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Okay, so we have seen in the last  lecture the famous theorem of montel or normality of

families and what it says is that suppose we have a family of meromorphic functions defined

on a domain, the domain can be extended complex plane. To decide that the family is normal,

all you have to do is to ensure that all the functions in the family do not take 3 distinct values

in the extended plane,  okay. And you know because you are working with meromorphic

functions, you have to allow the value infinity because that is the value that a meromorphic

function at a pole will take, okay.

And but of course you are looking at a family of analytic functions, okay, then the condition

is much more simpler, you have to just find 2 complex values which the functions in the

family do not take and if  that is true then the family is  normal,  okay, there is  this  great

theorem of montel. And you see it is the key to proving the picard’s theorem which we will

do, right.
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So, so, so here is picard’s big or great theorem, okay. So you know what the theorem is. The

theorem is that if you take a function which has an isolated essential singularity, then the

image of any neighbourhood of that singularity is either the whole complex plane or it is a

complex plane minus the single value, okay. That means, it means, it means that it can at

most omit one complex value, all right. And what is the restatement, the restatement is that if

it omits more than one value, if it omits 2 values, that is something cannot be, that is not

possible, okay.

So what we will do is we will assume that it omits 2 values and then use the montel criterion

that the resulting family of zoomed functions is normal, okay. And examine the limit of the

zoomed functions and that will give you the proof, okay. So let me state it, let f of z, let f be,

let f have an isolated, let f of z have an isolated singularity at z equal to z0 , then the image

under f of any deleted neighbourhood of z0 is either all of complex plane or omits at most

one value in c. So this is the picard’s theorem, okay.

And of course this is valid for every neighbourhood, it means that you know it will take

except for one value which it might omits, all other complex values it will take infinitely

many times because you, if you find the point where it will take that value, then you can find

a smaller neighbourhood, you can take a smaller neighbourhood, deleted neighbourhood of

z0 and in that neighbourhood also again it has to take that value and can go on like this,

therefore  it  will  take  every  value  except  one  value  infinitely  many  times,  okay. That  is

amazing behaviour of function, analytics function around an isolated essential  singularity,

okay.
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So  this  is  the  theorem  and,  so  what  is  the  proof?  The  proof  is,  by  contradiction,  by

contradiction, by contradiction using the zooming process. So you know the zooming process

has been, we had been using it right from zaltzmann lemma, okay and you know what is the

main idea behind the zooming process? The idea behind the zooming process is, as you zoom

into a normal point, then all those zoomed functions will converge normally to a constant

function. And if you zoom to a non-normal point, then all the zoomed functions will converge

to a nonconstant meromorphic function. Okay that is the, basically the principle, all right.

So what we will do is, so assume f omits 2 values in f omits 2 values in c in some deleted

neighbourhood 0 less than mod z minus z0 less than say rho, okay. So you have to show that f

takes either take all values or it will take all values except 1. So if you want to contradict that,

you have to assume that it omits at least 2 values, okay. So let us assume that, all right. So

you, what you do is, so here is my diagram. So i have, so this is the, this is the complex plane,

this is z plane and i have this point z0. And you know i, there is this small disc surrounding

z0, radius rho, this disc with radius rho and on this disc f does not take 2 values, 2 complex

values.

That means there are 2 distinct complex values which f will take, it may not take many more

values also but at least 2 values of it misses, okay. And what am i going to do, i am going to

construct a sequence of zoomed functions. So what is the sequence of zoomed functions,

what you do is, well take any, take any, so before that let me write it ideologically. Zoom into

the function f at z0 itself, okay. Mind you the function in, z0 is an isolated singular point, it is



an essential single point, therefore the deleted neighbourhood of z0 in this deleted disc, this

punctured disc centred at z0 and radius rho, you throw out the point z0.

