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So what I want to do is you know try to tell you about some other important theorems which

are connected with normal families, okay. So the theorem that we are going to look at today

is called Royden’s theorem, okay. And the whole point about the theorem is that you know

whether you can decide the normality of a family if you have a growth condition of the

derivatives, of the functions in the family, okay. So remember that normality is connected

with the derivatives, okay. Montel’s theorem will tell you that you know is for family of

analytic  functions,  normality  is  the  same as  saying  that  the,  you know the,  the  original

functions are themselves normally uniformly bounded, okay.

And the 1st, the Caushy’s integral formula will then tell you that the derivatives will also be

you normally uniformly bounded. And the normal uniform boundedness of the derivatives

will give rise to equi-continuity, okay and then you are in Arzella Ascoli kind of situation and

you will get normal sequential compactness, okay. And then the same kind of thing, that the

same kind of philosophy with Marty’s, with Marty’s theorem as well because in that case you

are looking at meromorphic functions. And then the theorem says that the normality of a

family of meromorphic functions is directly the same as the the normal boundedness of the

spherical derivative, okay.

So you have to take derivatives with respect to the spherical metric, all right. And then, so but

mind you normally whenever  you have  a  family of  functions  that  whose derivatives  for

example you have a family of functions which satisfies liveshe’s condition, okay. That is a

difference  in  the  function  values  are  bounded  by  a  constant  times  the  difference  in  the

variable  values,  okay.  This  is  a  kind  of  condition  that  you  will  get  if  for  example  the

derivatives are bounded, okay. So basically if you have liveshe’s that condition, which is how

you must think of condition vary derivatives are bounded.

Whenever you have liveshe’s that condition, then you are actually getting equi-continuity and

then you can apply Arzella Ascoli theorem to get normal sequential compactness, okay. So

here is, so what we are going to look at today is Royden’s theorem which says that if we have

a family functions, okay and assume that the, the derivatives of the family, so I am looking at,

either again I can look at analytics functions or I can look at meromorphic functions, only

thing is that if you look at analytics functions, I mean I must consider the derivatives well-

defined. So if they are meromorphic functions, I should not worry about the derivatives at the

poles, I am not, in principle I am not looking at the spherical derivative, okay.
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I am looking at ordinary derivative that all points other than poles, okay. So if the derivatives

grow at most likely an increasing function of the original functions, okay, then the family is

normal, this is Royden’s theorem, okay. So let me write this down, so Royden’s theorem,

suppose script F is a family of analytic functions on a domain D in the complex plane, such

that there exists a strictly increasing function , so this is a function psi from nonnegative real

numbers are nonnegative real numbers.  So it  is strictly increasing function,  such that the

modulus of the derivatives of the functions of the family are bounded by psi of the modulus

of the function. Okay.

So this is the, this is the condition in Royden’s theorem, the condition is that the derivative of

your, the functions in your family the way they grow is utmost like an increasing function of

the growth of the original functions. So what is, what is there on the right side is psi of mod F,

okay, mod F indicates the growth of F, okay and modulus. And psi of mod F is the psi of the

growth of, it says that psi of mod F will be an increasing function of mod F because psi is an

increasing function. So what you are saying is that the, the derivatives grow as an increasing

function of the original functions, okay.

Then, then the family F is normal, okay. And the significance of this is that you know because

of  Montel’s theorem,  this  will  tell  you that  the  family  is  going to  be  normal  uniformly

bounded, okay, it also tells you that the derivative will also be normal uniformly bounded,

okay. It is a, it is a very powerful condition all right. The point is that when you look at this

conditions at looks as if, you know the derivatives are growing pretty fast, okay. It looks as if



the derivatives are going see what you want is the derivatives to be bounded on compact

subsets, okay.

You want derivatives to be normally uniformly bounded, that means you want them to be

uniformly  bounded  on  compact  subsets,  which  means  on  a  compact  subset  you  want  a

uniform bound, okay. But the point is that what this says is that the derivatives are growing

but the growth is at most like an increasing function of the modulus of the original functions,

okay. So it looks, directly does not look as if this is going to lead to normality but the theorem

is that it does lead to normality. And the reason is that this is also a kind of boundedness of

derivative  with  respect  to  different  kind  of  metric  on  the  Riemann sphere  which  can  be

defined using psi, so that is the whole idea.
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So, so let me write this, let me write the proof, so this is the proof. Firstly, assume that psi of t

is you know less than or equal to 1+ t square by 2, okay, suppose you assume this. Because I

want to then consider the case when it is better than or equal to 1+ t square by 2, suppose I

assume this, all right. Then you see if you can split the spherical derivative of any function in

the family, what I will get is F hash of Z is what, it is going to be by definition 2 times mod f

dash of Z divided by mod F of Z the whole square. This is what it is, all right, this is a

spherical derivative.

