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So let me just write down what I said last time. So we are trying to proof Marty’s Theorem

which is you know it is a analog of Montel’s Theorem for you know meromorphic functions,

okay and we have just  so what I  have written here is  upto one way of the proof of the

theorem,  okay  namely  that  if  you  have  normal  uniform  boundedness  of  the  spherical

derivatives of a family of meromorphic functions defined on a domain in the complex plane

then that family is compact in the sense that it is normally sequentially compact namely that

given any sequence in that family you can find subsequence which converges uniformly on

compact subsets of your domain, okay.

So and I just told in words the proof that the other way of the theorem is also true namely

suppose you start with a family which is normal so in the sense that a family which this

property that every sequence admits a normally convergent normally uniformly convergent

subsequence, okay then ofcourse this is the family of meromorphic functions then the claim

is  that  if  you look at  the  family  of  spherical  derivatives  that  family  has  to  be normally

uniformly bounded namely it should be uniformly bounded on every compact subset, okay



and that is the way we have to write down the proof I think I told you in words how this can

be done but now I will write it down I will write it down more accurately.
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So let me write this here conversely so probably as I am going to the converse I will probably

change colour something else, so conversely assume that script F is a family of meromorphic

functions on D such that every sequence in script F admits a normally uniformly convergent

subsequence so I am abbreviating uniformly to ufly cgt is abbreviation of convergent and

subseq is for subsequence.

So basically this is the right notion of saying that a family is compact, okay what do I have to

show? We need to show that the family of spherical derivatives in which this is the set of all

you take each function small f in the family script F and take its spherical derivative, okay

and then you get the family of spherical derivatives of this collection and we already have to

show is  that  this  family  of  spherical  derivatives  is  normally  uniformly bounded,  okay is

normally  that  means that  you know you will  have to  show that  it  is  that  it  is  uniformly

bounded on every compact subset of D okay.

What does that condition mean that is for every compact subset K in D so I am using cpt to

abbreviate the word compact so for every compact subset K in D okay so let me write it like a

logical  statement  because  I  am  going  to  negate  because  you  are  going  to  proof  it  by

contradiction, for every K in D with K compact there exist M greater than 0 that is a uniform

bound for all the spherical derivatives of the functions in your family when restricted to K

that is so if I write it down it means that thee exist a uniform bound which I am calling as M



such that the spherical derivative at each point is bounded above by M for all functions f

small f in the family script F and for every point is that in the compact set, okay this is the

this is exactly the condition that the family of spherical derivatives is normally uniformly

bounded.

Mind you the spherical derivative is a non-negative real number, okay spherical derivative is

a non-negative real number it is 2 times the modulus of the usual derivative divided by 1 plus

modulus of the functions squared, okay and this is at all the points where the function is

analytic and since we are considering meromorphic functions you could have points which

are poles and that poles I have told you what the spherical derivative is, we have evaluated it

by continuity if the pole is the simple pole spherical derivative is 2 divided by the modulus of

the residue of the function at that simple pole otherwise it is 0 if it is a pole of higher order,

okay.

And ofcourse for the exceptional function which is constantly infinity on the pole domain

which is also possible in a limit of meromorphic functions or even for that matter even for

analytic functions in a under normal limit. For this function which is constantly infinity equal

to infinity spherical derivative is 0, okay you should remember that. So here is so what we

have to show? We have to show is that we have to show this condition, okay and what we

will do is we will proof by contradiction so what we will do is we will assume this condition

is not going to hold and we will contradict the fact that you have normality of the family

namely that every sequence in the family admits a subsequence which converges uniformly

on compact subsets so we will do that we will show contour example of that, okay.
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So suppose the above does not hold so this is proof by contradiction, suppose this does not

hold then what you do? So you know what you will have to do is I will have to negate this,

okay I have to negate this logical statement, okay and you know there is a very strict way of

you know negating logical statements you normally replace for every with there exist and the

other way round you replace there exist with for every okay that is the way you do it.

So you know if I negate this what I will get for every compact subset I want certain property

to hold if I negate it it means there I can find a compact subset where this property will not

hold. So this for every K in D with K compact will negate to there exist K in D with K

compact so it will become there exist K subset of D with K compact, okay and what is the

rest of it?

