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Alright, so we proved the zaltzmann lemma in the last lecture and you know basically it is a

theorem and it is a characterisation of normal families and I also remarked, at the end of the

lecture I remarked that the converse of zaltzmann lemma is also true, therefore zaltzmann

lemma is the characterisation of you know non-normal family. And it is like and you notice

like Marty’s theorem, and Marty’s theorem is like a characterisation of normal families of

meromorphic functions. And zaltzmann lemma is a characterisation of nonnormal families,

okay. And both of them are very important in the, when you go to the proof of the Picard’s

theorem which is our main aim, okay.
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So I just want to begin with the following remark , so recall that, you know when I was

giving you the motivation for zaltzmann lemma, we actually proved this result. So if you take



the family script F of meromorphic functions defined on a domain in the complex plane or

even in the extended plane and you take a point z0 in the domain where the family is normal,

okay, then you give, then this normality at a point which is supposed to be normality in some

neighbourhood of the point. So normality at the point is defined just like analyticity at a point

is defined, okay.

So normality at the point means normality in some open disc surrounding that point, okay.

And if you have family which is normal at the point, then it has this property that you know

given any sequence  of  points  tending to  that  point,  zn  tending to  z0  and a  sequence  of

decreasing positive radii, sequence of radii tending to 0, okay, then give me any sequence in

the family, I can find a subsequent such that the zoomed functions converge normally to

constant function on the plane, okay. This is the, this is what we proved and this was very

easy to deduce, okay. And zaltzmann lemma actually tells you that if the family is not normal,

you will get the exact opposite.

namely we will be able to find a sequence such that the zoomed functions converge to a

nonconstant meromorphic functions, okay, that is the big difference, okay. And what I have to

tell you is that converse of this proposition is also true if you apply, it is a simple, it is an

exercise which you might for example do, you will have to use diagonalization argument,

okay. And you can, you can do this simple exercise and not. Well but not so hard also but you

have to, you can use zaltzmann lemma and so that the converse of this proposition is true.
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So I will write that down 1st, so there is a theorem, so here is again a proposition. This is

converse of the proposition stated before zaltzmann lemma and what is this proposition. Well,

it is a criterion for normality , so suppose script F is a family of meromorphic functions on

neighbourhood of a point z0, okay. The point z0 could be pointing the extended plane, really,

it could even be the point at infinity, it does not matter, okay. Suppose that that for every

sequence zn tending to z0 and every sequence Epsilon n tending to 0+, Epsilon n are all

positive numbers, okay, so given any sequence fn in the family script F, there exists a sub

sequence fnk such that the zoomed , so what is the zoomed sequence, it is gnk of the dice the

looming of fnk and zk with the looming factor 1 by Epsilon k and using the variable zeta and

this is just fnk of zk plus Epsilon k times zeta, okay.
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So this zoomed sequence converges normally on the complex plane to a constant value in, so

this constant value can also be the point, the value infinity. So it is a constant value in the

extended plane, okay. So suppose this, this property satisfied by the family is script F, that

whenever you give me a sequence of points converging to z0 and a sequence of radii going to

0, from any sequence fn I can extract a subsequence for the zoomed sequence converges

normally to a constant, okay. Then script F has to be normal at z0, okay. Then script F has to

be normal at z0.

That means it has to be normal at some open neighbourhood of z0, okay. And I will not write

down the detail  but I  leave it  as an exercise to  you, proof is,  use zaltzmann lemma and

diagonalization argument assuming the family script F is not normal on decreasing sequence

of neighbourhoods of z0. So I, I will just, this is actually more offered, this is an exercise,



okay. This is exercise that I want you to do, so the proof is by contradiction. So you assume, I

have to show that family is normal at z0, which means I have to so that the family is normal

in some open neighbourhood of z0.

So if that is not true, it  means that in every open neighbourhood of z0 the family is not

normal.  So  you  take  the  decreasing  sequence  of  open  neighbourhoods  of  z0,  okay, the

neighbourhoods  becoming  smaller  and  smaller,  for  example  you  can  take  decreasing,

decreasing sequence of open disc centred at z0 with radii 1 by n where n goes to infinity,

okay. And on each of these discs you can apply zaltzmann lemma because zaltzmann lemma

applies to a nonnormal family, okay. And then you will get sequences from the zaltzmann

lemma and then you apply the right diagonal, you apply diagonalization argument and then

apply the hypothesis of the proposition and you will get the contradiction, okay.

