiruvalloor Eesamaipaadi Venkata Balaji

Department of Mathematics
Indian Institute of Technology Madras

Lecture No 8
Laurent Expansion at Infinity and Riemann's Removable Singularities Theorem for the

Point at Infinity

So you see what we did last time was to try to define when an analytic function is having

infinity as a point of analyticity okay and so as I told you if you recall one of the standard

ways of defining analyticity at the point is to say that the function is differentiable at that

point and also in a neighbourhood at every point in a neighbourhood of the given point okay.

So this is how you define analyticity at the point in the complex plane okay but since we are

worried about analyticity at infinity okay what we do is that we tend to look at the point at

infinity as singularity a singular point of an analytic function which is defined in a deleted

neighbourhood of infinity means that the function is analytic or mod Z greater than R or R

sufficiently large okay.  

Outside a circle of sufficiently large radius the function you are given a function which is

analytic and then infinity the point at infinity becomes an isolated singular point and then you

want to say that function is analytic at infinity, so it will not help to say that the function is

differentiable at infinity because if you write you know a differential limit it does not make

sense at infinity, so what is the way out? The way out is to actually get the draw inspiration

from Riemann’s removable  singularity  theorem.  Riemann’ removable  singularity  theorem

tells you that if you are looking at an isolated singularity of an analytic function at a point in

the complex plane then saying that the function is analytic at that point namely that the which

is essentially saying that the function can be extended to an analytic function at that point

including that point okay. 

This  is  one  of  the  definitions  of  what  the  removable  singularities  okay  is  equivalent  to

requiring that the function has a limit at that point, it is which is equivalent to continuity of

the function at that point, in fact it  is also equivalent to the function being bounded in a

neighbourhood of that point bounded in modulus of course, so this is so the moral of the story

is that you can use these conditions to define the function to be analytic at infinity okay. What

you can say is that go it will not it does not make sense to will not work to say that the



function is differentiable at infinity, you can always say that the function has a removable

singularity at infinity in the sense that the function either has a limit at infinity. 

So the limit as Z tends to infinity f Z exist okay that is one condition, the other condition is

the function is bounded in bounded at infinity that means there is a deleted neighbourhood of

infinity  where  the  function,  the  modulus  of  the  function  can  be  made less  than  positive

constant okay and in these conditions are one and the same okay and why these conditions

are one and the same is because of this other important philosophy that studying the function

at infinity, studying f of W at infinity is the same as studying f of 1 by W at 0 okay, so and I

told you the (())(4:15) or the justification for that is that Z going to W equal to 1 by Z is

actually  a  homeomorphism  of  the  Riemann  extended  complex  plane  onto  the  extended

complex plane which interchange is 0 at infinity okay and further if you throughout the point

0 at infinity then you get the punctured complex plane, the complex plane punctured at the

origin. 

If this map Z going to 1 over Z which is equal to W is going to be an analytic holomorphic

isomorphism of the punctured complex plane onto itself okay and under such an analytic

isomorphism, the nature of the singularity at 0 and the nature of the singularity at infinity

which is an immediate 0 they should correspond, this is a philosophy that we use. Now what I

want to say is that I want to go ahead with this and so now that we have defined function

being analytic  at  infinity  okay and the weakest  definition  or a function being analytic  at

infinity  that  it  is  bounded  at  infinity  namely  there  is  a  point  I  mean  there  is  a  small

neighbourhood of infinity okay which should be thought of as all Z, so I said mod Z greater

than R for R sufficiently large then mod f Z should be made you should be able to make mod

f Z is less than M okay for some positive constant M okay so that is exactly what you want to

do, so what I want to do next is I want to worry about how I want to worry about what it

means to say that a function has a removable singularity at  infinity okay, so we want to

analyse this, right. 

So let us take the let us take the…so we will look at the case of an entire function alright but

even before that I wanted to say that you know this there is one more aspect that we need to

be need to actually look into okay and this aspect is about this aspect is about the Laurent

series okay, so you see you know in some sense of the study the isolated singularity of a

function at a point in the complex plane at the point Z naught the complex plane. 