In the punctured disc it is the function is analytic, mind you, okay. And what i am going to

do, i am actually going to zoom in to z0, okay, i am just going to zoom in to z0 and how do i

zoom in to z0, by taking smaller and smaller, discs of smaller and smaller radii which are

centred at z0. And of course i have to exclude z0 because z0 is a point of singularity of f. So

what you do is, zoom in to z0 and so let me say that is take a sequence epsilon n tending to 0,

0 less than epsilon n lesser than rho, okay. So you take a sequence of smaller and smaller

radii, okay.

And let gn of zeta be the zooming of f the same function f centred at z0 , the scaling factor is

1 by epsilon n and the variable is that, okay. So this means that you are just taking f of z0 plus

epsilon n times theta, this is a function. So this is what my gn is, so i am using that single

function and constructing a family of functions. Using the single function f i am constructing

a family of functions gn, okay. And where are these gns defined? So you see, this is the z

plane and then if you look at correspondingly, we have the, you have, this is a complex which

is the z plane, then i also have complex thing which is zeta plane, okay.
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And in the zeta plane what happens is that, you know if i take, if i take this disc centred at the

origin and radius, if i take the radius to be rho by epsilon n, okay, that is for mod zeta less

than epsilon n, mod, epsilon and theta will be less than rho. And therefore this is the, so this is

the disc in which gn is defined by the only thing is it is not defined as the origin because at



the origin the origin corresponds to z0. And f at z0 is not defined because z0 is a singularity

of f, okay. 
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So let us write that down, gn is defined, so let me write this here, gn of zeta is defined in a 0

less than mod zeta less than rho by epsilon n. And of course you know the point about this

whole business is  that  this  epsilon n tends to  0+, rho by epsilon n tends  to infinity  and

therefore gn zeta is going to be, you can talk about convergence, normal convergence of gn

zeta on the whole punctured plane,  okay, except  that,  the whole plane except the origin.

Because eventually any compact subset of the punctured plane other than which does not

contain the origin is going to be, is going to be contained in the domain of gn zeta for n

sufficiently large, okay.

So, so let me write this down, note that any compact subset of c not containing the origin, the

origin is going to be in the domain of definition of gn zeta for n sufficiently large, okay. So

now, now i want you to just watch. See after all,  you know the, the values of gn in this

punctured disc centred at the origin o and radius rho by epsilon n correspondence to exactly

the values of f in the punctured disc centred at z0, the values of f inside this whole disc,

punctured disc centred at z0 radius rho, they are exactly the values of gn, in the punctured

this centred at the origin, radius row by epsilon n, because this is just a scaling and data

solution, okay.

Now you see now you know f, but what is, what have we assumed about f, we assumed that f

omits 2 complex values, f is analytic function and it omits at least 2 complex values in this



disc, punctured disc centred at z0 radius rho. Therefore each of the gns will also omit those 2

values in  their  domains,  okay. And of course each of the gns are  also analytic  functions

because they differ from f only by bilinear transformation consisting of scaling under and

incarceration. But now you know we are in good shape because what we have done you

know, we have been able to get a family of, we have been able to get a family of functions

gns which are analytic and which omit 2 values.

Now immediately montel’s great theorem will tell you that there has to be a normal and you

get a convergence of sequence and then you have to examine the limit, okay. And the limit

will  give  you contradiction,  all  right.  So basically  the  contradiction will  be set  the  limit

function at the origin will, examining the limit function at the origin will tell you that the

origin has to be either pole or removable singularity for f which is not true. I mean analysis of

limit function will tell you that the, you take this limit function, this limit function will also

be defined on the punctured plane, okay.

Because  all  the  original  gns  are  all  defined  outside  0,  okay, so  if  you analyse  the  limit

function. See the limit function is like zooming into f at z0 infinitely many times, okay. So

behaviour of the limit function at the origin which is an isolated singularity will reflect upon

the behaviour of f at z0. And by analysis we will show that if you analyse the limit function,

there are only 2 possibilities z0 should either be removable singularity or it has to be a pole

and both of these contradictions because i have assumed z0 at f to be a essential singularity,

okay. And that is how the proof goes, so it becomes as simple as that.
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So let me write this down note that gn is a normal family as it also does not assume the values

that f omits, okay. So, so what does it mean, it is a normal form means, it means that you

know, and it is a normal family and mind you for gn because it is a zoomed function, whose

domains are becoming bigger and bigger and bigger, you can think of them as a normal

family  you  know  in  with  a  limit  in  the  punctured  plane,  all  right.  So  what  you  must

understand is that if you take, for example if you take the punctured unit disc, okay, to take

the punctured unit disc then for n sufficiently large, all the gns are going to be defined, their

domains are going to become bigger and bigger and they are going to contain the punctured

unit disc, okay.