So I leave it to you to do that, right. So, well, so now let me continue with the, the main, the

main result. The main result is well, you know what we are going to which is going to be the

main one should say this is really the deep theorem that is , that is the theorem of Montel,

okay and it is a theorem on normality, okay. And it is a deep theorem because it involves lots

of things, it involves several theorems in complex analysis. And it is the key to proving the

Picard’s theorem, okay. So the point is that , so this is the Montel theorem and what is the

Montel theorem?

The Montel theorem, it is a, it is actually a, it is a normality, it is a theorem for normality of a

family and what it says is that you take a family of meromorphic functions on a domain,

okay. If you know that functions in a family always omit 3 values in the extended plane, 3

distinct  values  in  the extended plane,  then the family is  normal,  okay. So we say to  the

beautiful theorem, we check that the family is normal, all you make sure is that you find 3

values in the extended plane which means you have to find 2 complex, finite values in the

complex plane, the finite complex plane and 1, probably the value infinity, okay.

So you should somehow find 3 values that all the functions in the family miss, okay. And

they should omit these values and if you do that then you can, then the theorem says that the

family is normal, okay. So somehow omission of values is connected to normality, okay, the

normality of the family is connected to omission of certain number of values by functions in

the family, okay. And all, and theorem says that you can make sure that the family omits 3

values,  then you are sure it  is  normal,  okay. And mind you normality  is  a  condition for

compactness, okay. 



So you can imagine that the theorem is very powerful, you are saying that a certain family of

meromorphic functions on a domain, you are saying that it is compact in the sense that you

know  it  is  normally  sequentially  compact,  that  is  every  sequence  admits  a  normal

convergence of sequence, okay. That is a very strong property, okay and to and to deduce that

all you need to see, you have to just verify that the family omits 3 values, okay, 3 values and

it is really beautiful. So in particular what this means is that you know if you take a family of

analytics  functions  on  a  domain,  okay, if  you  take  a  family  of  analytics  functions  on  a

domain, okay.

And if it, and if you know that it omits 2 finite complex values, then you can immediately say

that it is normal, okay. Because when you are looking at analytics functions, you can forget

the 3rd value which is infinity, okay. Infinity is already omitted, okay. So this, this version of

the theorem, Montel theorem is called the fundamental normality tests, okay. So if you want

to check the family of analytics functions is normal on a domain, all you have to do is, you

make sure  that  it  omits,  you make sure  that  every  member  of  the  family  omits  2  fixed

complex values, then you are sure that it is normal.
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So this is a very deep theorem, so let me state it. So this is Montel’s theorem on normality, so

here is the theorem. And let script F be a family of meromorphic functions, functions on a

domain D in the external complex plane such that script F omits 3 distinct, 3 distinct values C

union infinity. So what does this  mean? That is,  there are elements lambda 1,  lambda 2,

lambda 3 in C union infinity and of course they are all distinct, lambda I not equal to lambda

J for I not equal to J, okay, such that such that each such that for each f in the family, f does



not take the values any of the values lambda 1, lambda 2, lambda 3, okay, these are, these are

permitted values, then script F is normal.

So this is the, this is the, this is the deepest, I would say this is the deepest theorem in this

course, okay, this is the most important theorem in this course, okay. To check that the family

of meromorphic functions on a domain is normal, you just ensure that it omits 3 values. All

the functions in the family format 3 fixed values, okay, 3 distinct fixed values. Alright, so

here is, so how do we go about the proof?

(Refer Slide Time: 16:31)

 

So, so the 1st thing I want to tell you is that you know, you know that fundamental property of

Mobius transformations that, that you know given any 3 values, any 3 values in the extended

plane,  you can  find the  Mobius  transformation  that  can map those 3 values  to  0,  1  and

infinity, okay. So you can always, I mean this is the way in which you write down the Mobius

transformations in terms of cross ratios because a Mobius transformation has a fundamental

property that preserves cross ratios. So it is something that you should have seen in our 1 st

course in complex analysis. 