So look at the original statement for every K in D with K compact there is this this is the rest

of the statement the statement is that for every for every f and for every z okay I can find an

M such that the spherical derivatives of f at z are all bounded by M, okay. So this is there

exist M greater than 0 on upon negation will become for every M greater than 0, okay and

this for every small f will become a there exist small f and this for every small z will become

there exist a small z.

So the way this part negates is you will get for every capital M greater than 0 there exist an f

sub M in the family okay and a point z sub M in the compact set such that the spherical

derivative of f sub M at z sub M is going to be greater than M this is how it negates, okay this

is the negation of the statement. So in particular what I can do is that you know basically I



want to show that if I assume if that this happens I want to show that I am going to get a

contradiction in contradiction to what contradiction to what have assumed namely that the

family whenever you have a sequence you can extract a normally convergent subsequence,

okay.

So I will have to cook up a sequence and the way I do it is since this this negative statement

is true for K you start putting M equal to 1, 2, 3, 4 so you make M larger and larger so that M

goes to infinity and then you know by going to infinity expect that the spherical what you

will get is you will get a sequence of points and a sequence of functions which where the

spherical derivatives are those corresponding points is going to infinity but then this cannot

be  this  cannot  come  from the  original  family  if  it  were  normal  that  is  because  normal

convergence of a family also implies normal convergence of the spherical derivatives and

mind you the spherical derivatives is the finite quantity, it is not a infinity quantity, okay. So

that is how we will get the contradiction.

So what I will do is so let me write it down these are (())(11:41) details but sometimes you

should know how to write down things that is very important and sometimes you should also

be able to just say it in words for example you would find that in several textbooks probably

the textbook would become very voluminous if they write down every detail so they might

just qualitatively say it in a few words, okay but then it is your duty to write it down you have

to translate it, okay so this is part of this is part of the exercise whenever you read a book,

okay.

(Refer Slide Time: 12:26) 



But since this is a lecture I am bound to explain as many details as I can so I will do it. So put

M equal to 1, 2 and so on get f 1, f 2 and so on this is a these are all functions in the family

script F and you get these points z 1, z 2 and so on which these are all points in K with the

spherical derivative of f i at z i greater than i okay I get this this is when I put M equal to 1, 2

and so on, okay.

Now you know how the proof will go on the one hand I have this sequence of functions so I

can always extract a normally convergent subsequence because as a part of my assumption,

okay. On the other hand I also have the sequence of points, okay it is a sequence of points but

where does  it  lie  it  lies  in  a  compact  set  therefore  if  there  is  a  convergent  subsequence

because you know any compact this compact set is a compact metric space and for a compact

metric  space  you  know  that  means  compactness  means  is  equivalent  to  sequential

compactness  which  means  that  from  every  sequence  you  can  extract  a  convergent

subsequence.
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So what I can do is that I can do it either way so let me do it like this since k is compact, so

sequentially compact because compactness in sequential compact is a equivalent from metric

spaces there exist a subsequence z let me call this as z n z n i okay there is a subsequence

which converges okay to it will converge to a point and that point has to be in K because the

compact set is closed, okay because set is closed set is closed it will contain limits, okay so z

sub n i is a subsequence and it is convergent subsequence of the limit should also be in K

because K is closed, okay.

Fine so you have this so you have these z n i is going to z not on the one hand okay this is the

compactness of K where that has being used and then I will also use the normal the fact that

the family is normal that it is compact, okay. So well by hypothesis, there exist a subsequence

so you know well there exist a subsequence of f sub n i okay so you see I already have the

original  sequence,  okay  and  I  have  the  original  sequence  of  points  when  I  take  the

subsequence of points which converges I have got a subsequence of the original sequence and

I am considering the corresponding functions in the family of in the sequence of functions

and I am that is already a subsequence and I am extracting a further subsequence from that

because that is what the normal sequential compactness is all about from given give me any

sequence I can always extract a normally convergent subsequence.

