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Alright so what we did do now is worry about giving the statements of… and of course the

proof of you know Montel’s theorem and Marty’s theorem in the case when the domain

includes the point at infinity okay, so if you recall see all this time we have been worrying

about domains in the complex plane but since the last lecture we also wanted to include the

infinity as a point in the domain that means you are looking at a domain in the extended

complex plane alright.  

See the problem with including infinity is that you know compact neighbourhood of infinity

make  sense  only  in  the  extended  plane  okay  and  because  it  corresponds  to  a  compact

neighbourhood of the North pole on the Riemann sphere, the extended plane being identified

with the Riemann sphere okay but if you take a compact neighbourhood of infinity and delete

infinity  okay then  what  you will  get  is  you will  get  an  unbounded domain  in  the  usual

complex  plane,  so  basically  it  is  an  unbounded  domain  and  along  with  of  course  the

boundary, so on an unbounded domain we generally do not expect uniform versions okay. We

expect uniform convergence only on bounded domain especially on compact subsets okay

and of course you know compact implies closed end bounded, so since you are in Euclidean

space is same as closed end bounded. 

So you should not expect uniform convergence on an unbounded domain okay that is the rule

you will get it only on compact subsets, so if you take a compact neighbourhood of infinity

okay then you will see that it is too much in general are just too much to expect uniform

convergence because it is unbounded as far as the if you look at it from the complex plane

point of view any compact neighbourhood of infinity for that matter any neighbourhood of

infinity will be an unbounded set in the usual complex plane okay. It will be bounded only

with respect to the extended complex plane okay, so that is the reason why we defined what is

meant by normal uniform convergences of a sequence or normal convergence of a sequence

of functions defined on a domain which contains the point at infinity okay. 



So now we will did it was if you remember if D is the domain in the extended complex plane

of course and of course if infinity is the point of the domain of then what you do is that you

consider 2 things you 1st of all remove infinity and you get D minus infinity that becomes a

domain in the usual plane and for such a domain you know what uniform convergence of

compact subset normal convergence means, so you make that definition and then to deal with

you know the point at infinity to deal with normal convergence at infinity, what you do is at

you invert the variable, so what you do is you take a neighbourhood of infinity, you take a

neighbourhood of Z equal to infinity  and treat it  as a neighbourhood of w equal to 0 by

putting Z equal to 1 by w okay and then you say now is neighbourhood of 0 is anyway it is

anyway a neighbourhood in the complex plane. 

So  it  makes  sense  to  talk  about  normal  convergence  okay.  So  you  define  sequence  of

functions converging normally on a domain the extended complex plane containing the point

at  infinity  if  it  individually  it  converges  on  D minus  infinity  and the  sequence  with  the

variable in from Z to 1 by w converges again converges normally in a neighbourhood of w

equal to 0 which corresponds to a neighbourhood of Z equal to infinity and then you know

with this modification you found that you know the limit function to which if the original

functions are already continuous or example which is the case when you have an analytic

function of Meromorphic functions than the limit function is also continuous and the limit

function is of course unique and continuous because it is a two-piece definition. 

There is a definition for the domain minus the point at infinity and there is another definition

for a neighbourhood of infinity okay, so in principle you could have got 2 different functions

but because of continuity you will get a unique function and therefore what we did we were

able  to  extend these important  results  namely  that  you know if  you have a  sequence  of

analytic functions on a domain in the extended complex plane, if that sequence converges

normally on the domain then the limit function is either analytic or it is identically equal to

infinity and we also prove the same thing for Meromorphic functions if you have sequence of

Meromorphic functions on a domain in the extended plane and if that sequence converges

normally then the limit channel is either Meromorphic or it is identically equal to infinity. 