Mind you these  are  all  analytic  functions  but  I  can  also  consider  them as  meromorphic

functions and spherical derivatives are defined, okay, even for meromorphic functions. So

now you see condition is that mod F dash is supposed to be less than equal to psi of mod F,



okay, this is the, this is the condition of the theorem. I can write this as less than or equal to 2

psi of mod F divided by 1+ mod F the whole square, all right. But then 2 psi of mod F by 1+

mod f the whole square is less than equal to1, that is because of this, okay. So if I, if I assume

psi of t  is 1+ t  square by 2, then all  the spherical derivatives are bounded on the whole

domain.

And of course you know, if the spherical derivatives are bounded on the whole domain, then

Marty’s theorem tells you that this is equivalent to the normality of the family. Okay, so this

is just equal to normality of the family, considered that the family of meromorphic functions

but that is also the same as the normality of the family, considered as a family of analytic

functions, the only thing is that you should allow the possibility that you can have normal

convergence to the functions as identically infinity, okay, when you consider the spherical

metric.

So, so you know the case when psi of t is less than equal to 1+ t square by 2 is trivial, all

right, it is just because of Marty’s theorem. Then by Marty’s theorem, so let me write this

down, F is normal, okay. So assume the other possibility that psi of t is greater than or equal

to 1+ t square by 2 for beyond a certain stage t greater than or equal to t0, okay. I can replace

the function psi of t by another function for which the same condition holds with t great than

or equal to 0, okay. That means I am saying that without loss of generality I can assume t

greater than, t0 equal to 0.
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And why is that, so because, you just have to put psi 1 of t to be equal to psi of t plus t0, if

you do this, all right. Then you know psi of t plus t 0 is certainly going to be equal to, going

to be greater than equal to 1+ t plus t0 the whole squared by 2, that is if t greater than equal to

0. So mind you psi of t is greater than or equal to 1+ t square by 2 provided that t is greater

than t0. So I need so I need t plus t0 greater than t0 and that is the same as t greater than equal

to 0. I will get this, But then of course this is rather than equal to 1+ t square by 2, okay.

And, so the, so you know if psi of t is greater than equal to 1+ t square by 2 for t greater or

equal to t0, I can replace psi of t by psi 1 of t, which psi 1 of t greater than or equal to 1+ by2

for t greater than equal to 0, okay. And the point is that psi 1 of t is certainly greater than psi

of t because psi 1 of t is psi of t plus something and psi is increasing. So psi 1 of t will be also

greater than equal to psi of t, this will also be true and the point is that , this is of course

because psi is increasing. And therefore what will happen is that you would have got mod F

dash is going to be less than or equal to psi of t which is less than or equal to psi 1 of t, okay.

So all these considerations tell you that without loss of generality, you can assume psi of t to

be greater than or equal to1 plus t square by 2 for t greater than equal to 0, okay. So without

loss of generality, we may assume, we may assume that that psi of t is greater than or equal

to1 plus t square by 2 for t greater than or equal to 0, okay, we can do that. Now, namely if

not you replace psi by psi 1 and call psi 1 as psi if you want, all right again. So then the next

deduction I am going to make is that I am going to assume that psi is also continuously

differentiable function of t, that is because psi is a monotonic function, okay and I can always

approximate it to by a continuously differentiable function, okay.

So we can also assume that psi dash of t exists and it is continuous. This is the same as saying

psi is C1, okay, continuously differentiable function. You can do that because after all the can

replace psi by any bigger function, okay. And you can replace psi by a bigger function which

is smooth, okay, you can always do that. And well, now you know what one is going to do,

you are going to, one is going to use the psi to give a metric on the Riemann sphere. Okay.

