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Alright so let us continue with the proof of Zalcman's Lemma, so basically what this Lemma

is about, it is about characterising a non-normality of a family okay. So I begin with a family

script F of Meromorphic functions okay and am assuming that the family is defined on this

domain D alright and I assume that the family is not normal okay then as the non-normality

will manifest at some point okay the family normally if it is not normal at least 1 point in the

domain and how do you get that non-normal point that is exactly about Zalcman's Lemma is

all about. 

So you see what it says is that you can find a sequence of points in the domain converging

with this point Z not which is the so-called which is the point of non-normality and you can

find these decreasing sequence of radii, positive radii so that you know if you take…and you

will be able to find…see the fact that the family is not normal means what? It means that the

family is not sequentially compact, normally sequentially compact. I mean our definition of

normal is normally sequentially compact and that is the correct version of compactness for us

okay when you are looking at a family of analytic functions or Meromorphic functions the



correct  version  of  compactness  is  normal  sequentially  compactness  that  is  given  every

sequence you should find a normally convergence subsequence and when you say a family is

not normal what you are saying is that you are saying that there is a sequence or which you

cannot find any normally convergence of sequence okay and you have to… and Zalcman's

Lemma ratio that you can find such a sequence and that is the sequence here f n you can find

this sequence. 

It is a non-normal family in fact the sequence itself forms are non-normal family, so that if

you take the members of the sequence and then you take the corresponding zoomed functions

okay, so g n is the zooming of f n centred at Z n and with the magnification factor 1 by

Epsilon n okay. Then this zoom family converges normally on the whole complex plane to a

non-constant Meromorphic function g okay and the point is that the non-constant C of the

Meromorphic function reflects the fact that it  is spherical derivatives is not 0 because the

moment  the  spherical  derivatives  of  a  Meromorphic  function  is  0  it  means  it  has  to  be

constant right, so this non-constant C of g as a Meromorphic function is further you know

fixed  by  this  fact  that  the  spherical  derivative  at  the  origin  is  1  and  all  the  spherical

derivatives are bounded by 1 okay. 

So this is Zalcman's Lemma so the point about this Lemma is that the family…if a family of

Meromorphic functions on a domain is not normal it gives you a non-normal point Z not and

it  gives  you  a  non-normal  sequence  in  the  family  which  violates  normality  in  a

neighbourhood of Z not that is the whole point alright and I have explained to you that what

happens if the family were normal, if the family were normal what would happen is that no

matter what Z not you choose and the sequence Z n you choose like this and you choose these

any radii Epsilon in going to 0 okay. 

The zoom function will  always converge normally to a constant Meromorphic function I

mean to a constant function okay covert so the normality of the family will tell  you that

always the zoom functions will be constant and the non-normality of the family is reflected

by being able to find a sequence for which the zoom functions not converge to normally to a

constant  function  but  actually  they  converge  normally  were  non-constant  Meromorphic

functions okay. So it is the limit function that matters, if it is normal glow zoom function will

always converge to a constant,  if  it  is not normal  I can find a situation where the zoom

functions converge to a non-constant Meromorphic functions that is the whole point okay. 
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So let us see a proof of this the proof is tricky, so as I have mentioned in the reference

material  the text  book that  I  am following is  that  of (())(6:04)  okay and the proof as  is

mentioned that is tricky as you will see, so we will make a couple of reductions the 1st thing is

that you know what is given to me is that the family is not normal okay and now you know

we have already proof Marty’s theorem which is a characterisation of normality namely it

says that a family is normal if  and only if you know if you take the family of spherical

derivatives is normally uniformly bounded okay. 

So recall  if you take a family of analytic functions okay the condition that that family is

normal  that  it  is normally sequentially  compact  is  by Montel’s theorem equivalent  to the

family being normally uniformly bounded and if you consider Meromorphic functions you

get  the  analog  as  theorems  which  is  Marty’s  theorem  with  says  that  the  condition  for

normality  is  that  a  family  of  spherical  derivatives  is  normally  uniformly  bounded.  So

spherical  derivatives  being normally  uniformly bounded is  equivalent  to normality  of the

family, so the family is  not normal you have a violation of the bounded normal uniform

boundedness of spherical derivatives and what does that mean? 