One of the ways of studying this  is by looking at  the Laurent  expansion of the function

centred at Z naught that means you expand the function in positive and negative powers of Z

minus  Z  naught  that  is  the  Laurent  expansion  you  get  the  coefficients  are  the  Laurent

coefficients and the Laurent theorem says that there is such a Laurent expansion okay which

is in general valid in an annulus is alright and then you know that the nature of the Laurent

expansion to be more specific  the nature of the principal  part  or the singular part  of the

Laurent expansion tell  you what kind of singularity Z naught is, so you know that if the

Laurent expansion as only negative powers I mean it has only finitely many negative powers

of Z minus Z naught know it is a pole if it has no that is if the principal part has only finitely

many terms then it is a pole okay. 

If the principal part does not exists namely if the principal part is 0 then it is a removable

singularity okay and if the principal part has infinitely many negative powers of Z minus Z

naught then it is an essential  singularity okay this is this are trying to classify singularity

based on the Laurent expansion okay which is something that you know. Now the question is

what is an analog of this when Z naught is the point at infinity, not when Z naught is the point

at the complex plane but when Z naught is the point at infinity, so how do you get a handle on

this? How do you get a handle on this? 
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So you see so let me write that down, so my point is what is this Laurent series at infinity

which is rather funny thing again you know you must remember that the way you deal with

infinity is you have to be very clever, there are certain things you can do with infinity, there

are certain things you cannot do with infinity so for example when you want to define a



function to be analytic at infinity you do not take the road of trying to define it differentiable

at infinity because derivative at infinity is not defined is not easy you cannot define it so

easily, right. 

Of course you can go to another level of abstraction called what is called of what is called

Riemann’s surface okay and you can make the you can make the complex plane along with

the point at infinity namely the extended complex in into a Riemann’s surface and once you

have  Riemann’s  surface  and  you  have  a  holomorphic  function  then  you  can  talk  about

derivative at any point by you seeing local coordinates okay but then we do not want to get in

to that amount of generality you can look up that point of reasoning if you look at my video

course on Riemann surfaces which is available on the web okay but then let us not go to that

level of abstraction okay. 

At this moment at this level of our exposition we do not try to define derivative at infinity but

trying to say it is analytic at infinity you get away by using a drawing inspiration Riemann’s

removable  singularity  theorem  okay  by  simply  for  example  just  requiring  a  function

continues at infinity okay, so in the same way if you look at the Laurent series at infinity, how

do you define this? So see the idea of so you have to think like this, the idea of what is a

Laurent series see the whole point about Laurent series, a Laurent series is a generalisation of

Taylor series and what is  the Taylor series? Taylor series is  trying to express an analytic

function in terms of simple analytic functions. 

Functions which are simplest possible analytic functions, so you know if when I say Taylor

series of an analytic function at a point Z naught in the complex plane I am simply expanding

the function in powers of Z minus Z naught and I know Z… the powers of Z minus Z naught

they are they are simple function they are simple polynomials and I am trying to expand I am

trying to write the function a given analytic function as the limit of polynomials, after all a

power series for that matter any functional series is by definition when it converges is just the

limit of partial sums okay and if you take a Taylor series or a power series then the partial

sums are all polynomials okay and it is the limit of these polynomials that gives you the given

function okay which is the limit of the series. 

So the purpose of a Taylor  series is  to  expand a function as a series  in terms of simple

function is that is the idea okay and this is this is at the point where the function is analytic

okay but suppose a point you are in question is not a point of analyticity suppose it is a point

where  the  function  as  an  isolated  singularity  then  then  what  comes  in  is  the  Laurent



expansion, the Laurent expansion says that well you can still get an expansion of the function

in the form of the series but then now you will have to allow also negative powers okay. 

Now  so  in  general  we  think  of  philosophically  we  think  of  the  Laurent  series  as  a

generalisation of the Taylor series and the guiding philosophy is that  number 1 is  that it

allows you to expand the function in terms of simple functions that is point number 1, point

number 2 is that the Laurent series and the broken up into pieces, there is one part of the

Laurent series which consist of positive and 0 powers of Z minus Z naught Z not is the point

where you are looking at the Centre of the series that is called the analytic part of the Laurent

series okay and then there is also the part of the series that involves the negative powers of Z

minus Z naught which you call as the singular part or the principal part of the Laurent series. 