And look at the induced metric on the domain in your complex plane.
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So what you do is, for Z1, Z2 in the domain, defined d psi of Z1, Z2 to be equal to , you need,

you take integral from Z1 to Z2, okay, along any smooth path along any piecewise smooth

path even contour, okay. And what you integrate is that, this is integration, you integrate mod

d Zeta by psi of mod Zeta, okay. See notice and of course you will take the, you could take

the infimum of all this. So this is, this integral is over gamma, so infimum over all gamma,

that gamma is a smooth or piecewise smooth path from Z1 to Z2. You take all possible paths,

contours from Z1 to Z2, integrate along that, this, this quantity, mod D Zeta by psi of mod

Zeta okay.

And notice that, you know the point is psi, please try to understand, psi is greater than, psi of

t is greater than 1+ t square by 2. So 1 by psi will be bounded by 2 by 1+ t square, 1 by psi

will be less or equal to 2 by 1+ t square, okay. And 2 by 1+ t square is 0, that is the, that is a

form of the integrand that you have to put very what is spherical metric, okay. 2 by 1+ t

square is bounded as t goes to infinity if you want. So the integral is always nicely defined,

the. So you and you take this infimum, all right, then the point is that this is a, this gives a

metric on the, on d sub psi the way I have written it, gives a metric on the on the Riemann

sphere, okay, or you can think of it also has a metric on D where D is identified with its

image on the Riemann sphere of you want.

But the point is that this gives a metric, right and you know in particular and infimum of a set

of quantities is always less than or equal to each of those quantities. So if for gamma I had

taken the straight-line path from Z1 to Z2 this is also less than or equal to integral from Z1 to

Z2, okay, straight-line path, straight-line segments from Z1 to Z2 of this quantity mod D Zeta



by psi of mod Zeta, okay. And the point is that , see but the point is that this is bounded, see 1

by psi zeta is bounded by 2 by 1+ modern zeta the whole square because that is exactly, that

is this condition, right.

We have assumed psi of t is greater than or equal to 1+ t square by2, okay. So 1 by psi of

Zeta, psi of mod Zeta is going to be , this is going to be bounded by 2 by 1+ mod of Zeta the

whole square, okay. You have this, so this is bounded by integral from Z1 to Z2 mod d Zeta, 2

mod d Zeta by 1+ mod Zeta the whole square. But what is this, this is actually a spherical

length from Z1 to Z2, so this is just d spherical from Z1 to Z2. So what you are proved is that

d sub psi is a metric which is bounded above by the spherical metric, okay.

But the point is that, for the spherical metric the Riemann sphere itself is compact, okay. It is

compact with respect to the spherical metric because you know the spherical distance, the

maximum spherical distance is, there is a maximum to it, it is, you know it is the it is going to

be just the half the circumference of the sphere of the radius 1, okay. It is going to be namely

it is going to be just pie, that is the maximum distance you can get on the Riemann sphere.

The Riemann sphere is a sphere of radius 1, okay. Then any great circle on it we have radius

2 pie, and we have circumference 2 pie, okay.

And the maximum distance you can get is from the, for example from a point to its anti-podal

point, for example from the North Pole to the South Pole, North Pole representing infinity,

South Pole representing 0. At the maximum distance you get is pie. So it is a space with finite

diameter, I mean it is compact, okay. And the point is that in a for a compact space okay, if

one  metric  is  bounded  above  by  another  metric,  then  these  2  metrics  are  uniformly

equivalent, okay. 
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So the point is that since the Riemann sphere, so the Riemann sphere, sphere or you can just

consider  C  union  infinity  or  the  external  complex  plane  is  compact  with  respect  to  the

spherical metric, okay, we have that , these 2 metrics d psi and ds are strongly equivalent. So

at this point let me very quickly tell you about the strong equivalence. See if we have 2

metrics on a space, we generally say that these 2 metrics are equivalent if they induce the

same topology, okay. This  is  called  weak equivalence.  Now what  is  strong equivalence,

strong equivalence is a condition that each metric is bounded by the other metric by up to a

constant, an absolute constant.

So if you have 2 metrics D1 and D2 on a space X, these 2, to say that, to say that D1 and D2

are equivalent for X, means that the topology induced by D1 is the same as the topology

induced by D2. One of the sufficient conditions is that every ball in D1 contains a ball in D2

and every ball in D2 contains a ball in D1, okay, the nesting of balls condition as it is called,

okay. So this  is  just  to  say that,  the  2 metrics  are  topologically  equivalent.  But  there is

something called strong equivalence, strong equivalence is that, the 2 metrics, each metric is

bounded above by the other metric up to multiplication by an absolute constant.

