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Okay, so what we need to do now as I was telling you in the last lecture is to work with

domains which probably include the finite infinity, okay so you know this is a important

turning point little technical but it is very easily understandable. So all this time you know so

let  me say few things when you probably do a  first  course in  complex analysis  you are

working with a domain you are working with a function which is defined on a domain in the

complex plane, okay which means it is defined on an open connected set ofcourse non-empty,

okay and the function is taking complex values okay.

But then we want to work not just with analytic functions we want to work with meromorphic

functions and the problem with a meromorphic function is at a pole the function goes to

infinity and therefore at a pole you do not get continuity, okay so you are forced to include

the point at  infinity  in the co-domain of the function okay and that leads you to look at

functions at values in the extended complex plane, okay so that is what we are being doing so

far, what we are doing so far is we have been looking at functions which are defined on a

domain in the complex plane, ok but taking values in the extended complex plane, alright and

for such functions we have proved lot of theorems.

So for example we have proved that you know we have proved that if you have a family of

functions  which  converges  normally,  okay  then  if  all  the  functions  are  analytic  that  is

holomorphic then the limit function is either analytic or it is identically infinity. Similarly if

all the functions are meromorphic, okay then the limit function is either meromorphic or it is

identically infinity and then we have proved ofcourse Montel’s Theorem that if the functions

are all analytic if you have a family of analytic functions okay then every sequence admits a

normally convergent subsequence if and only if the family that family is normally uniformly

bounded, okay that is uniformly bounded on compact subsets that was Montel's Theorem.

And then we also proved Marty’s Theorem which is much more stronger namely you take a

family of meromorphic functions and assume that then at the condition that any any sequence

in that admits a normally convergent subsequence is equivalent  to a spherical derivatives



being normally bounded and we (())(3:25) the spherical derivatives because for meromorphic

functions usual derivatives will not be defined at the poles, okay.

So in all these statements the domain of the functions was always a subset of the complex

plane and but ofcourse the co-domain we took it to be the extended complex plane and mind

you therefore what is happening is in the domain the metric you are looking at is the usual

eucledian domain because after all it is a subset of the complex plane where you have the

eucledian metric.

Whereas in the co-domain the metric you are looking at is the spherical metric because the

co-domain in the extended complex plane is identified by the stereographic projection with

the Riemann sphere and you actually take the spherical metric on the Riemann sphere, alright

which is the distance between two points being given by the length of the minor arch of the

greater circle on the Riemann sphere passing through those two points, okay.

So this is the setup of things now what we want to do is we want to extend all these theorems,

okay to the domain not only a domain in the complex plane but you want to extend it to a

domain in the extended complex plane, okay that is the next step that means you are now

allowing infinity as a value of the variable you are allowing infinity in the domain, okay and

you want to write out the same you want the same results again and the fact is it is true it will

work all these results will be true for a domain even in the even in the extended complex

plane but then we need to fix it, okay.

So I will tell you where the problem lies, the problem lies in let us try to be knife and usually

see the advantage of being knife is that you will think naturally, okay and the disadvantage is

that it may not work but the advantage is that you will know where you go wrong and then

you can correct yourself,  okay so there is always an advantage to being knife in the first

place. So suppose D is a domain in the extended complex plane, okay and certainly I am

looking at a domain which contains the point at infinity, okay because if it does not contain a

point infinity  then it  is a usual  domain I have all  the theorems for usual  domains in the

complex plane I have already proved, okay. So let me look at the domain in the extended

complex plane which contains a point at infinity, okay.

Now I can just say a sequence of functions converges normally on the domain if it converges

on compact subsets this is usual definition, okay but the problem is that this definition will

not work, why it will not work is because if you take a compact subset of a domain even if



you take a domain in the extended complex plane that compact subset cannot contain the

point at infinity because any (())(6:01) infinity is unbounded, do you understand?

So therefore the problem is that if you say a family of functions or suppose you are looking at

a sequence of functions and if you say if you say it normally converges on a domain which

contains the point at infinity actually you are not taking care of the normal convergence at

infinity because when you say it normally converges what does it mean it means that it is

converging  on  compact  subsets  uniformly  convergent  on  compact  subsets  but  what  are

compact subsets of a domain even in the extended complex plane?