It  means  that  there  is  a  compact  set  on  which  this  spherical  derivatives  can  become

unbounded, so this means by Marty’s theorem you can actually find a sequence of points

okay  and  functions  such  that  the  corresponding  actions  at  those  points  its  spherical

derivatives go to infinity plus infinity okay, so that is the 1st step so let me write this by

Marty’s theorem there exist a sequence of w n tending to w naught in D and functions f n in

the family f such that f n hash of w n goes to plus infinity and at w n are in a compact subset



of D okay. So I can find is just because of Marty’s theorem because Marty’s theorem says that

you know normality is equivalent to the spherical derivatives being uniformly bounded on

compact subsets okay fine. 

Now we will make a couple of reduction what we will do is for convenience we will assume

that you know w naught is actually the origin okay you assume w naught is the origin and

how can we do that? You can do that by simply translating the domain so that you make w

naught the origin, so you translate the domain by minus w naught you will get a new domain

and you look at the functions there, the translated functions. So without loss of generality

what you can do is, you can assume that w naught is the origin okay that is one thing and the

2nd thing is that you can also assume that the moment you assume w naught is the origin, so

the origin is the point of D okay then of course there is a small disk surrounding the origin

which is also at D because after all D is an open set and by using a scaling transformation you

assume that the unit disk along with the boundaries also at D okay. 

So these are you scale the domain I mean you scaled the domain and you translate the domain

so that you can assume without loss of generality that the compact set you are looking at

where you got this sequence w n is actually the unit disk okay along with the boundary unit

circle  and  the  sequence  actually  converges  to  the  origin  okay,  so  we  will  make  these

assumptions  without  any  loss  of  generality,  so  let  me  write  that  down.  Without  loss  of

generality we may assume w naught equal to 0 and mod Z less than or equal to 1 is in D okay,

so for this all you have to do is that you have 2 translate D by minus w naught and then you

have 2 scaled be suitably so that the unit disk which is a neighbourhood of w naught equal to

0 is inside D alright fine, so you can do this. So you see my picture is now like this so here is

my I think I will have to… okay so let me go down.
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So here is my picture, so I have so this is the complex plane and I have this, this is the origin

so this is unit disk, this is unit disk and well this is inside D, so you know your domain D is

contains the unit disk, so this is D and well this is the Z plane okay and of course there are

these so there is the sequence of points w n , w n plus 1 that is tending towards the origin

okay and what you are given is that okay fine. So I have this, now what you do is that you…

So the tricky thing is that so you know what I am looking for? I am looking for I have to

extract this sequence Z n okay which goes to Z not and I have to extract this sequence of

functions  which you know which  has  this  property that  the zoomed functions  okay they

converge to a non-constant a Meromorphic function. 

So you see the trick is the following, so what you do is you put R n to be the maximum over

mod Z less than or equal to 1 of f n hash of Z and then you multiplied by 1 minus mod Z

okay, so you do this. So this is the tricky part, the trick is you see what is given to you is these

functions  f  n hash they are spherical  derivatives  of  those…f n hash is  just  the spherical

derivatives of f n and of course you know spherical derivatives is continuous mind you, the

spherical derivatives of Meromorphic function is continuous function. 

It is continues nonnegative real valued function okay it is a positive function at worst it can

be 0 alright which is what happens if the function is a constant okay but the point is that mind

you the spherical derivatives has no problem at poles when the Meromorphic function as

poles there is no problem with the spherical derivatives unlike the usual derivatives, the usual

derivative is not defined at a pole because it is a singular point but a spherical derivative is

defined  at  a  pole  and we have  already  seen  that  if  it  is  a  pole  of  higher-order  then  the

spherical derivative is 0 if it  is a pole of order 1 namely a simple pole then the spherical

derivative is 2 divided by modulus of the residue at that pole okay. 