So you can see that if you want to take the, if you want to talk about the domain of the gns,

okay, you can assume that for n, p on, for n sufficiently large the domain contains unit disc if

you want. Or for that matter, any finite disc with of course the origin omitted, okay. And

when you take the limit function that is because gn is a normal, is normal, if you take the

limit function, the limit function will be defined on the whole punctured plane because it will

make sense, because you are covering every point in the plane literally. Because for every

point  in  the  plane  if  you  take  epsilon  n  sufficiently  small,  rho  by  epsilon  n  becomes

sufficiently large and gns beyond a certain state will be defined with that point.

And therefore the limit of all the, if you take convergence of sequence of gns, the limit will

also be defined with that point, okay. So let me write this, thus gn k, thus there exists gn k

case of sequence that converges normally as g on, g of zeta if you want on c minus the origin,

okay. So this happens, because what is the meaning of normal family? Normal means that,

normally sequentially compact, that is give me any sequence, there is a normal convergence

subsequence. So when gn itself is a normal family, it is already a sequence, so it will have a

normally  convergence  of  sequence.  So  you  have  a  sub  sequence  gn  k  which  converges

normally to g on c minus origin, okay.

But the point is that it is not, it is not, what is important is that it is g lives in a neighbourhood

of 0, okay and now, now try to understand each gn is analytic on, on the punctured disc, on

the punctured disc centred at the origin, okay. Therefore this limit function g is a normal limit

of analytic function. We have already seen such a normal limit can have only 2 possibilities,

either the, either the normal limit can completely be analytics or it can be identically infinity,

these are the only 2 possibilities. So let us, so let us write that down. Thus g is identically

infinity or g is analytic in c -0, okay.
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Now let us look at both of these cases. Suppose, g is identically infinity, okay, suppose g is

identically infinity, so what does it mean, what this will mean, see, think of it heuristically, g

is f zoomed you know infinitely at z0 and if g is identically infinity, what you are actually

saying  is  that  f  is  infinity  in  the  neighbourhood  of,  f  is  going  to  be  infinity  in  the

neighbourhood of z0, right, because the values of g are just limits of values of gns and the

values of gns are just values of f in smaller and smaller neighbourhood. So if g is identically

infinity, okay, that means that the value, the gns are getting larger and larger in modulus,

okay.

And that means that the values of f are getting closer and closer to infinity as you approach

z0. But that means z0 is a pole, but that is not possible because z0 is an essential singularity,

so this is not possible, so you ruled out this case, okay. So let me write this down. This means

that g of zeta is infinity for all zeta in c minus infinity. I will have to make use of the fact that

you know gn converges to g, okay, g is not just, it is not simply limit of gns. Of course it is

point wise limit of gns but it is not, it is more than that, it is not just a point wise limit, it is

just a normal limit.

So the convergence is uniform complexion since, okay. So you know gn of zeta converges to

g of zeta uniformly on mod zeta is equal to say r for any r greater than 0. Because you see

mod theta equal to r is a circle in the case of plane centred at the origin, radius r and that is

certainly a compact circuit, it is closed and bounded. And g is a normal limit, therefore the

convergence gn to g should be uniform on any compact subset, so it has to be uniform on

mod theta equal to r, okay. But, but of course what is, but what is g zeta? G zeta is infinity, if



g is identically infinity. So what this and what does uniform convergence mean, it means that

all the gns, they will come to within an epsilon of g zeta, okay, if you take n sufficiently large

irrespective of zeta, right, therefore that means, okay.