Now what we need to do is, we need to worry about Montel’s theorem and Marty’s theorem

which is a Meromorphic version of Montel’s theorem do you know in the case when the

domain  of  definition  of  the  functions  of  family  of  functions  is  domain  in  the  extended

complex  plane  okay.  So  for  that  we  will  have  to  define  what  is  meant  by  normally



sequentially compact or family of functions defined on a domain in the extended plane and

that involves a little bit of subtlety but anyway as we will see everything works out well. 
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So let me write this down so suppose D in the extended complex plane is a domain of course

nonempty it is an open connected set and let us assume that infinity is a point of D, so this

means that if you remove infinity  from D what you will  get on the complex plane is an

unbounded domain okay and what we want to do is suppose you have family of functions

depend on this  domain  I  would  like  to  say what  it  means or  the  family  to  be normally

sequentially compact okay because after all Montel’s theorem, the usual Montel’s theorem

and  Marty’s  theorem  are  just  you  know  the  correct  generalisation  of  the  Arzela-Ascoli

Theorem okay which says that you know. 

So  Montel’s  theorem  says  that  for  analytic  functions  you  know  normally  sequentially

compact okay that is sequential compactness with respect to normal convergence that is the

same as uniform boundedness on compact subset that is normal uniform boundedness for the

family  okay  and  Marty’s  theorem  extends  this  from  analytic  functions  to  Meromorphic

functions, so one can always be very (())(8:27) and say that well my definition of family f

being sequentially compact with respect to normal convergence is just that it should be you

know sequentially  compact  with respect  to  normal  convergence  then  infinity  is  removed

okay. 

So on the domain punctured at infinity and to deal with the point at infinity you say that the

same family you take the same family and change the variable to from Z to 1 by w and you



say for this new family defined in a neighbourhood of 0 again you should have you know

sequentially compact with respect to normal convergence and this is the definition that you

will  make in  line  with what  we have  been doing and you will  see that  it  is  the  correct

definition make okay, so let me write this down we say that our family script F of functions

on  D  with  values  in  this  C  union  infinity  that  is  extended  complex  plane  is  normally

sequentially compact i.e. sequentially compact with respect to normal convergence if number

1 so f is normally sequentially compact on D the domain D punctured at infinity and now I

will take care of the point at infinity and for that what I will do is that f let me put this as f sub

1 by w this is set of all f of 1 by w where f belong to script F. 

So I put the subscript 1 by w to tell you that I have changed I have inverted the argument the

independent  variable  in  the  function  okay  is  normally  sequentially  compact  on  a

neighbourhood of w equal to 0 because you know a neighbourhood of w equal to 0 will

correspond to a neighbourhood of Z equal to infinity because w is 1 by Z alright. So this is

the… So I  should  put  the  heading  as  normal  sequential  compactness  for  domain  in  the

extended complex plane, so that is the heading, right? So well this seems to be the right

definition  to make,  whenever you want  to deal  with a domain which contains a  point at

infinity you delete with it in 2 pieces one is you throw the point at infinity okay you throw it

away namely you punctured the domain at infinity. 

So you get a deleted neighbourhood of infinity and you give a definition for that and that is

easy to give because deleted neighbourhood of infinity is also a domain in the usual plane

okay and the other thing that you do is that to consider a neighbourhood of infinity, you

consider a neighbourhood of 0 by inverting the variable okay, so well now so there are couple

of things that I want to tell you with respect to the notation terminology and literature and

also there is other subtlety that I want to point you about, so the 1st thing is that you know in

the literature there is normally there is normal sequential compactness is actually abbreviated

to normal okay, so this is very important thing. 

See people just use the word normal this is in fact Montel’s terminology that instead of every

time saying normally sequentially compact you use the word normal and this is being thought

of  as  property  of  the family, so when you say family  is  normal  it  means  it  is  normally

sequentially compact okay, so wherever normally sequentially compact comes you know then

you can just replace it with the word normal okay and the whole point is that the family being

normal is the correct notion of compactness of a family okay that is the whole point okay, so



you know if you are working with general topology and if you are working with continuous

functions say real valued or complex valued functions and you are working on a compact

metric space or for that matter you are even working with continuous functions with taking

values from one compact… I mean it takes values in another compact metric space okay and

usually compactness because you are in the context  of metric  spaces,  compactness is the

same as sequential compactness okay. 