See if you look at it with respect to the usual eucledian plane, okay no neighbourhood of

infinity, okay can be compact subset of the usual plane, okay. So what is happening is that

even if you naively define that a sequence of functions is converging normally on a domain

containing  the point  at  infinity  what  you are actually  defining is  only that  it  is  that  this

sequence of functions is converging normally only on the domain the punctured domain with

the point at infinity removed, okay.

So you are not able to take care of normal convergence at infinity that is the problem, okay.

So how do you tackle this? So the way of tackling this is is again the same old philosophy of

you know how to tackle the point at infinity, you tackle the point at infinity by you know

inviting the variable and looking at the point at 0, okay. So you know whenever you want to

look study f of z at z equal to infinity what was original idea we studied f of 1 by w at w

equal  to  0  and  when  the  moment  so  the  neighbourhood  of  infinity  will  translate  to  a

neighbourhood of 0 and a neighbourhood of 0 is again now a good old neighbourhood in the

good old complex plane and you can do work with it we have already proved theorems there,

okay.

So here is the definition so the definition is suppose D is a domain in the extended complex

plane containing the point infinity, when do I see a sequence of functions converges normally

on D? I say that I have to say it in two pieces, I have to first say that the convergence is

normal on D minus infinity, okay that is throw away infinity you are throwing away one

point, okay so it is still an open set, okay mind you infinity is a closed point if you look at in

the  extended  complex  plane  which  is  identified  by  the  Riemann  Sphere  the  infinity  is

identified with the north pole on the Riemann Sphere, okay.



So you take D minus infinity that is an open that is a nice domain in the complex plane, okay

it is continue it is going to just by removing the point you cannot make it disconnected, okay

and because it is open okay so it is still going to be open connected. So it is a domain in the

complex  plane  you  require  that  on  that  domain  punctured  at  infinity  the  given  family

converges normally, okay which means you are requiring that that is uniform convergence on

compact subsets of on compact subsets of the plane which intersect D that is all, okay that is

one condition.

The second condition is you take the same sequence of functions change the variable from z

to 1 by w and say that that converges normally in a neighbourhood of the origin, okay. So you

give a definition outside infinity and you give a definition in a neighbourhood of infinity by

translating it to a neighbourhood of 0 and this is the definition that we will make and this is

the definition that works, okay you will see that with this definition you can translate all the

theorems that we have proved you can just use all the theorems that we have proved so far to

get theorems for the case when the domain includes the includes the point at infinity, okay. So

let me write this down.
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So the next thing is let me use a different colour normal convergence at infinity. So let f n of z

be a sequence of continuous functions I do not even need continuous let me just say sequence

of functions on a domain D of the extended complex plane with infinity in the domain, okay

and taking values in the extended complex plane, okay. So basically you can think of f n as a

sequence defined on and you know an open on a domain on the Riemann Sphere and taking

values  on  the  Riemann  Sphere,  if  you think  of  the  extended  complex  plane  is  Riemann



Sphere you can think that your store is a domain it is an open connected set on the Riemann

Sphere, okay your D is on the Riemann Sphere it is an open connected set that contains a

north  pole  which  is  supposed to  correspond  to  the  point  at  infinity  and you have  these

functions each of these functions are defined on that D and they are talking values again in

the Riemann Sphere which means they can take the value infinity, okay.

So you have to take a sequence of functions so when do we say that this sequence converges

normally on D? So let me write that down we say that f n converges normally on D on D if

number 1 f n so the sequence f n converges normally on D minus infinity which is D minus

infinity  is  a  domain  in  the  (())(12:33)  complex  plane,  okay  and  you  know  defining

convergence on a domain in the complex plane is something that we have already done it is

just uniform convergence on compact subsets, okay.

And and this  and is  very very important  number 2,  okay f  n of 1 by w okay converges

normally in a neighbourhood of w equal to 0. So here is the so the second statement is what

actually  takes  care  of  normal  convergence  at  infinity  and you know it  is  very  beautiful

because normal convergence at infinity means you should ensure uniform convergence on

compact subsets of infinity, okay but the problem is there is no compact subset of infinity that

you can think off in the usual complex plane you can think of it only under Riemann Sphere.