So this  spherical  derivatives  is  a  nice continuous function okay non-negative real valued

function and you are looking at this function on this domain mod Z less than or equal to 1

which is a compact set,  so if you are looking at a continuous function on a compact set,

continues real valued function on a compact set you know the function is of course it will be

uniformly continuous and it will attain its maximum and minimum therefore this maximum is

well-defined okay and the point is that you see what is given to me is that these f n hash they

become larger and larger okay at points which are getting closer and closer to the origin. 

See as an tends to infinity w n converges to 0 okay that means as n tends to infinity w n goes

closer and closer to 0 and what is f n hash of w n that is going to infinity that means f n hash



attains larger values closer and closer to the origin as n becomes large alright therefore…so

you know what one does is that it could happen that the maximum values of f n hash could

also be taken close to the boundary but if you go close to the boundary this quantity becomes

very small, if you go closer to the boundary of the unit disk, the quantity 1 minus mod Z will

become very  small  and that  will  offset  this  the  value  of  f  n  hash at  that  point  okay so

heuristically  this  is  the  reason  for  multiplying  by  1  minus  mod  Z  okay  instead  of  just

considering the maximum of f n hash (())(16:01). 

So mind you 1 minus mod Z is also a continuous real valued function,  nonnegative real

valued function inside the unit disk, so there is no problem about it okay, so the product is of

course continues real valued function so it has a maximum okay. Now you have to make a

series of observations, the 1st thing is suppose Z n is such that mod Z n is (())(16:35) to 1 and

R n is attain at Z n, so R n is f n hash of Z n times 1 minus mod Z n okay. So R n which is the

maximum is attained at some Z n okay, so look at that Z n and this is the Z n that I actually

want or probably a subsequence of that as you will see. See the 1st thing is note that you see R

n is greater than or equal to you know f n hash of w n into 1 minus mod w n this happens

because R n mind you is the maximum of f n hash of Z into 1 minus mod Z, so if you put Z

equal to w n, so the maximum value will always be greater than any of the other values. 

So I will get this but then you see as n tends to infinity you see this goes to 1 okay because of

w n tends to 0 and this fellow goes to infinity okay because that is the original assumption.

The f n hash the spherical derivatives go to infinity okay that is how we pick the sequence w

n because it was violating normality, while letting the conditions of Marty’s theorem okay. So

you see what is happening is that this will tell  you that you know R n will  tend to plus

infinity, so this R n are becoming bigger and bigger and bigger okay that is something that

you have to understand first. Now you look at this so you know if you look at this definition

of Z n okay what it will tell you is that he f n hash of Z n will also go to infinity because you

see if you take R n this is f n hash of z n times 1 minus mod z n and this is certainly you

know greater than this is less than or equal to f n hash Z n because you know after all 1 minus

mod Z n is less than or equal to 1 okay. 

So this is going to plus infinity as n tends to infinity will imply that the f n hash of Z n will

also go to plus infinity okay. So this implies that this goes to infinity, plus infinity as n tends

to infinity okay, so what you have done is? You have got this from the sequence w n which

goes to 0 to w naught you have cooked of this other sequence z n okay and the point is that



the  spherical  derivatives  at  the  Z n also go to  infinity, plus  infinity  is  like  the  spherical

derivatives at the w n go to plus infinity okay but the point is that of course the sequence Z n

that you have got that need not be convergent it is just the sequence okay but anyway it is a

sequence inside the unit disk and you know the unit disk is compact sequentially compact

therefore there is a convergence of sequence therefore without loss of generality can assume

that this sequence of Z n is actually convergent okay. 

So we will make their assumption without loss of generality we assume Z n converges to Z

not you know Z not also of course in the unit disk because unit disk is closed okay. Of course

when I say unit disk I am also including the boundary is not the open unit disk okay. Fine so

we have gotten hold of the sequence actually alright and now the point is that we have…so

you know what is our aim? Our aim is you have to get this sequence of functions and you

have to get this sequence of points such that and then you have to get a certain sequence of

radii  okay  such  that  the  zoom  functions  they  converge  to  a  non-constant  Meromorphic

functions.