So you know these 3 values lambda 1 lambda 2 and lambda 3 in the extended plane, you

know I can apply a Mobius transformation and make those, map those values to 0, 1 and

infinity, okay and then I can compose the whole family by this, I can transform the family

using  this  Mobius  transformation.  I  transform  the  whole  family  by  using  this  Mobius

transformation and therefore without loss of generality, by using a Mobius transformation I



can assume that the values that are omitted, 3 distinct values that are omitted are 0, 1 and

infinity, okay.

So this is the 1st reduction, okay, so let me write this down. Using a Mobius a transformation,

we may assume without loss of generality that lambda 1 is 0, lambda 2 is 1, lambda 3 is equal

to  infinity,  okay, you  can  do  this.  Right,  so  you  can  assume  and  of  course  by  Mobius

transformation I mean bilinear transformation or linear fractional transformation, okay. So

that is the 1st thing. Then the 2nd thing is that, you know the domain on which, the domain D

in the extended plane where this family is defined, okay, that domain also can be, you can

change that domain and scale it so that you know it is, it contains the unit disc, okay.

So the point is that, I am, I am trying, what am I trying to check, I am trying to check that this

family is normal, okay, final aim is to check the family is normal. But how do I check it is

normal?  I  check  it  is  normal  by  checking  it  is  normal  at  every  point  because  normal,

normality at the point means normality in open, small open discs containing that point and the

property of the normally the local property, so if you check it at every point, that is if you

check it in open neighbourhood of every point, that is enough to check it it is normal on the

whole domain, okay.

So it is like checking analytic disc, you do not have to check, if you want to check a function

analytic on whole domain, it is enough to check at every point of the domain it is analytic. So

what I have to do is I will have to, I can assume that I checking normality of the family on a

small disc, on a domain which is like a disc, okay. And of course, you know if I am checking

at the point and infinity, all right, then I will have to take a neighbourhood of infinity which is

exterior of disc in the complex plane and I will have to change the variable from z to 1 by z to

make it into a disc surrounding the origin.

So in any case I can come I can always assume that I am checking normality on a disc in the

complex plane and I can translate that disc to the origin and scale it so that it contains the, the

disc contains the unit disc, okay. So again this is another reduction I am making, without loss

of generality I will, it is enough for me to check that the family is defined on the unit disc,

okay. So this is another reduction, okay. Without loss of generality we may assume that D

contains  the  unit  disc  mod  z  less  than  1,  because  basically  because  you  have  to  check

normality locally, that means you have to check normality on a disc surrounding every point.



And that this I can assume it to be unit disc, okay. Because I can always translate any small

disc to the origin, okay, so that the Centre of the small disc goes to large area and then I can

scale it so that it is bigger of, so that it contains the unit disc, okay. And our solutions and

scaling is also Mobius transformations, so they are not going to modify the properties of the

family, okay. So I, so my situation is like this, I now have a family of meromorphic functions,

okay, I now have a family of meromorphic functions defined on the unit disc and what is

given to me is that they omit the values 0, 1 and infinity.

I have to check that the family is normal, okay but look at the beauty of it, since the functions

with the value infinity, there analytics,  okay. Because you know a meromorphic function

takes the value infinity only at the pole. And the moment you assume that it does not take the

value infinity, all the functions have become a reality, all right. And the other thing is that all

the functions are non-vanishing also because the value 0 is omitted, okay. So you are having

non-vanishing analytic function on the unit disc, okay.

And they all omit the, and what is the, what is the nice thing, the nice thing now is that means

if you have a non-vanishing analytic function on a simply connected domain, you can always

find kth roots, okay, which is analytics. Because the reason is if you have a non-vanishing

analytic function on a simply connected domain, you can find a logarithm for the function.

And once you find the logarithm, multiplying that analytics logarithm by 1 by k and then

taking exponential, okay, so e power 1 by k log will give you kth root of the function which is

analytic.

So the advantage now is that your family has kth roots, every function in your family has kth

roots for k, okay. And the trick is what, the point is that since it, since the, if a function does

not take the value 1, okay, then its kth root cannot take the value which is equal to the kth of

unity. If the original function does not take the value 1, then it is kth root cannot, the analytics

kth root cannot take the kth root of unity as the value, okay. And what ks we will be using, we

will be using 2 power ks, okay. So I am going to write that down.
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note  that  script  F  is  analytic  and  non-vanishing  on  mod  z  less  than  1  which  is  simply

connected. So the, so the families, so I will put this F sub k, this is f to the 1 by 2 to the k

where f is in script F are defined and analytic on the unit disc with omission of the values 0,

infinity and 1 by 1 by 2 to the k which is 2 power kth roots of unity, okay. So, so I am, so you

see this, mind you the whole point is f to the 1 by 2 power k is defined as e to the 1 by 2 to

the k log f. And this log f, an analytic branch of log f exists because the domain is, the unit

sphere simply connected and f never vanishes on the domain.