So if you want it to translate it back to the usual complex plane you have to translate from

neighbourhoods of infinity to neighbourhoods of 0 by making this inversion z going to 1 z

going to 1 by z which is w, okay so you replace z by 1 by w, alright. So this is the definition,

alright. Now comes now you see this definition is peace wise what you have done is you have

got normal convergence outside infinity that is the first statement because outside infinity in

the domain is again the domain in the usual complex plane you have no problems with that.

And the second part  of the definition says you have convergence normal  convergence at

infinity, okay that is what the second one says because you know after all studying f n of 1 by

w at  w equal  to  0  neighbourhood  of  w equal  to  0  is  a  same of  studying f  of  z  in  the

neighbourhood  of  infinity, alright.  But  because  it  is  a  neighbourhood of  0  I  know what

converges normally means okay fine.

So this is the right definition and this definition works so I will put this as Def for definition

so this definition works. But then there are certain remarks that need to be made so that you

know you realize that you always make a definition if a definition has to suit a particular



condition you make a twist in the definition when you have to check whether the definition is

consistent.

So one of  the thing  that  you can ask is  the following.  Since  I  have defined the  normal

convergence a sequence in two pieces can it happen that on each piece I get a different limit

function?  You  can  ask  that  and  the  answer  is  no,  you  cannot  if  you  are  working  with

continuous functions it cannot happen because of continuity, okay so this definition will work

properly with continuous functions, okay so let me write this down.
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Suppose so here is a remark so the remark is suppose each f n of z is continuous on D, okay

then f n converges to a continuous function f on D, okay so you get only one function, okay

and what is the similar statements hold, similar statements hold okay let me say that because I



need to expand on that, okay. So what is the proof? The proof is that well you see on D minus

infinity, okay f n of z will converge to well let us say f of z alright and f z is continuous this is

because  of  normal  due  to  normal  convergence  you  know  a  normal  limit  of  continuous

function is continuous and mind you should consider the limit function f also to be a function

with values in the extended complex plane, okay.

And so this is because of part 1 of the definition, now part 2 of the definition will tell you that

in the neighbourhood of the origin f n of 1 by w will also converge to something and I will

call that as g of w, okay so also on a neighbourhood of w equal to 0 f n of 1 by w converges

to g n of w sorry g of w so I in principle I should expect to get function g and again g is

continuous at 0 and in fact g is continuous everywhere again because again I am using just

the fact that normal limit of continuous function is continuous, okay.

So there is only one thing that for w not equal to 0, okay z equal to 1 by w is not infinity,

okay so z lies in D minus infinity, okay and therefore what will happen is by the uniqueness

of limits of a sequence point wise you will get that f of z will be equal to g of what is this g of

1 by z okay so this implies for w not equal to 0, okay f of 1 by w is same a g of so maybe I

should call this as you know here I have to I will have to say the following thing I should call

this as g n of w, okay I should call g n of w as f n of w and g n of w tends to g of , okay and

the point is that this g of w is f of 1 by f of 1 by w is g of w that is what I am getting, okay if I

put z equal to 1 by w, alright.

So but then you see and both are continuous at 0, okay both are continuous at 0 mind you

because of continuity therefore limit w tends to 0, okay. So what this will tell you is that you

know the so this will tell you that f of infinity will be g of 0, okay so this implies that the

limit function the limit function is f of z even at infinity so you get a unique limit, okay that is

the whole point.

So this normal convergence defining it peace wise that is one outside infinity and the other

one in the neighbourhood of infinity by translating to a neighbourhood of 0, okay though it is

a two piece definition normal convergence will still give rise to only one function but mind

you all functions are being taken with values in the extended complex plane and that in the

target the metric you are using is always a spherical metric, okay.

So you know unless you give a argument like this, okay things could go round see after all I

have  defined  normal  normality  separately  in  two  pieces  normality  I  mean  normal



convergence in two pieces, okay and then it could happen that on each piece I could get

different  limits  atleast  what  this  tells  you  that  it  will  not  happen  if  your  functions  are

continuous, okay and that is going to be the case because we are going to deal only with

analytic functions or meromorphic functions and you know analytic functions are ofcourse

continuous  and  even  if  you  recall  even  if  you  take  an  analytic  function  at  infinity  by

definition it is a function which is continuous at infinity you know and by version of the

Riemann’s removable similarities theorem saying that function of analytic at infinity means

that it should be bounded at infinity, okay.