So where do you get those sequence of decreasing radii okay and that comes very simply, so

what you do is you do put Epsilon n to be 1 by f n hash of Z n okay and then this will of

course go to 0 as it will go to 0 plus as n tends to infinity that is because the f n hash of Z n is

going to plus infinity alright, so this will serve as the zooming radii, so now everything is in

place we have gotten what we want and so let me write this down since R n is f n hash of Z n

times 1 minus mod z n what you will get is that? You will get Epsilon n R n is equal to 1

minus mod Z n okay because Epsilon n is just defined to be 1 by f n hash of Z n and now

what you do is that you do the following thing. 
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You put g you take the zoom functions, so you take g n of Zeta to be well f n so it is just you

zoom the function f n centred at Z n with the magnification factor 1 by Epsilon n and use the

variable Zeta, so this is going to be f n of Z n plus Epsilon n times Zeta, so this is the zoom

functions this is the family of zoom functions okay mind you we have to find the family of

zoom functions which converge normally to non-constant Meromorphic function this will be

that family okay and where is this defined you see you know this is defined for mod Zeta less

than R n you see what is happening is that, so the diagram is like this you have this unit disk

this is the origin, this is one and then you have Z n somewhere here okay and then if you take

the small disk centred at Z n its radius will be 1 minus mod z n, this radius will be 1 minus

mod Z n but this one minus mod Z n is as I have written above it is just Epsilon n R n okay. 

So if I think of a variable Zeta here okay then you know the maximum distance of Z n to Zeta

can be Epsilon n R n okay and that means that the maximum value of Zeta can be up to R n

because I have reduced you know I have actually used the scaling factor 1 by Epsilon n okay.

So but the point is look at these functions g n, the zoom functions. The zoom functions are

defined on mod Zeta less than R n and mind you R n tends to plus infinity, so what it means

is that as before the zoom functions are eventually defined on any compact subset of the

plane okay, so g n is defined for n sufficiently large on any compact subset of the complex

plane and here of course the complex plane you are looking at is the Zeta plane mind you

your brought in this new variable, the zoomed variable Zeta okay. 

So now the fact is that g n does the job that is all you have to verify and how does one do

that? Mind you we want to show that you know g n converges normally to a non-constant

Meromorphic function okay that is what you want to show that the whole point. Now again



use Marty’s theorem of course g n are also Meromorphic because g n are just you know

obtained from f n by translation and scaling okay g n is just f n translated, see you take the

variable of f n okay and you know you translate that we will by minus Z n and then you

divide by scale it by 1 by Epsilon and you will get f n okay. So f n have been obtained from g

n by a translation and scaling, so g n are also Meromorphic okay and well and what am I

trying to show? 

I am trying to show that the g n converge normally but again I can apply Marty’s theorem to

show that the g n converge normally I will  have to only show that the g n are normally

uniformly  bounded  I  mean  the  spherical  derivatives  of  the  g  n  are  normally  uniformly

bounded okay. So that is what I check okay and that is just an estimate, so how do I check

that? See you will see that g n hash so you know what will happen is g n hash if you calculate

g n hash of Zeta this is spherical derivative of g n of Zeta, mind you this is…so I will have to

take  the spherical  derivatives  of  f  n  of Z n plus Epsilon n Zeta,  so this  is  the spherical

derivative I have to take okay but then taking the spherical derivative you know will be the

same as taking the spherical  derivative  of  f  n  and then I  will  get  a  multiplication  factor

Epsilon n. 

You know the spherical derivatives becomes smaller for the zoom functions in the spherical

derivative it become smaller by the inverse of the zooming factor. The zooming factors 1 by

Epsilon n, so the inverse of zooming factor is Epsilon n okay and so you know this is just

change rule of differentiation, so this is Epsilon n times f n hash of Z n plus Epsilon n times

Zeta this is what you get alright and now you see what you must understand is that now I

have this inequality because you know f n hash z n times 1 minus mod Z n is R n and that is

the maximum value okay. 