So this is something that is very very important, okay. So fine and you know, now I want you

to understand what the idea is. See the idea is you know, these, so you look at these functions,

okay, these functions are defined on the unit disc, okay. But then you know, what are trying, I

am trying to prove they are all normal, I am trying to prove that the family script F is normal

on the unit disc, okay. And mind you, that means that I can extract the normalities, just that I

can extract from any sequence the normally convergent subsequence, okay.

But you see if I can extract such a, from a sequence in normally convergent subsequence, I do

that also for the 2 power kth roots, okay. So it is obvious that you know the family script F is

normal if and only is any of the family’s script F sub k is normal for any k greater than 1,

okay. So actually it amounts to show, to showing that F is normal, it is enough to show that

one of the script F k is normal, okay. And therefore if you contradict the normality of script F,

what happens is you are contradicting in one stroke the normalities of each of the script F sub

k, okay.



And once you contradict  the normality of each of the script F sub ks,  zaltzmann lemma

comes  into  the  picture  and  gives  you  zoomed  limit  functions  which  is  nonconstant

meromorphic  function  on  C  which  spherical  derivative  equal  to1  at  the  origin  and  the

spherical derivative is always bounded by 1, okay. And the beautiful thing is that, the function

that you get is an entire function, okay. Because the limit of the functions from each of these

families, it will not take the value infinity, so it will be analytic, and it will be defined on the

whole complex plane, so it will be entire, okay.

And you will see that you can get a contradiction easily by applying Louisville’s theorem,

okay. So, so let me write this down. note that F is normal, normal if and only if, if and only if

Fk is normal for every k or for some k, okay. So, so we are going to proceed by contradiction.

What we will do is assume script F is not normal, okay because I want, we want to use the

zaltzmann lemma which is the characterisation of non-normality, all right.
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So assume F is not normal, thus F sub k is not normal for every k, all right. And zaltzmann

lemma gives for each script Fk is zoomed limit function, I will call this resume the limit

function  as  g  sub  k  of  zeta,  okay,  on  the  whole  complex  plane  which  is,  which  is

meromorphic, nonconstant, it is spherical derivative at the origin is 1 and all it is spherical

derivatives  are  bounded by 1,  okay. This  is  what  zaltzmann lemma tells  you,  zaltzmann

lemma tells you that whenever a family is not normal, I get a zoomed limit function which is

nonconstant meromorphic.



And nonconstantcy is a kind of normalised or fixed by making the spherical derivative to be 1

at the origin. And my new the limit function is defined as a function on the whole plane,

okay, thus doomed element function is on the whole plane. So I have this, okay. now what I

want you to notice is that the 1st thing I want to tell you is that this zoomed limit function,

what is, what is each source to limit function, it is a normal limit of meromorphic functions,

okay. But it is a normal limits of functions from Fk, script F sub k, but mind you script F sub

k are all analytic, okay.

See because we cleverly assumed one of the omitted values is infinity and therefore we are

only working with analytic functions, okay. Therefore these limit functions, gks, they also

have to  omit the value infinity. The only other possibility  is  that  they can be identically

infinity because you know whenever you have a normal limit of analytic functions, okay, then

either the normal limit is again, the limit function is again analytic or it is identically infinity,

this is the only thing that is possible. So the only thing that would have happened is that these

limits  functions  are  all  identically  infinity,  some  of  the  limit  functions,  zoomed  limit

functions gks, they would have been identically infinity.

But even that cannot happen because if they were identically infinity, the spherical derivative

would have been 0. What I have put the condition that the zaltzmann lemma tells you that the

spherical derivative at the origin is 1, they are nonconstant. So what it means is that all these

gks are all entire, they are all entire functions, you cooked up a family of entire functions, you

have cooked up a sequence of entire functions, okay. So let me write that down, note that

since the k hash of 0 is 1 and gk is a normal limit of analytic functions from the family Fk, gk

is entire, it is entire.