But of course you want to come to an epsilon of infinity so you will have to be careful and

you have to use a spherical metric. So let me write this down, thus given epsilon greater than

0, the spherical distance between gn zeta and g of the zeta which is actually infinity can be

made less than epsilon for n sufficiently large. And for all theta with mod theta equal to r,

okay but now, but what is gn zeta? You see gn zeta, our definition is just f of z0 plus epsilon n

theta, this is what it is. Okay.

And as you know, you see even if  mod zeta is  r, if  your, your epsilon ns are  becoming

smaller, so you are covering smaller and smaller disc, you are covering smaller and smaller

circles centred at z0, okay. And therefore what you are saying is that the function values of f

on smaller and smaller circles centred at z0 are getting close to infinity, okay. And that is

enough to tell you that f, the limit of f let as z tends to z0 is actually infinity, which means

that z0 has to be a pole. But that is a contradiction to our assumption that z0 is actually an

isolated essential singularity, okay.
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So let me write this down, this means that the spherical distance between f of z and infinity

can be made less than epsilon uniformly on compact subsets of mod z minus z0 lesser than

epsilon n for n sufficiently large, okay. So, you know because, what you must understand is

that this, this r is, this capital r is at our disposal. You can make this capital r as small as you



want, close to 0, you can make it as large as you want, okay. So you can, you can literally

cover all the , you can cover all the circles centred at z0 of fixed radius, okay, below a certain

positive value.

So in some sense you are, therefore you are able to cover complete deleted neighbourhood of

z0, okay, that is the whole point. So, well, so , so this implies z0 is a pole of f, which is a

contradiction. Because you will assume z0 to be an essential singularity, okay. So does, you

know  you,  the  limit,  the  zoomed  limit  function  g  cannot  be  identically  infinity,  okay.

Therefore what is the other possibility, it has to be only be an analytic function in the, with, in

the punctured plane, punctured r, okay. Thus g is analytic in the punctured plane, okay. And

what  does  that  mean,  it  means of  course the origin is  a  singularity, origin is  an isolated

singularity for g, okay. And now you can ask what kind of singularity it is.

But you know the point is that again you should not try to study the singularity of g at the

origin, if not do that. Because after all g at the origin is going to reflect f at z0, okay. So, mind

you the gns are all zoomings of f at z0 and their limit is g, okay. So g is some kind of infinite

zooming of f at z0. G at the origin is infinite zooming of f at z0, okay. Therefore you should

not study g at the origin but you must make use of the fact that g is analytic in the outside the

origin. So if you again take this mod theta equal to r, it would take circles centred at the

origin, this is the plane, radius r.

Mind you again that is a complex set and g being analytic, if continuous, then on the compact

that it will be bounded, okay. And now this bound will apply to f in the neighbourhood of z0,

okay. And we will tell you that f is bounded in the neighbourhood of z0 but then riemann’s

removable singularity will tell you that z0 has to be removable singularity and again that is a

contradiction. And that is the proof of the theorem, okay, proof of the theorem is so simple.

So let us go to the other case, again there exists an m greater than 0 such that again on mod z,

mod zeta equal to r greater than 0, there exists an m greater than 0 such that mod g is less

than or equal to m, okay.
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And, but after all, since gn converges to g normally, in fact uniformly on mod zeta equal to r,

because,  again  because  it  is  a  compact  set  we  have  fn  f  is  bounded  in  a  deleted

neighbourhood of z0, this again implies by the riemann’s removable singularity theorem that

z0 is removable singularity of f, again a contradiction. And you know that finishes the proof.

There are only 2 choices for g and both choices lead to contradictions. So that is the of the

famous big picard’s theorem. And we can, as a corollary we can deduce the little picard’s

theorem.

What is the little picard’s theorem? It tells you that the image of the complex plane under

entire function is again the whole plane or the plane minus the point. And now what is the

proof, the proof is very simple, taken entire function, of course we should take a nonconstant

entire function, okay because if you take a constant entire function, the image of a constant

function is always only one point. So you must be careful, i must have been carefully saying

that statement. If you take a nonconstant entire function, then you know the image of the

complex plane should be either the whole complex plane or complex plane minus a point, it

can omit only one value at most.