So if the 2 metrics are D1 and D2, you should get D1 less than or equal to Lambda D2 and

you should get D2 less than or equal to mu D1, you should be able to find such absolute

constant. If you are able to find such absolute constant, these metrics are said to be strongly

equivalent. Now, of course strongly equivalent means equivalent but what is the beauty about

the strong relevance is the following. See, if you on a space, suppose you are considering

functions, continuous functions, okay, then it will change metric to an equivalent metric, that



is you changed it up to weak equivalence, that is a change metric by another metric which

gives you the same topology, continuity will not be affected, because after all you have not

changed is the topology, continuity, it just depends on topology.

But the problem is uniform continuity will become a problem, okay. If you have a uniformly

continuous function, okay on a subset, suppose you have a function which is continuous,

which is uniformly continuous on a subset with respect to one metric, if you replace that

metric by an equivalent metric, the uniform continuity may not be preserved. If you want also

the  uniform  continuity  to  be  preserved,  you  should  replace  the  metric  necessarily  by  a

strongly equivalent metric, not as by any other metrics which gives the same topology.

So what will happen is that if you change metric by just another equivalent metric, namely

you do not, you are only worried about the topology, what will happen is that a function

which is continuous uniformly with respect to one metric may fail to be uniformly continuous

with respect to other metric. But you want to preserve uniform continuity, you have to replace

the metric only by a strongly equivalent metric, okay. And the point is that you see if you

have 2 metrics on a space, such that one metric bounced, is an upper bound for the other

metric and the boundary metric with respect to the boundary metric the space is compact,

then it also means the, this some multiples of the, of the smaller metric, some multiples of the

smaller  metrics  also  point  the  larger  metric,  that  can  be  grouped,  okay,  because  of

compactness.

Therefore the  bounding of  one  metric  by another  on a  compact  space,  where the  bigger

metric, while the space is compact with respect to the bigger metric, will tell you that they are

strongly equivalent, okay. Now you know why I am saying all this, I am just saying all this to

tell  you that,  you know if  you are looking at  a family of functions,  you know to decide

uniform  continuity  with  respect  to  the  spherical  metric,  I  can  as  well  decide  uniform

continuity  with  respect  to  the  metric,  any  metric  that  is  strongly  equivalent  to  spherical

metric, okay.
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So this applies to uniform continuity, it applies to equi-continuity and things like that, right.

So we are  now more  or  less  done,  see,  now what  you do is  that,  now you look at  the

following thing. If you calculate for small f and script F what happens is that if I calculate the

under the new metric d sub psi if I calculate f Z1 f Z2, what will I get, this is going to be

infimum over all contours from Z1 to Z2, integral from Z1 to Z2, long that contours gamma,

mod d zeta by psi of mod zeta, this is what this, with you know this solution zeta equal to f Z,

okay, this is the definition.

And you, well what is this going to give me? See notice that this is, being an infimum, this is

certainly less than or equal to you now the integral over the straight line segment. So if I take

this integral over Z1 to Z2 and I take the straight line segment, what I am going to get is mod

D zeta by psi of mod zeta and of course psi, zeta equal to Fz, so if I do that, I am going to get

integral from Z1 to Z2 along the straight line segment of some I will get mod f dash of Z into

mod d Z because that is what D zeta will be. 

And I will get mod, divided by psi of mod f Z, okay. But then what is my, what is, what is the

hypothesis in the theorem? The hypothesis in Royden’s theorem is that the numerator mod,

the numerator of the integral mod f dash of Z is bounded by psi of mod fz. So it means that

this integrand is less than or equal to 1. So you know what it means that this is less than or

equal to integral from Z1 to Z2 over the straight line segment of you know mod DZ. But you

know integrating mod DZ will  give you just  you Euclidean metric,  okay. So this will be

simply mod Z1 minus Z2, this is all I am going to get, okay.