So and there what happens is that you when you say sequential compactness the idea is that

you are able to say that every sequence admits a convergence of sequence okay and this

convergence is with respect to one example if you are working with complex valid function it

is with respect to supremum norm okay, so there is a supremum norm which induces a metric

and its convergence with respect to that metric okay but of course when we are considering

the extended complex plane we are using the spherical metric that is one thing that you must

always member okay, the extended complex plane is compact metric space and the metric

you are using on that is the spherical metric which is actually the spherical metric on the

Riemann sphere transported the extended complex plane okay by the identification of the

Riemann sphere with an extended complex plane using the stereographic projection okay. 

Now the point is that this is what you will get if you are looking at continuous functions but if

you  are  looking  at  an  analytic  function  the  rule  is  that  you  cannot  expect  a  uniform

convergence  on  unbounded  sets,  you  can  expect  uniform convergence  only  on  compact

subsets and this is called normal convergence. So when you are… In the context of analytic

functions or in the context of Meromorphic functions okay then you have to worry only about

uniform convergence on compact subset and that is called normal convergence okay and you

have to do everything normally okay and the point is therefore in the context of analytic

functions  or  Meromorphic  functions  the  correct  notion  of  compactness  is  not  sequential

compactness but it is sequential compactness restricted to compact subsets and that is called

normal sequential  compactness and Montel’s terminology is that you do not say normally

sequentially compact you simply say normal okay, so this is one this is something about

terminology that you must know. 

Then the other  thing is of course about these subtlety in talking about  normal sequential

compactness, the subtlety is you see…when you say normally sequential compact means that

it  is  sequentially  compact  when restricted to compact  subsets and what does sequentially

compact… I mean if you blindly read or any property P normal P means the property P is



supposed  to  hold  when  restricted  to  compact  subsets,  so  if  you  go  by  that  normally

sequentially compact will mean that you know it will mean that it is sequentially compact

when restricted to compact subsets, so what does that mean? 

It means at you give me a sequence okay and if you are restricted to a compact subset I will

get a convergence of sequence okay but if I restrict to different compacts if I start with the

given sequence  okay functions  and I  if  I  restrict  to  different  compact  subsets  I  may get

different convergence of sequences okay but the fact is that it is more than that you can get

uniformly subsequence which will work on, which will converge on every compact subset

and this is actually you know another diagonalization argument that we used if you check. 

So actually you know normally sequentially compact is as strong as sequentially compact

with respect to normal convergence okay when you say sequentially compact with respect to

normal convergence what you mean is that given a sequence I can find a subsequence whose

convergence  is  normal,  normally  convergence  subsequence  which  means  that  same

subsequence  will  converge  when  you  restrict  to  any  compact  subset  but  when  you  say

normally sequentially compact you might interpret it as you know give me a sequence for

every compact subset I will get the convergence of sequence but it looks as if you change the

compact subsets the convergence of sequence could change but the truth is that there is not

much difference because you can use always a diagonalization argument okay and you can

use a sequence of compact subsets that fill out and increasing sequence of compact subset

that fill out your domain, that is the argument that we use. 

So there is really  no confusion in saying normally sequentially  compact  and sequentially

compact with respect to normal convergence that is really no difference okay that is the cost

of this diagonalization argument that you can apply on a sequence of compact, increasing

sequence of compact subset that can cover your domain, so that is one subtlety then here

comes the other technical issue, the technical issue is that you know again because you are

dealing  with  a  point  at  infinity  we have  defined normal  normality  in  2 pieces,  we have

defined  normality  outside  infinity  that  is  the  1st requirement  and  the  2nd requirement  is

normality  at  infinity  okay. Now think  of  it  for  a  moment,  what  does  it  mean? It  means

suppose  I  start  with  sequence  my  family,  the  normality  outside  infinity  will  give  me  a

subsequence which will converge on compact subsets said infinity okay and what will happen

is separately for the same sequence of functions I will get another subsequence which will

converge normally at infinity okay. 