So you see the general idea of Laurent series is that it breaks the function into 2 functions, it

breaks the function into 2 pieces it expresses the function as a sum of 2 pieces. One piece is

the analytic part of the function at that point in the neighbourhood of the point, the other

piece is the principal part of the function at that point which is not analytic at that point okay.

Now using these 2 guiding philosophies you can also define what a Laurent series at infinity

means okay and well the point is that the point is as follows, so you suppose f of Z is analytic

at Z equal to infinity or let me not even start with analytic at infinity. 

Let me just say let me say this analytic at neighbourhood of infinity suppose f of Z is analytic

in  a  neighbourhood of  infinity  say  in  and you know for  obvious  reasons  let  me do the

following thing let me not use Z let me use W okay say in mod W greater than R okay so I

am using W as a variable because I will always you know when I want to study W at infinity

I will rather study you know there is one of the tactics that we have been using is that you

study W equal to 1 by Z at 0, so that is why I want to reserve W for 1 by Z okay, so suppose f

is analytic at neighbourhood of infinity say in mod W greater than R, so of course by this I do

not mean the function is analytic at infinity mind you okay, so you have to be a little careful

when I say function is analytic in a neighbourhood of a point in the complex plane it is

understood that the function is also analytic at that point okay but then when I am saying f of

W is analytic in the neighbourhood of infinity I am not necessarily meaning that it is also

analytic at the point at infinity. The point at infinity could is a singularity okay it is an isolated

singularity I did not know whether it is analytic or not okay. 

So let me let me state that we do not know we do not know if f is analytic at infinity okay.

Now what you do with this? Of course you know let us go by the philosophy that to study f of



W at infinity you study f of 1 by Z at 0 okay. The behaviour the behaviour of f of Z, f of W at

W equal to infinity is the same as the behaviour of f of 1 by Z which is g of Z mind you f of 1

by Z is the same as W, f of W where W is equal to 1 by Z at Z equal to 0 okay. Note that g of

Z  is  defined  in  defined  an  analytic  define  an  analytic  or  holomorphic  in  a  deleted

neighbourhood of the origin which is just given by 0 less than mod Z is less than 1 by R so

which is actually writing this mod W with greater than R in terms of Z okay putting W equal

to 1 by Z okay, so and 0 less than 0 strictly less than mod Z strictly less than 1 by R is a

deleted neighbourhood of the origin it is a circle I mean it is an interior of a circle with the

origin removed radius one by R okay. 

Now but then you know now you are looking at the point 0 in the complex plane and we have

Laurent’s theorem since now 0 is an isolated singularity g of Z okay and the idea is that a

nature of the singularity of g at 0 should be the same as the nature of singularity of f at

infinity okay that is the idea okay and of course you know why that is correct because Z

going to W which is Z going to 1 by Z is an isomorphism okay of deleted neighbourhood,

alright. So now g has a Laurent expansion okay so g has a Laurent expansion has a Laurent

expansion. 

So what is the Laurent expansion it is a of Z equal to Sigma n equal to minus infinity to

infinity a n Z power n, this is the Laurent expansion of g okay and mind you I am the Centre

of the expansion is the origin normally if the centres is the point Z naught and you have to

use powers of Z minus Z naught but here Z naught is 0 so use powers of Z and the point that

is a Laurent expansion at there are negative powers of Z included as well that is why this

summation is running from minus infinity to plus infinity and well so this is the g as it is.

Now you know what you must understand is that you know if you look at if you look at this

what does it mean for F, so what this will tell you is that see this is valid for mod Z less than 1

by R Z naught equal to 0 okay and if I plug-in see of course instead of Z I can put 1 by W

okay instead of Z can put 1 by W and g of 1 by W is just f of W okay. 