Because it is analytic and it is defined on the whole plane, so it is entire. And the point is that

it does not take the value infinity, cannot take the value infinity. See in principle it would

have been a meromorphic function, it could have taken the value infinity at a poll but it can

never take the value, that the only way, the only possibility is that because it is a normal limit

not of just meromorphic function but it is a normal limit of analytic functions, okay, the limit

can only is  there be completely analytic or it  can be completely identically  infinity. You

cannot  get  from  limit  of  normal  limit  of  analytic  functions  you  cannot  cook  up  a

meromorphic function, this will not happen.

That  is  basically  because  of  Hurwitz  theorem,  because  if  you  cook  up  a  meromorphic

function, it means that your pole is popping up in the limit but it is a poll pops up, then for the



reciprocal function a zero pops up. Hurwitz theorem says that zero of the limit will come

from the  zero  of  the  original  functions  beyond a  certain  stage.  That  means  the  original

functions, the reciprocal of the original functions, if the, if the limit takes, if the if the limit

takes value 0 or if limit takes the value infinity, okay, then the reciprocal of the value will

take the value 0 and the reciprocal of the original functions beyond a certain stage should

have  zeros,  which  means  that  beyond  a  certain  stage  the  original  functions  should  be

meromorphic but they are all analytic.

Okay,  so  basically  did  Hurwitz  theorem  which  is  working  behind,  we  had  all  this.  So

therefore each of these functions is entire and the beautiful thing is what are the values that

they miss, see these, this gk will miss the value 0, infinity of cost and all the 2kth roots of

unity. Because every function in Fk script Fk is supposed by construction it misses all the

2kth roots of infinity, okay. So let me write that down, note that gk misses the value 0 and

infinity, 0 and the symbol 2kth roots of unity, okay. And actually what I am using here is

actually Hurwitz theorem, use Hurwitz theorem.

So again let me repeat that, what does Hurwitz theorem say? You take a sequence of analytic

functions,  okay, suppose  it  converges  normal  to  limit  function,  okay, a  normal  limit  of

analytic function is  always analytic,  okay. Or it  can be identically  infinity but this  being

identically infinity is anyways out of the picture because all the spherical derivatives are all

nonzero,  okay. So the limit  is always an analytic function,  so if  you have a sequence of

analytic functions that can watch normally do an analysis function, then the limit function if it

has a 0, then the 0 must come by, limit of zeros of the original functions that are converging

beyond a certain stage, that is Hurwitz theorem. Okay.

In other words what are you saying, what is it saying, it is saying that if the limit function

takes the value 0, then the original function should also take the value 0 beyond a certain

stage in a neighbourhood of the zero of the limit function, okay. And this is not only true for

the value 0, it is true for any value, because they, the F, for F to take, for F of z to take the

value lambda, it  is the same as looking at a zero of F of z minus lambda, which is also

analytic, okay. So actually what you can say is Hurwitz theorem can also be thought of as,

suppose you have a sequence of analytic functions, suppose it is converging to a nonconstant

analytic  function,  okay, then  if  the  limit  function  takes  any  complex  value,  then  all  the

original functions also should take that complex value beyond a certain stage, that is what it

says.



And in fact, Hurwitz theorem says, more in fact it says that the with the multiplicity should

coincide. The multiplicity, if the limit that function takes a value with a certain multiplicity,

then all the functions in the original sequence that converge to that limit function, they also

should take the same value with the same multiplicity beyond a certain stage, okay, I am a

neighbourhood of the point where that value is assumed to be. Okay. So this is just Hurwitz

theorem, okay, mind you spherical derivative is non-negative real valued function, okay. The

limit functions gk, these are all, these are the ones that are entire. And they miss the values

infinity, 0 and the 2kth roots of unity, okay.