So, all right, so what have we proved, we proved therefore, that what is there on the left side,

on the left side I have D psi of f Z1, f Z2, you prove that this D side of f Z1, f Z2 is bounded

by, is mod Z1 minor that too. That is the Livshe’s condition, that is liveshe’s condition on the

f with respect to the new metric D psi on the Riemann sphere. But the moment you have

liveshe’s  condition,  it  implies  equi-continuity.  So  it  means  that  the  family  F  is  equi-

continuous, okay. This family script F is equi-continuous with respect to the metric D psi. 

But  then  D psi  is  strongly  equivalent  to  D s,  therefore  the  family  script  S is  also equi-

continuous with respect to the spherical metric but if it is equi-continuous with respect to the

spherical metric, I am in the sum I am, I can use as in the prove of Marty’s theorem, I can use

Arzela Ascoli theorem, I can use the diagonalization argument to conclude that the family is

normal and that is the proof.
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So thus script F is equi-continuous on D with respect to the spherical metric but since the

spherical metric, sorry, the script F equi-continuous with respect to D psi but since D psi is

strongly equivalent to the spherical metric DS, script F is equi-continuous on D with respect

to the spherical metric. Now by the Arzela Ascoli theorem and the diagonalization argument,

we conclude script F is normal, it is a normal family, okay. So that is the proof of Royden’s

theorem.  So  the  whole  idea  is  that,  this,  this  Royden’s  condition,  is  actually,  Royden’s

condition translates to a liveshe’s condition when you use different metric on the Riemann

sphere, okay.
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So what is the, what is the advantage of, what is the advantage of this? The advantage of this

is we can apply it to an example like this, let D be a domain and script F be the set of all

functions f analytic on D, such that mod f dash of Z is bounded by e Power mod f Z, look at,

look at functions like this. Mod f dash is bounded by e Power mod f, okay. Now then this

family is normal, because here e Power mod F is the function e Power t and E Power t is of

course a smooth, it is an increasing function of t for t greater than equal to 0 and you can

apply Royden’s theorem.

So you know you get  this  nice condition that  if  you are looking at  a family of  analytic

functions whose derivatives grow at most as exponent, grow exponentially as the functions

from other derivatives are F dash from other derivatives of the function are given by F dash,

okay. And their moduli, mod f dash, that is the rate at which F dash grow and mod F dash is

bounded by, is at most by e Power mod F, that is the condition. So, so the function involved is

e Power t which is increasing function of t, all right.

And you know, mind you this is for any domain, for example if you are taking the domain to

be the whole plane, okay, e Power mod F, e Power mod F is a kind of exponential growth and

it seems to be, even if you put mod f dash is equal to E power mod F, it looks like that the

derivative  is  growing  exponentially  as  the  original  function.  But,  so  it  looks  as  if  the

derivatives, it seems as if the derivatives cannot be normally uniformly bounded. Because

whenever  there is  something growing exponentially, you are worried about  boundedness,

okay.



So if you take a compact subset of the domain, all right, one is worried whether, you know

whether  the derivatives  will  be  bounded.  But  the  truth  is  that  they will  be and it  is  not

obvious,  it  is  not  an  obvious  result.  What  you  have  is  the  derivatives  are  growing

exponentially,  okay,  as  the  original  functions  and  from  that  try  to  conclude  that  the

derivatives  are  bounded  uniformly  on  any  compact  subset  is  a  great  thing.  So  you  see

Royden’s theorem will now apply, it will tell you that this family is normal but if this family

is normal, Montel’s theorem will tell you again or you can directly even use Marty’s theorem,

Marty’s theorem will tell you the spherical derivatives are bounded, okay.

And if you want use, you can use Montel’s theorem which will tell you that the original

functions are themselves normally uniformly bounded. So if you take a compact subset of the

domain, then the functions are themselves uniformly bounded and Cauchy’s integral formula

will then tell you that the derivatives of the functions are also normally uniformly bounded,

they are bounded on a very compact subset which is not obvious because the derivatives

seem to be growing exponentially as the functions. So that is the significance of this theorem,

okay. 
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And it has got to do with the study of normal family and that is the reason why I wanted to

present it here, okay. So I will stop here. So let me complete this sentence, I will just say that,

then by Royden’s theorem, script F is normal in particular the derivatives of f belonging to

script F are uniformly bounded on compact subsets of D which is, which is quite surprising,

given that the original condition was, just that the derivatives are going exponentially with

respect to their functions, okay.