So this is the same as writing this is equivalent writing f of W is equal to Sigma you know n

equal to minus infinity to infinity a n W power minus n okay. So I can simply replace Z by 1

by W’s,  so Z power and becomes W power minus n and summation will run from again

minus infinity to plus infinity the only thing is that because I change my variable the powers

the power of the nth power of the variable has a negative subscript okay right, so this is well

this is the Laurent expansion but now so you know the point is that the Laurent expansion, so



this gives you a clue as to what you should call the Laurent expansion of f at infinity you can

very will call this expression that you have written for f as a Laurent expansion at infinity

okay because it is in line with a philosophy that it is expressing it as a series okay in terms of

simple functions, the functions are just powers of Z okay, so you can very will call this in on

the right this expression of f W as Laurent expansion of f at infinity that is fair enough but

then there is a little bit more to be seen. 
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You see if you write if you look at g of Z the Laurent expansion split into 2 pieces as I told

you, the Laurent expansion split into principal part is a single apart plus an analytic part okay

and the principal part or the single apart consist of negative powers of set, so you know let

me write this like this, so this is Sigma n equal to minus infinity to minus 1 a n Z power n

plus Sigma n equal to 0 to infinity okay a n Z power n okay there are 2 pieces and this fellow

here is the so what I have written here is the principal part is the principle or the singular part

at the at the origin okay and this part is the analytic part at the origin okay, so you know if

you want let me give symbols to these things, so this is so if you want this is g S of Z, g S of

Z is the single apart okay and this is g a Z is the analytic part alright. 

Now let us make this change of variable which is Z going to W which is equal to 1 by Z okay

and you know now watch carefully what is our philosophy? Our philosophy is that if you

change available from Z to 1 over Z okay then the behaviour at 0 at Z equal to 0 should

correspond to the behaviour of W equal to 1 by Z at infinity therefore if you go by this if I

transform g S of Z to W which is 1 by Z, what I should get should be the singular part at

infinity okay because g S of Z is a similar part of singular apart at Z equal to 0 if I transform



g S of Z I putting Z equal to 1 by W what I should get is a singular apart at infinity okay and

similarly if I transform g a of Z by putting Z equal to 1 by W I should get the analytic part at

infinity. 

So what do I get…see basically what I get is I get f of W you see is so I will get Sigma n

equal to minus infinity to minus 1 a n so I will get a W to the minus n plus Sigma here I will

get n equal to 0 to infinity a n W to the minus n and if you watch carefully so let me use a

different color at this point, if you watch carefully now you see this guy here this corresponds

to…what is this? This is just g S of 1 by this is g S of 1 by W okay because I have put Z equal

to 1 by W and but g s was a singular part and therefore g s of 1 by W should also be the

singular part so this should be in principle this must be equal to the single apart of f at f of W

okay and watch carefully this singular part of f at W has what powers of W? It has positive

powers of W okay it has positive powers of W because n is negative. 

So W to minus n as positive therefore the moral of the story is that if you write if you write

the Taylor series if you write a positive power series in a variable at infinity corresponds to a

singular part okay and that is very believable because as you go to infinity okay the partial

sums which a polynomial are going to go to infinity, so infinity is a pole actually therefore at

least for the partial (())(24:26) okay it is not bounded at infinity, so it is correct okay so the

whole point is that when you look at the…so the Taylor series at infinity should be thought of

I mean when you look at the Laurent series at infinity the principal part should will look like

a Taylor series at the origin it is because it is exactly that by the transformation Z going to 1

over Z okay. 

So this is the this is the similar part of f and then and then this guy here this is this is f a or W

which is g a of 1 by W and this is the analytic part at infinity okay so you see f of W is also

split into a singular part f S W plus f a of W which is an analytic part at infinity okay and

mind you the analytic part at infinity contains all the negative powers including the constant

because I have put n equal to 0 is also here, so a not is here in the analytic part of infinity and

so you see when you look at the variable at 0 okay then the analytic part consist of the non-

negative terms and the single apart consist of the negative terms but when you look at the

variable at infinity the analytic part consist of the negative terms and including the constant

and the principal part consist of the positive terms this is the this is exactly what happens and

it is correct okay. 



Now why do you thing that this analytic why do you think that the negative powers are the

portion of the expansion which involves the negative power is analytic at infinity? That is

correct because you see as variable approaches infinity the negative power approach 0, so

you see that it  is bounded essentially okay so it is analytic and because our definition of

analytic at infinity is either that it should be bounded or it should tend to a limit okay and no

positive power of a variable will ever tend to will ever be bounded or will ever tend to 0 if

you let the variable go to infinity okay. 