Now I seem to be getting 2 different subsequence okay and I do not seem to be getting a

single subsequence which will converge both outside normally outside infinity and also at

infinity I do not seem to be getting that and the fact is that you can do this okay it is not much

of discrepancy because you see suppose you have a family script F which is normal in the

sense  okay  what  you  do  is?  Start  with  a  sequence  in  the  family  okay  first  go  to  a

neighbourhood of infinity okay go to the 2nd condition namely you go to a neighbourhood in

infinity which is part of as a neighbourhood of 0 with the variable inverted, there you 1 st pick

a subsequence which is you know which converges normally at infinity okay. 

Then what you do this  subsequence is also anyway a subsequence of the original  family

which is normal outside infinity okay, so did the same subsequent and now apply it to the

domain  outside  infinity  and you  get  a  further  subsequent  which  will  converge  normally

outside  infinity,  so  this  new subsequent  that  the  picked  up  that  will  be  one  which  will

converge both outside infinity and at infinity okay so even though you are doing it piecewise

everything works out fine okay, so you do get a global give me a sequence you do get global

subsequence okay which will converge normally both outside infinity and at infinity okay

there is no confusion alright. Only thing is you have to do this twice alright. 
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So let me write that down there is no ambiguity in the conclusion of normality for f for if f 1,

f 2 and so on is a sequence in f which is assumed normal on D then we 1st pick a subsequence

f n1, f n2 and so on that converges normally in our neighbourhood of infinity which means

that f n1 of 1 by W, f n2 of 1 by w and so on converges normally in our neighbourhood of w

equal  is  to 0 this  is  what  it  means okay and then we pick a further  subsequence of this

subsequence, so f n i 1, f n i 2 and so on and which also converges normally on D minus

infinity then the subsequence f n i 1, f n i 2, so let me use is a subsequence that converges

normally on D okay, so there is no problem alright you are able to get one subsequence that

will work both outside infinity and at infinity okay, so this is a little fact that you need to

know, so you know see this is just a part of usual philosophy in mathematics.

So there are 2 things that I want to say usually what happens is (())(24:47) properties of

function is hold an open set, the other thing is to verify that a good property is true you verify

it only locally that means you can verify it at each point in a neighbourhood on an open cover

okay. For  example  this  is  the  case  with  continuity  okay or  analyticity  and  so  on,  good

properties if you check a function is analytic you check at each point or in a neighbourhood

of each point. If you want to check a function is continuous it is enough you check at each

point okay, so the same way you see this normal the idea of a normal family is also local okay

if you say that a family is you know normal in pieces okay that is it is normal on an open

cover alright then it continues to be normal. 

So for example what we are saying is that if a family is normal outside infinity and if a family

is normal in the neighbourhood of infinity okay this outside infinity and neighbourhood of

infinity together constitute a cover okay and for the whole domain and when you say the



function is normal outside infinity and at infinity okay then you are getting it is normal on the

whole domain okay, so you see normality is a local property that is what is happening alright

and it is a good property and all good properties are usually local properties you can verify

them locally  and they are valid  on open sets  okay, so this  is  something that  you should

remember as a philosophy. So this should have been normally alright okay so now what I am

going to do is now let us go on with now you know with this background it is very easy to

write out the analog of Montel’s theorem and Marty’s theorem for domain in the extended

complex plane. 
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So here is Montel’s theorem, so here is Montel’s theorem so let me put it for as domains in

the extended complex plane, what is the theorem? The theorem is let script F be a family of

holomorphic or analytic functions on a domain D in the extended complex plane. Then script

F is normal if and only if script F is normally uniformly bounded okay, so this is Montel’s

theorem okay that you say that, so where you say that normality of the family is the same as

normal uniform boundedness of the functions in the family alright and mind you normality in

the family means that it is normally sequentially compact that is it is sequentially compact

with  respect  to  normal  convergence  alright  every  sequence  admits  a  subsequence  which

converges normally that is a subsequence which converges uniformly on compact subsets

alright and normally uniformly bounded is uniformly bounded on compact subsets alright and

this normally uniformly bounded on a domain in the extended plane again how do you define

that? You define it piecewise. 