So recall that we have this definition of R n here. R n is f n hash z n times 1 minus mod z n

and mind you that is the maximum value of this quantity RN is actually the maximum value

of f n hash of Z multiplied by 1 minus mod Z okay therefore what we can see is that R n is

certainly going to be greater than or equal to the value of f n hash times 1 minus mod Z for

any mod Z for any Z in the unit disk okay, so for Z I will put this so I can put Z n plus

Epsilon n Zeta and here I will get Z n plus Epsilon n Zeta, so this is correct okay because in

fact when you put Zeta equal to 0 the value on the right is actually R n, R n is the maximum

value okay. So you have this but you see now I can use this to get a…so this is the quantity



here and this is the quantity that is appearing here okay which multiplied by Epsilon is g n

hash of Zeta. 

So I can use this to get a bound for g n hash of Zeta, so what will I get? I will get g n hash of

Zeta is equal to Epsilon n times this but this thing and this rectangle but this thing in this

rectangle is less than or equal to R n by 1 minus mod Z n plus Epsilon n Zeta, so I will get

this is less than or equal to Epsilon n R n by 1 minus mod Z n plus Epsilon n Zeta alright but

then you see (())(29:47) inequality mod Z n plus Epsilon n Zeta is less than or equal to mod Z

n plus Epsilon n mod Zeta okay and therefore what I will get is that this is also less than or

equal to Epsilon n R n by 1 minus mod Z n minus Epsilon n mod Zeta I will get this right and

now mind you go back…so here is why this proof is tricky, this one minus mod Z n mind you

is Epsilon n R n okay that has to be trickily used, so this one minus mod Z n I can put Epsilon

n R n then you can see this Epsilon n is coming out both the numerator and denominator and

gets cancelled so you see I get Epsilon n R n by Epsilon n R n minus Epsilon n mod Zeta and

this becomes that is less than or equal to RN by R n minus mod Zeta okay and you see…so

this is what? This is the estimate for the spherical derivative of g n right. 
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And see the point is that if mod Zeta is less than say some R okay there exist a n large enough

such that R n is going to be greater than R okay because after all the R n tend to plus infinity

okay, so beyond a certain stage all the R n are greater than R, so that means that you know so

I can divide by R n and let me put equal to here I will get 1 by 1 minus mod zeta by R n and

if mod Zeta is less than R and R n is greater than R okay then g n is defined on mod Zeta less

than R okay then g n hash zeta is defined on mod zeta less than R okay because mod Zeta less



than R is contained in mod Zeta less than R n and mod Zeta less than R n is the domain of g n

okay. 

So g n hash is defined and in fact it is not only for n it is also for higher values of n okay, so

you know let me write g n hash of n plus m, m is equal to 1, 0, 1, 2 and so on, so all these g n

are defined okay and the point is in any case this quantity you get this estimate g n hash of

zeta is bounded by 1 by 1 minus R by R n which is bounded by 1 by 1 minus R okay. So and

finally I have gotten this 1 by 1 minus R without any condition on the subscript n small n and

that is the uniform bound for g n hash beyond a certain stage alright  and that is it,  now

Marty’s theorem will tell you that g n hash to therefore it has to converge normally okay. 
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So by Marty’s theorem g n admits  a  subsequence that  converges  normally  on the whole

complex plane okay and without loss of generality you may assume that the subsequence is g

n itself okay, so after all I am interested in a convergence of sequence and what I have got is a

sequence which I know admits a convergence of sequence, so without loss of generality I

replace the sequence by the convergence of sequence okay if I do not do this then I will have

to use a double subscript okay but it really does not matter but now this g n does the job

because you see what happens is that 1st of all this tells you this bound on g n hashes, so what

you do is now you let R n to tent to infinity okay then R by R n will go to 0 okay. 

So you let n tend to infinity then R n goes to infinity R by R n goes to 0 and this quantity

goes to 1 okay and that will tell you that all the g n hash they are all bounded by 1 okay so

clearly you get all the g n hash are all bounded by 1 that is one condition and what is the

other thing. What about g n hash of 0? If you calculate the g n hash of 0, g n hash of 0 is

going to be what? So let us go back to what we have here, so go to this formula here you put

0 is equal to 0, g n hash of 0 as Epsilon n f n hash of Z n but you see Epsilon n f n hash of Z n

is 1 because Epsilon n is actually 1 by f n hash of Z n, so g n hash of 0 is actually one okay.