So everything is fine so you know so here is the so here is our definition our definition is you

take a function is an analytic in a deleted neighbourhood of infinity okay right out its Laurent

expansion  okay  basically  the  Laurent  expansion  is  the  Laurent  expansion  of  gotten  by

changing the variable to its reciprocal okay and then what you do is you take the positive part

of the Laurent expansion okay in the original variable and call that as a singular part okay and

the negative part including the constant term is what is called the analytic okay so now we

have this clear definition of what a Laurent series at infinity should mean okay, fine. 

Now once you have made this definition of Laurent series at infinity what you need to know

is that whether this fits in well with the theory that you do on the finite complex plane, so for

example  you can ask this  question  suppose you know for  a  point  Z naught  in  the  finite

complex plane a function is analytic at that point if you assume to begin with that that point is

an isolated singularity the function is analytic at that point if and only if you write the Laurent

expansion about that point it has no singular part its principal part is 0 okay so if you go by

that philosophy for the function f which is defined in a neighbourhood of infinity I mean for

which infinity  is  an isolated singular  point  the function will  be analytic  at  infinity  if  the

Laurent expansion at infinity as no singular part that is what should happen. 

Now does that happen? It does you see here is my function f W defined in the neighbourhood

of infinity its singular part is this is this part which consist of positive powers of W okay, if

that singular part is not there okay that means that I can express f only in terms of negative

powers of W then that is of course analytic at infinity cause all these go to 0 as W goes to

infinity okay. So the moral of the story is that our definition is correct, so you know the point

is that sometimes you may have to make definitions based on certain philosophy and then

you have to check whether it  matches with what happens, what you expect to happen as

morally correct okay, so from this it is very clear that a function is analytic at infinity if and

only if its singular part at infinity vanishes okay. 



If you take the Laurent expansion at infinity okay then its singular part vanishes so let me

write few things so this is the this is called the singular part of f W at infinity and this guy

here is called the analytic part of f W at infinity and now you know if you if you look at it in a

very simple way you know when you are looking at infinity? The good functions are negative

powers of W because they go to 0 and the bad functions of positive power is W because we

go to infinity so if you expect a function to be good at infinity it should be expressible only in

terms of negative powers of W and that is why we negative powers of W along with constant

that part is analytic part at infinity okay. 

So the definition is very clear and with this definition you see that Riemann’s removable

singularity theorem is also valid in its various forms at the point at infinity a function namely

a function which has infinity as an isolated singularity has that singularity as a removable

singularity if and only if it is bounded in a neighbourhood of infinity, if and only if it tends to

a limit at infinity and that is also equivalent to saying that the Laurent series at infinity as no

single part they are all equivalent okay, so you get the same version of the theorem as you

would get in the case of a finite point, a point in the usual complex plane okay, so everything

fits well. The only thing that does not work is trying to define a derivative at infinity that does

not work okay, fine. So now what I am going to do is I am going to ask this question as to

what it means to having the removable singularity at infinity for example for a good function

For example a function like an entire function okay so what does it mean and you will see

that travel throughout connections with Liouville’s theorem and so on so see so let us analyse

this. 
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Suppose that f of W as W equal to infinity as removable singularity okay so f W is f analytic

so it has no singular part it has only the analytic part of it expansion and that is what this is

writable as the you know the analytic part of the expansion at infinity will involve a negative

powers of the variable and also the constant term so it will be n equal to 0 to infinity if you

want I can call it as b n W power okay so this is the analytic part at infinity, now let us

analyse what it means say that the function is For example you know entire, suppose…so I

am looking the following case suppose I have an entire function and suppose it is analytic at

infinity, what happens? 

We will  see that  it  will  reduce  to  a  constant  okay and that  is  just  another  avatar  of  the

Liouville’s theorem okay so how do you see that see suppose f has a removable singularity at

W equal to infinity then f of W have this expansion which is analytic at infinity then you see

g of Z which is f of 1 by Z where I put W equal to 1 by Z what I will get is I will get Sigma n

equal to 0 we infinity I will get B n Z power n which is you can see that that is clearly Taylor

series at the origin it is a power series at the origin okay centred at the origin, so it has to

represent an analytic function and that is correct because f is analytic f W is analytic at W

equal to infinity if and only if g Z which is f of 1 by Z that is analytic at Z equals to 0. Let us

go back to Riemann’s removable singularity theorem okay saying that f is saying that f is

analytic at infinity is the same as saying that f is bounded at infinity okay so it means f is

bounded in a deleted neighbourhood of infinity alright. 