So it means that the function value at infinity is a finite complex number, okay so analytic

function at infinity make sense. So analytic functions on a domain in the extended complex

plane containing the point at infinity make sense for us, okay. And similarly meromorphic

functions also make sense because what is the meromorphic function on a domain which

contains a point at infinity it is you see it is supposed to be a meromorphic function on the

punctured domain with the punctured infinity and you invert the variable and that should give

me a meromorphic function at the origin, okay always you go to saying that a function is

meromorphic  at  infinity  is  a  saying  f  of  z  is  meromorphic  at  infinity,  okay  in  the

neighbourhood of infinity is same as f of 1 by z is meromorphic at z equal to 0.

So you always translate back to at infinity you always translate back to at neighbourhood at 0

so it make sense, okay. So meromorphic functions on an extend on a domain in the extended

complex plane containing the point at infinity make sense and all these functions with values

in the extended complex plane also make sense. So we are in a perfect situation and all these

functions are all continuous, mind you meromorphic functions are continuous because you

allow at a pole you define the function value to be infinity and you allow the infinity to be in

the co-domain of the function, okay so we are in the right set up.
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Now what we need to know is we need to check each of those theorems that we proved we

need to deduce at those theorems also work for such a domain, okay so here is the first point.

So theorem let  D be a domain in  C union infinity  and f  n a  sequence so a sequence of

holomorphic functions or analytic functions functions on D taking values in C considered as

subsets of C union infinity, okay.

If f n converges to f normally on D then either f is analytic on D or f is identically infinity on

D, okay. so you see the point is that we have already proved this theorem when D does not

contain the point infinity when D is a subset of D usual complex plane we have already

proved this theorem that is you take a sequence of analytic functions and you assume that it

converges normally then the limit function has to be either analytic or it will be identically

infinity, okay and you can get anything in between.

For example you cannot get a strictly meromorphic function in between that, okay and the

reason is a pole cannot pop up at infinity I mean in the limit and if you remember this was

because if you invert the variable 0 cannot pop up at the limit because of (())(24:50) so (())

(24:51) is working in the background, okay so we will have to only worry about the case

when D contains infinity that is the extension we are particular interested in so let me write

that down.
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We have already proved this for infinity not belonging to D so we are the essential thing that

so let  the essential  thing is we allow infinity  to belong to D, okay. Now go back to the

definition  of  normal  convergence  for  a  domain  containing  the  point  infinity  what  is  the

definition? First thing is you throw out infinity and on the remaining thing which is a domain

in the complex plane there is normal convergence, okay.

And the other thing is that you take a neighbourhood of 0 and look at the functions of the

variable invertible in the neighbourhood of 0, okay. So now so let me write that down now

for D minus infinity f n will converge to f normally so either f is identically infinity on D

minus infinity or f is analytic on D minus infinity, okay this is because of the fact that D

minus infinity is the usual domain the usual complex plane and for the usual complex plane

we have proved such a theorem, okay whenever you have normal convergence of analytic

functions the limit is either identically infinity or it is identically or it is uniformly an analytic

function, okay.

But you know if f is identically infinity on D minus infinity it will also be infinity at infinity

because f is continuous, okay. So we have to only take care of the situation when f is not

identically  infinity  and proof  that  f  is  analytic  on even at  infinity  so infinity  is  the only

problem, okay. So let me write that down if f is identically infinity on D minus infinity then

by continuity of f on D, f is identically infinity on all of D because f of infinity will become

infinity, okay.



So if f is not identically infinity, infinity becomes an isolated singular point of f okay because

mind you f is analytic on D minus infinity D minus infinity is the neighbourhood of infinity it

is a deleted neighbourhood of infinity D minus infinity is deleted neighbourhood of infinity,

okay and f is analytic on that that means f is analytic in neighbourhood of infinity that means

infinity is an isolated singular point for f and to check that f is analytic at infinity I have to

only  check  f  is  bounded  at  infinity  but  why  is  that  true  that  is  because  I  have  normal

convergence at infinity, okay which is normal convergence if you change the variable to 1 by

w and look at w equal to 0, okay.