See these are all little tricks that I mean they are all there okay you have to look at them okay

that is the reason why this proof is tricky. 
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So this  is  actually  1 okay so if  the g n converge to g normally on C then the g n hash

converges to g hash normally on C, so what this means is that since the g n hash are all

bounded by 1 the limit g hash also bounded by 1 and since all the g n hash at 0 are equal to 1,

g hash also at 0 will be equal to 1 just by properties of limits and you have done with the

proof of Zalcman's Lemma okay and we have used Marty’s theorem that is the whole point

right. 

Now what I want you to understand is that ash in this Zalcman's Lemma basically you have

condition for non-normality of a family okay and the fact is that the converse of Zalcman's

Lemma is also true namely if you have a family script F such that you are able to find a

sequence  Z n  tending  to  Z not  and a  sequence  of  radii  Epsilon  n and also  sequence  of



functions  such that  the zoom family  converges  normally  to  a  non-constant  Meromorphic

function then the original family has to be not normal. It has to be in fact normality will be

actually you know normality will be violated at the point Z not. Z not is the point where a

normality of the family is violated okay and in what sense…the point is that at Z not the

spherical derivatives become as you approach Z not through by a Z n spherical derivatives

becomes unbounded and the unboundedness of the spherical derivatives is the same as non-

normality because that is Marty’s theorem okay. 
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So let me probably say give this as a note that the converse of Zalcman's Lemma is true and

why is that so, for if f is a family such that there exist sequence Z n going to Z not with and

there is  a sequence of radii  going to  0 with the zoom functions  and you have family  of

functions and there exist a sequence f n family of functions at f such that the zoom functions

g n which is zooming of f n centred at Z n, the magnification factor 1 by Epsilon and in the

new variable Zeta suppose this goes normally converges to g Zeta on the complex plane with

g hash of 0 equal to 1 and g hash is always less than or equal to 1 suppose this happens okay

then the family cannot be normal and why is that true that is very simple because you see

then the script F is not normal. Why is that true? 
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It is very simple because you know g n hash of Zeta as we just calculate we have seen is

Epsilon n times f n hash of you know Z n plus Epsilon n Zeta you know this and put Zeta

equals to 0 what you will get is g n hash of 0 is equal to Epsilon n into f n hash of Z n okay

but you see g n hash of 0 g hash of 0 is 1 and g n hash goes to g okay, so g n hash goes to g

hash of 0 which is one okay. So if you take any mind you all this Epsilon n are going to 0

okay, so this happens as an tends to infinity okay, so what will it  mean? See you have a

product of 2 quantities one of them is going to 0 but the product is bounded that means the

other has to go to infinity, so what you will get is that so this implies that this to go to plus

infinity okay and what does that mean? 



It  means that  you have violated  the sequence f  n has  violated  the conditions  of  Marty’s

theorem you have found functions  whose spherical  derivatives  are going to  plus infinity.

Spherical derivatives are not bounded and where is this happening? See is f n hash spherical

derivatives of f n at Z n is becoming larger and larger and larger going to plus infinity and the

Z n are approaching Z not okay and mind you Z n are all approaching Z naught, so what is

happening is that if you look at a compact neighbourhood of Z not an open disk closed disk

containing Z not you see that on that compact neighbourhood okay these f n hash are not

going to be bounded uniformly because they are going to plus infinity  and now Marty’s

theorem will tell you therefore that this even the f n that sequence itself as a family is not

normal okay, so that it implies non-normality. 

So the converse of Zalcman's Lemma is also true, so Zalcman's Lemma is actually an if and

only if condition okay but the beautiful thing about the Lemma is that you if a family is not

normal the Lemma is able to guarantee the existence of non-normal point and non-normal

sequence at that point okay you get both the point and sequence that violates normality okay.

So what is now left is that I will have to use this to prove Picard theorem and we will do that

in the coming lectures, so let me write this here, so this implies by Marty’s theorem that f n,

hence is not normal at Z not okay, so I will stop here. 