So what  you say is  that  if  you want  to  say a  family  of  functions  is  normally  uniformly

bounded on a domain in the extended plane, what you do is that you 1st say that it is normally

uniformly bounded in you throughout infinity, so it should be normally uniformly bounded on

D minus infinity and then you say that the corresponding family with the variables inverted

okay is normally uniformly bounded in a neighbourhood of 0 for the inverted variable which

corresponds to a neighbourhood of infinity for the original variable okay. 

So this normally uniformly bounded also needs to be defined when you consider the point

domains which contains the point at infinity but again you define it in 2 pieces you make one

definition outside infinity and then at infinity the definition you make is by inverting the

variable so that you change Z equal to infinity, neighbourhood of Z equal to infinity is a

neighbourhood of infinity you change that to a neighbourhood of w equal to 0 where w equal

to 1 by Z or Z equal to 1 by w okay, so this is Montel’s theorem and you can see that you

know the proof of this theorem just comes in the usual Montel’s theorem because finally what

you have  done is  to  deal  with  the point  at  infinity  you are actually  going back to  0 by

inverting the variable. 

So the moral of the story is that by this device you are able to deal with the point at infinity,

so the proof of this Montel’s theorem will follow from the usual Montel’s theorem okay and

of course you have to  worry about  one thing namely  that  when you come from normal

uniform boundedness to normality okay what you will get is that you will  get separately

normality  outside  infinity  and  you  will  get  separately  normality  at  infinity  but  we  just

discussed at normality is the local property, so you will get normality on the whole domain

okay so everything works out fine alright. 

The only thing that I want you to remember is that at the back of all this how does this differ

from the usual Arzela-Ascoli Theorem. The Arzela-Ascoli Theorem says that you know if

you want compactness then it is the same as sequential compactness and that is equivalent to

you know uniform boundedness an equicontinuity okay, so you need equicontinuity alright

and of course the usual Arzela-Ascoli Theorem is for functions defined on compact metric

space but then here you are working with functions on a domain certainly not a closed set

okay it is an open connected set and therefore what you will have to do is that you will have

to go from usual convergence you have to go to normal convergence, so you must…instead

of expecting uniform convergence on the whole domain you should except  only uniform



convergence on compact subsets of the domain and then the big deal is as usual you know the

you do not have to worry about equicontinuity because equicontinuity is automatic. 

In the case of analytic functions you know if the function are original functions of bounded

then the derivatives also become bounded and that is because of the Cauchy integral formula

and the Cauchy estimates for the 1st derivatives which can be expressed as an integral of the

original function okay therefore if you have a normal uniform boundedness of the functions

then  you  have  normal  uniform  boundless  of  the  derivative  and  the  normal  uniform

boundedness  of  the  derivatives  always  implies  a  equicontinuity  okay  so  you  get

equicontinuity  for  free  okay  and  therefore  the  only  important  condition  is  the  uniform

boundedness, normal uniform boundedness of the family and that is the whole point about

Montel’s theorem and then the extension of this theorem to Meromorphic functions is of

course Marty’s theorem. 

So that also works okay but the point is that when you go to Marty’s theorem you will have to

worry about not using usual derivatives because what you are working with are Meromorphic

functions and at a pole they are not differentiable and then you know the trick is to not use the

usual  derivatives  but  use  the  spherical  derivatives  okay  and then  you  get  the  analog  of

Montel’s theorem for Meromorphic functions okay and that is Marty’s theorem, so let me

write this  down. So here let  me just mention that  proof follows from the usual Montel’s

theorem for domains in the complex plane and our remarks about okay and then now let me

go onto Marty’s theorem. 

In Montel’s theorem you know you can allow the functions you take only complex values

because they are analytic functions okay there is no question about taking the value infinity

alright, so whereas if you go to Marty’s theorem you are considering Meromorphic functions

and to make such a function continues at a pole you define its value at the pole to be infinity,

so  you  will  have  to  necessary  look  at  functions  with  you know values  in  the  extended

complex plane okay, so here is the statement similar to the statement of Montel’s theorem, so

in Montel’s theorems we say f is a family of holomorphic function on a domain in the in the

extended complex plane,  now you will  say f  is a family of Meromorphic functions  on a

domain D in the extended complex plane okay but taking values in the extended complex

plan you will have to say that okay and then you also say that then of course the statement is