And of course I will have to make use of these 2 conditions here that the, they all have the

spherical derivative, 1 and 0 and they all have the medical derivative bounded by 1. So note

that all these gks having spherical derivatives bounded by 1, what does it tell you? You can

apply Marty’s theorem now, you look at the sequence of gks, this is a sequence of entire

functions  on  the  plane,  okay. gk  is  the  sequence  of  entire  functions  on  the  plane,  their

spherical derivatives are all bounded, therefore my Marty’s theorem, that is a subsequence

which will converge normally on the plane, okay. So now I am applying Marty’s theorem,

okay.
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By Marty’s theorem this gk has convergence of sequence, normally convergence of sequence,

gnk or of course it is normally converted on the whole plane. Okay, because gk is of course it

is a family of entire functions, okay. Let us take, so take such a normally convergence of

sequence and take the limit, take the limit function. You will get, you will get a function g, all

right. now that function g, C that function g is now a normal limit of entire functions, okay,



therefore the only possibility is that it is also entire, okay. Or it is identically infinity but it

cannot be identically infinity because of the spherical derivative being 1 at 0.

So the limit function is also going to be an entire functions, okay. And you will see, that is a

function  for  which  I  will  apply  Louisville’s  theorem  and  get  constancy,  which  is  a

contradiction, okay. So let, so let g be the limit as k tends to infinity of gnk, okay, then g is

entire, then of course you know g Hash is also bounded by 1 and g Hash at the origin is one,

so g is entire nonconstant and nonconstant, okay. So you cooked up an entire nonconstant

function, okay. And see now comes the, come something very nice. See each of the gMks, the

values that they omit are 0, infinity and the 2kth 2 to the nkth roots of unity, okay.

But you know as k becomes large, this 2 to the nkth roots of unity, they, so take the union of

all these, that is a dense subset of the unit circle, okay. So what it means is that this g, this

function g, it omits a dense subset of values of the unit circle, therefore it has to omit all

values from the unit circle, that is because of the open mapping theorem. What is the open

mapping theorem say? Whenever a function takes a value, it has to take all values in a small

disc surrounding that, the image of every open set is an open set, for a for a nonconstant

analytic function, the image of an open set is always an open set.

So g being an entire nonconstant entire function, if g omits values on a dense subset of unit

circle, by the open mapping theorem g has to omit all the values of the unit circle, okay. But

the unit circle disconnects the plane into 2 pieces, one is interior and their that is exterior. And

therefore the image of the complex plane under g which has to be connected has to either go

completely inside the unit disc or it has to go completely outside the unit disc. If it goes

inside the unit disc, then you have found g is bounded entire function, so it is a constant, that

is the contradiction. 

If it goes completely outside the unit disc, you take 1 by g, which is also going to be entire

because mind you g also omits the value 0, so 1 by g is also entire. So 1 by g will become a

boundary entire function, it will become constant, therefore g will become constant. So in any

case you will get g is a constant, you will  get a contradiction,  okay and that proves that

theorem, that is all. So what you must appreciate is that if you use open mapping theorem,

you use Hurwitz theorem, you have use zaltzmann lemma, you have used Marty’s theorem,

okay, everything is being used, okay.
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So let me write this down. Since gk, g to the nk omits the values 0, infinity and 1 by 1 by 2 to

the nk, g omits 0, infinity and mod z equal to1 because of the open mapping theorem which

says g is open and the fact that 1 by, the 2 power nkth roots of unity k equal to 1, 2, and so on

is a dense subset of mod z equal to1, okay. Thus, g of C which is connected and belongs to

complex plane minus mod z equal to1 has to imply either mod g is less than 1 or mod g is

greater than 1, okay. This mod g is less than 1, Louisville’s theorem implies g is equal to

constant, contradiction, it is not constant because the spherical derivative at the origin is 1,

okay.

And if g is, if mod g is greater than 1, then 1 by g is entire and mod 1 by g is less than 1, so

again Louisville’s theorem implies 1 by g is  constant,  which implies g is  constant,  again

contradiction, okay. So that is it. So the family has to be normal, right. So that finishes the

proof of this theorem. And as a corollary you can see that if you have a family of analytic

functions on a domain,  is,  if  you know that  the family omits 2 complex values,  2 finite

complex values, then it has to be normal, that is the corollary of this. This theorem that we

have proved is for meromorphic functions and you are including the value infinity also, okay.

So sometimes that, that is called as, this, these conditions of omitting 3 values being omitted

for  family  of  meromorphic  functions  or  2  values  being  omitted  for  a  family  of  analytic

functions  is  called the  fundamental  normality  criterion.  So it  is  a  condition,  very simple

condition to check whether a given family is normal, okay. I will stop here.