What is the proof, very simple, take the, take the entire function and look at the point at

infinity, okay. The point at  infinity becomes the isolated singularity because the complex

plane is a deleted neighbourhood of infinity in the external complex plane, okay. So your

function f,  your entire function f has infinity is an isolated singularity, okay. Now for an

isolated singularity what are the possibilities? It can be removable, it can be pole or it can be



essential. If it is removable, it means that, if infinity is a removable singularity, it means that f

is bounded at infinity and that means that by louisville’s theorem, f has to be a constant.

So if  we take  f  to  be  a  nonconstant  entire  function,  okay, infinity  cannot  be  removable

singularity, all right. So it can only be a pole or essential singularity. If infinity is a pole, then

you have already seen that f has to be polynomial, okay. And you know a polynomial will

take all values because of the fundamental theorem of algebra. So if f is a, f has infinity as a

pole, it is a polynomial, the image is a complex plane under f is the whole complex plane,

using  the  fundamental  theorem  of  algebra.  So  the  only  thing  is  infinity  is  an  essential

singularity.

If infinity is an essential singularity for f, apply the great picard’s theorem, okay. F can, any

neighbourhood  of  infinity  has  to  be  mapped  by  f  into  the  whole  complex  plane  or  the

complex plane minus the point. At the complex plane itself is a deleted neighbourhood of

infinity, so f has to map the whole complex plane or the complex plane minus the point, that

is it. Okay, so i will just write this down.
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So corollary, picard’s little theorem, is f is a nonconstant entire function, then f c is equal to c

or c minus z0, okay, for some z0 in c. So proof is infinity is an isolated singular, is an isolated

singular point for f in c union infinity as c is a deleted neighbourhood of infinity where f is

analytics, okay. Thus infinity is either removable pole or essential. If infinity is it removable,

f is bounded at infinity, so by louisville f is constant, a contradiction. Because i am assuming

f is a nonconstant fashion, okay, nonconstant entire function. If infinity is a pole, we have

seen earlier that f has to be polynomial, be a nonconstant polynomial, which assumes all

complex values with the fundamental theorem of algebra, okay.
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So the only other case is if infinity is a pole, i mean if infinity is an essential singularity,

infinity is an essential singularity, plus the big picard’s theorem, by the big picard’s theorem



or the great picard’s theorem, f of c is c or c minus point z0, okay. So that finishes the proof

of  the  little  picard’s theorem.  And  therefore  you see  you  are  able  to  prove  the  picard’s

theorem very easily. And the key to all this is, this really great theorem of montel, it says, this

is the criterion for normality of a family, okay.

And it is a very very simple criteria, in the sense that if you know is family functions, if it is a

family of meromorphic functions, if you know that it omits 3 values, okay, in the extended

plane, then you what is normal. If it is a family of analytics functions, that means it omits 2

complex values, then you know again it is normal. And the advantage of normality is that it is

a kind of compactness. Namely it  is normal sequential  compactness which allows you to

extract from any sequence is of sequence which converges normally, that is which converges

uniformly at compact subsets, okay.

So that finishes the proof of the picard theorem which was the main aim of this course, okay.

What i would like to next do is to tell you that, to tell you how, how powerful zaltzmann’s

lemma is in several other contexts, okay. Mind you that this reasonably simplified proof of

the great picard theorem was possible because of the montel’s theorem on common normality,

okay. And that in turn was proved by zaltzmann lemma, okay.

So these are all actually all the simplifications are because of zaltzmann lemma, that is the

most  important  thing.  But  the  zaltzmann  is,  so  similarly  in  the  proofs  of  various  other

theorems and various other theories of complex functions, zaltzmann lemma provides us with

easier proofs of some very deep results and also provides us with new results. And i will try

to outline those results in the coming lectures, okay. So i will stop here.