So  by  Riemann’s removable  singularity  theorem f  is  bounded  so  I  am using  bdd as  an

abbreviation for bounded at W equal to infinity, so f of W if you want so that exist an positive

constant M greater than 0 such that you know mod f of W is less than M for if well if mod W

if  mod W is greater  than R okay so this  is  this  is  what bounded at  infinity  means.  In a

neighbourhood of infinity the function in modulus can be bounded by positive constant okay

and this is this is equivalent to infinity being good point namely it is equivalent to infinity

being a removable singularity okay. Now watch, see for mod W less than or equal to R, so

mod W greater than R the modulus of the function is bounded by M okay and look at mod W

less than or equal to R. I am using the assumption that so I am putting this extra condition

that f is entire and mind you I am saying f is entire as a function of W okay. 

So I  am trying  to  look at  an entire  function  which is  having a  removable  singularity  at

infinity, so f of W itself is an entire function even for W finite okay, so you see if f of W is

entire okay then you know f is analytic at 0, so is analytic at 0 okay f is analytic at 0 because



the entire function supposed to be analytic at every point, at every finite point, so if when I

say f of W is entire as a function of W it should be analytic at for all values of W in the

complex plane in particular it should be analytic at 0 and if it is an analytic at 0 and you know

if you write out it should tend to limit as W tends to 0 okay but then look at this expression,

look at this expression these expression mind you normally this expression will be will be

valid it is supposed to be a Laurent expansion at infinity. 

So it should be valid only in a neighbourhood of infinity but since the function is entire it is

valid everywhere, it is valid on the whole on the whole complex plane, so it is valid at 0 also

okay and if it is valid at 0 you can see all the b n for n nonzero they all should be 0 okay

because the moment I get negative power of W at W equal to 0 it is not going to give you a

finite limit is going to go to infinity because is going to become like a pole okay so the moral

of the story is that if you assume f is entire then f is analytic at 0 and this will imply that all

the b n is 0 for n not equals 0 and this this implies that f is a constant okay, so that is very

obvious so all am trying to say is that if you have an entire function which has a removable

singularity at infinity then it is a constant. 

What is the Contra positive of that? The Contra positive of that is supposed you have a non-

constant  entire  function  then  infinity  is  certainly  not  a  removable  singularity, for  a  non-

constant entire function infinity cannot be a removable singularity because the only entire

function entire functions which are analytic at infinity are constants okay and you can the

reason why I got into this  this  stuff about modulus is  because I  want to  say that  this  is

actually another avatar of Liouville’s theorem see because you see, look at this look at this

stuff  that  I  have  written  in  between  see  f  is  analytic  at  infinity  so  outside  a  circle  of

sufficiently large radius mod W greater than R, mod f W is bounded okay but if you look at

the if you look at the interior of that circle and the boundary of that circle I will get mod W

less than or equal to R and you see mod W less than or equal to R is a compact set it is both

closed  end  bounded  and  I  have  assumed  f  is  entire  so  it  is  continuous,  you  know in  a

continuous function on a compact set is bounded because the image of a compact set under

continuous map is again compact and compact is will imply bounded. 

So what this will tell you is that, there is a bound for f even in mod W less than or equal to R

that combined with the bound for mod W greater than R will tell  you that f is an entire

function which is bounded on the whole plane and then Liouville’s theorem will tell you that

f is a constant, so that is the point and I want to tell you, I want to tell you that see this



argument that an entire function which is analytic at infinity is constant is actually another

avatar of Liouville’s theorem okay it is actually another avatar of Liouville’s theorem that is

what you have to understand, so the moral of the story is that whenever you are looking at a

non-constant entire function infinity is certainly a singularity it is a (())(40:13) it is not a

removable singularity, so it can either be a pole or it can be an essential singularity it cannot

be  removable  singularity  okay  and  the  only  exemptions  are  constants  which  are  very

uninteresting okay, so I will stop here.