Now we will use the second part of the definition of normal convergence which is compact

convergence I mean all convergence at infinity we use that and then you are done, okay.
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Now we also have we have also f n of 1 by w converges to f of 1 by w in normally normally

in a neighbourhood of 0 of w equal to 0 this is the second part of the definition, okay and

mind you that is a that is you could have taken a you could have taken a small enough open

disk at the origin which will be a domain it will be connected, okay in fact it could (())(29:09)

be simply connected, okay.

And now on that on that domain okay you look at the f n’s okay the point is that each of the f

n's is also analytic at infinity you see what look at what was given to me what was given to

us, we have started with sequence of holomorphic functions on D and we are looking at

infinity and we have assumed infinity belongs to D it means that each f n is already analytic

at infinity each f n is already analytic at infinity, okay that means f n of z is analytic at z equal

to infinity that means f n of z is bounded at z equal to infinity that means f n of 1 by w is

bounded at w equal to 0.

And because the f is the normal limit of the f n's f of 1 by w will also be bounded at w equal

to 0 and that is the same as saying that f is analytic at infinity and you are done, okay so that

is it. So let me write this down. Now since since each f n is analytic at infinity, each f n of w

is analytic at 0, so f of 1 by w is bounded at 0, which means f is analytic at infinity. Thus is f

is not identically infinity then f is also holomorphic on D and that is the proof, okay.

So you see you are able to extend the theorem that we already proved that a normal limit of

analytic functions can either be analytic or it will be identically infinity even if your domain

contains infinity you are able to do that, okay and the technical point was to deal with normal

convergence at infinity and that is cleverly done by translating a neighbourhood of infinity

into a neighbourhood of 0 by inverting the variable which is the usual philosophy that we

have always been using to study the point at infinity, okay.
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Fine so the next see the same kind of argument will give the corresponding theorem for you

know it will give you the corresponding theorem for meromorphic functions, okay. So let me

write that down theorem. Let f n be a sequence of meromorphic functions on the domain D in

the extended complex plane. Suppose f n converges normally on D then either the limit f

equal to limit f n is identically infinity on D or it is meromorphic on D, okay.

So so this is just extending the previous theorem to the meromorphic but now the point is that

essentially you want to do deal with the domain which contains the point at infinity and what

is the proof? Proof is exactly the same, okay the proof is exactly the same let me write it out.

If D does not contain infinity, this has already been proved, so assume D contains infinity,

okay. We have that f is meromorphic on D minus infinity, okay.



So again let me stop and say couple of things please remember that when you say normal

convergence now, okay it is uniform convergence on compact subsets, alright but either you

must look at compact subsets of D minus infinity or you should look at compact subsets of a

neighbourhood of the origin with the variable inverted that is the point, okay and in both

cases for the variable you are using only the eucledian metric but for the you values you are

using the spherical metric, okay you have to remember that that is a big difference.

And the other important thing is that you know you are trying to make use of the theorems

that you have already proved for a domain in the usual complex plane and trying to reduce

the corresponding theorems when the domain contains the point at infinity, okay so these are

things that you should highlight in your mind, okay. So you see so let me write repeat what I

said  if  infinity  is  not  in  D  then  D  is  the  usual  domain  and  you  know  for  a  limit  of

meromorphic functions the limit can either be identically infinity or it can be meromorphic,

okay.

And mind you this is a very important thing, you know it tells you the normal limits are good

because after all what is meromorphic function? A meromorphic function is a function is

analytic except for poles, okay but when a function goes to a limit the limit function could be

horrible,  see  the  limit  function  could  have  been  an  analytic  function  with  non-pole

singularities it could have been an analytic function with essential singularities or even worse

the limit could have been an analytic function with non-isolated singularities such horrible

things could happen but the fact is normal convergence prevents that.

See  normal  convergence  you  know is  always  a  it  is  locally  uniform convergence,  okay

because every point has a neighbourhood which is compact, okay so at every point you can

find a neighbourhood compact neighbourhood where you will have uniform convergence and

therefore on that neighbourhood also you will have uniform convergence should it is locally

uniform convergence normal convergence and therefore because of the local  uniformness

everything nice  happens you know the  moment  you have uniform convergence  limits  of

continuous functions are continuous, limits of analytic functions are analytic and so on.