that  the  family  is  normal  if  and  only  if  the  family  of  spherical  derivatives  is  normally

uniformly bounded that is the theorem okay so let me write that out.
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Let script F be a family of Meromorphic functions on a domain D in the extended complex

plane taking values in the extended complex plane this. Then this family is normal if and only

if the corresponding family of spherical derivatives namely you take the spherical derivatives

of the functions, the original family is normally uniformly bounded okay so this is Marty’s

theorem, so again let me pinpoint a couple of things, the 1st thing is that the reason why I am

repeating this several times is I want you to note that there is a I want you to notice these

important differences, see when you looking at Meromorphic functions necessarily you will

have to use values in the extended plane or 2 reasons the 1st reason is that you want the

Meromorphic function to be continuous at a pole so you define the value at the pole to be

infinity okay that is one thing, the 2nd thing is that in the target space you want to have a

metric. 

So you know I want to a function if you are looking at a Meromorphic function at a pole it

can take the value infinity okay, so I will have to compared infinity, the value infinity with

finite  values,  with finite  complex values and the only way I  can do that  is  by using the

spherical metric which is available on the extended plane master is very important that you

have to take values in the extended plane and you have to use the spherical metric this has to

be done if you are working with Meromorphic functions okay and then the other important

thing is that you need to worry about not the usual derivatives at the spherical derivatives,

usual derivatives of course will not work because usual derivatives will not… they will not

even be defined at a pole okay. 



So you will have to work with the spherical metric which is define even at a pole and I told

you there is no problem with the spherical derivative it is always continuous and even at a

pole is defined by continuity, the pole is a simple pole then the spherical  derivative is  2

divided by the modulus of the residue at that simple pole for that function and if the pole is a

pole of higher-order the spherical derivative is 0 at that pole, so and this is done in a very

continuous  fashion  alright,  so  the  point  is  spherical  derivative  is  a  continuous  function,

continues nonnegative real valued function and that is these are the functions that we have to

ensure the uniform bounded of the spherical  derivatives  okay when restricted to compact

subset okay. 

Now that is normal uniform boundedness of spherical derivatives is what we want and that is

equivalent condition to the original family being normal namely that the original family you

know is normally sequentially compact okay, so this is Marty’s theorem alright. Now so you

know this brings us to a very important point namely at this point you are able to get all the

theorem is that you want okay by you know including functions which can take the value

infinity  okay namely Meromorphic functions and you can also have functions  defined at

infinity okay. 

So what you must understand is that all these lectures all the rules that we built were to tackle

2 things first of all you wanted to tackle the function in a neighbourhood of infinity okay that

means you wanted to study functions in the neighbourhood of the point which is infinity for

example that is why we initially  were worried about trying to define when infinity  is an

isolated singularity and if it is an isolated singularity, what kind of singularity it is okay and

the track in all these cases was replace (())(40:19) Z equal to infinity by the neighbourhood of

w equal to 0 where w equal to 1 by Z okay and you know you must understand that this Z

going to w that is kind of it is a homeomorphism okay of the Riemann sphere onto itself. 

If you want it is a self-homeomorphism of the extended plane onto itself which you can think

of it also as a isomorphism of self-homeomorphism Riemann sphere onto itself  and what

happens is that infinity is identified the North pole origin 0 is identified to the South pole

okay and it is just this the inversion is just switching North and South poles of the Riemann

sphere  and this  inversion  is  a  very  nice  thing,  it  does  not  change the  spherical  distance

because essentially inversion corresponds to a rotation of the Riemann sphere by 180 degrees

with respect to the real axis the x-axis okay. 



So the point is that you can deal with the point at infinity okay that is one aspect then the

other aspect is that you can deal with these functions which have poles namely Meromorphic

functions by allowing the value infinity okay, so on the whole we have built up all these goals

to  deal  with  Meromorphic  functions  even so  you can  look  at  a  family  of  Meromorphic

functions even defined in a neighbourhood of infinity and work with that okay that is the

generality to which we have defined things now we will use all of this in the next few lectures

prove the Picard theorems okay. So I will stop here.