But so this is happening globally, alright and there is one more thing that I have to tell you

that here the moment I assume f n is sequence of meromorphic functions on the domain

which contains a point at infinity and I assume that it converges but mind you unique limit

function is already defined that is because you know the f n's are meromorphic and therefore

are  continuous  and  I  told  you  that  whenever  you take  a  continuous  limit  of  continuous



functions if you take a normal limit then the limit function is continuous even though your

definition of normal convergence has been split into two pieces, one for the domain infinity

punctured and the other for the neighbourhood of infinity part of the neighbourhood of the

origin, okay.

So even this existence of f a uniform function f a single function f is because of the continuity

of all these functions because meromorphic functions are continuous functions considered as

functions into the extended complex plane that is something that you should not forget, okay

so alright so if you take the domain which contains the point at infinity then D minus infinity

is a usual domain in the usual complex plane and you have already proved the theorem for

that so the function f is meromorphic on D union infinity or f is identically infinity on D

minus infinity, okay so this  is  something that  we have already proved we have that  f  is

meromorphic on D minus infinity or f is identically infinity on D minus infinity, alright.

And again the same old argument if f is identically infinity on D minus infinity then it has to

be infinity  at  infinity  because of continuity of f,  okay so we have to only deal with the

condition when f is not identically infinity, right. So let me write that down. So if ya so if f is

identically infinity on D minus infinity then f is identically infinity on D as f is continuous at

continuous on D in fact continuous at infinity, okay.

So if f is not identically infinity we have f is meromorphic on D minus infinity, okay and

therefore infinity becomes singular point, okay infinity is certainly a singular point because

the problem now is slightly more complicated as it tends it looks you can say infinity is a

singular point but you cannot immediately say that infinity is an isolated singular point that is

the point that is the issue.

See infinity is a singular point because in if you take the if you take D minus infinity there are

only poles on D minus infinity f is you know it is meromorphic. So on D minus infinity it is

there are poles and poles are ofcourse isolated. So as far as D minus infinity is concerned all

the singular points are isolated but infinity itself may be a non-isolated singular point it could

happen poles could accumulate at infinity. If you have a sequence of singular points going to

a point then that point is not an cannot be an isolated singular point so you have this problem.

But then that will not happen because of the normal convergence at infinity because what is

happening at infinity is being controlled by what is happening when the variable is inverted

in a neighbourhood of 0, okay.
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So let me say this now in neighbourhood of w equal to 0, f n of 1 by w converges to f of 1 by

w normally and what I want you to understand is that you have changed the variable from z

to 1 by w alright and if you are looking at z not equal to infinity or looking at w not equal to

0, okay and the point I want to make is that even at w equal to 0 I want to say that the f n's

okay they are continue to be meromorphic that is because that is already given to you.

See what is given to you is that each of these functions is meromorphic on D, so infinity the

point infinity which is in D can either be a pole by itself for each of the f n's or it can be a

point of analyticity, infinity cannot be any verse, okay. So that means each of this f n's of 1 by

w are meromorphic in a neighbourhood of w equal to 0, okay but this neighbourhood of w

equal to 0 on that neighbourhood that is the usual neighbourhood in the complex plane and

you have a normal convergence of the sequence of meromorphic functions therefore the limit

functions can be either identically infinity or it can be meromorphic but the limit function is

not identically infinity because f is not identically infinity, okay.

So f of 1 by w has to be you know a meromorphic function at w equal to 0 that means you are

saying f of z is meromorphic at infinity and you are done, okay. So you escape and you get

the proof of the statement that you want. So let me write that down so let me write this and

since  each  f  n  is  each  f  n  z  is  meromorphic  on  D,  f  n  of  1  by  w is  meromorphic  on

neighbourhood of w equal to 0, so f of 1 by w is meromorphic at 0 at w equal to 0 as f is not

identically infinity, so f is so f of z is also meromorphic at infinity and we are done, okay and

so you this horrible thing of infinity being a non-isolated singular point for f does not happen.

So you see we are still in very nice in a very nice situation, okay.



So what I need to do is what we need to do next is try to generalize a Montel Theorem and

Marty’s Theorem for the case of meromorphic functions and we will  do that  in the next

lecture.