So I am not trying to I am not extracting a convergent a normally convergent subsequence

from f 1, f 2 and so on but I am extracting a normally convergent subsequence from the

subsequence given by f n 1, f n 2 and so on, okay. So there is a subsequence of f n i say let

me call this as well the notation it is little bit bad but does not matter so I get this subsequence

I  get  a  subsequence  of  this  which  converges  uniformly  on  K,  okay  in  fact  it  will  be  a



subsequence which converge uniformly on all compact subsets of D, okay that is what the

hypothesis comes in but I am restricting I am just worried about K for the moment because K

is the compact set when I am working.

Now but here is issue the issue is that these this f n i l, okay this will go to certain f not, okay

because you see a normal limit if you take a normal limit of meromorphic functions that is

also meromorphic that is something that we proved, okay. See a normal limit of meromorphic

functions is either identically infinity, okay or it is a meromorphic it can even be holomorphic

it can even be holomorphic okay this is what we have already seen, okay.

So this f not what can happen with f not is that f not can either be the function which is

identically infinity or f not can be honest meromorphic function (())(17:09) be a holomorphic

function,  okay.  So  note  that  either  f  not  is  identically  infinity,  okay  or  well  f  not  is

meromorphic function on D okay so this  is there,  alright  and what is  it  that I wanted to

understand?

See this convergence is uniform on K this f i n f n i l converges to f not is uniform on K it is

uniform convergence. So what it means is given a epsilon greater than 0, okay you can find

an N such that if your i sub l is greater than N, alright then the distance between these two

functions the distance between the function values at any point of K can be made less than

epsilon and mind you know because you are working with meromorphic functions you could

very well they could very well take the value infinity and it is not used the usual distance you

should use the spherical distance.

So you will have so I have to write it like this d spherical of f of n i l f sub n i l of z, comma f

not of z this can be made less than epsilon, okay the spherical distance between the values of

these two functions in the sequence beyond the certain stage and the value at the limit that

can be made as small as I want this is uniform convergence and the point is that this N has

got nothing to do with z, so this is for all z in K this is the uniformity it works for all z, okay.

So in particular you know you can now see what I am getting at you see I have these z n i's

the z n i's are going to z not, okay and therefore the f if you give me any function f in the

family by continuity f of z n i will go to f of z not, alright and but the point is for f if I had

taken f n i okay what will happen if you take the original sequence of functions f 1, f 2 and so

if you take f i and evaluate it as z i not the function but I mean the spherical derivative, okay

then it is greater than i, okay we have this.



So if I take this f n i and take the spherical derivative and then evaluate it as z n i I am going

to get something that is greater than n i and that is supposed to go to f n i of z not and now if I

let n i tend to infinity it will go to f not of z not. So essentially you know f not f z not is

coming very close to a sequence of quantities which are becoming larger and larger then how

can it be because I mean not f not of z not but I mean spherical derivative of f not z not.
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So let me write it out so the first statement I need to make is so this was the the lemma that I

had rubbed out last time so this lemma if g n converges to g normally in suppose this is the

normal  convergence  then  the spherical  derivatives  also respect  that  so then the  spherical

derivatives of the g n’s will go to the spherical derivatives of g normally, okay so this is the

lemma that  I  rubbed out which we need to use at  this  point.  If  you have a  sequence of



meromorphic function which converges to a limit function and suppose all this is happening

normally  namely  it  is  appearing  uniformly  on  compact  subsets  of  your  domain  D  then

ofcourse we have already seen that the limit function is going to be meromorphic or it is

identically infinity, okay so this g can be either meromorphic or it is identically infinity and

the  point  is  no  matter  what  it  is  if  you  take  the  corresponding  sequence  of  spherical

derivatives that will converge also to the spherical derivative of the limit and that will happen

normally, okay.

And remember that if g is the function which is identically infinity there is no problem with

the spherical derivative it is 0, it is not something that is straight, okay it is not identifying

quantity of something like that, okay. So you have this so I am using this. So if I use this what

will I get what I will get is that you see I have this f n i l going to f not. So this will tell me

that f n i l be the spherical derivatives will go to f not spherical derivative of f not, okay and

this is happening mind you this is going to happen normally so it is going to be all this is

going to happen uniformly on K, okay so this  is  uniformly on K because K is  compact,

alright.

And what does this mean this means that you know the if you calculate mind you when I am

comparing when I am comparing values of usual meromorphic functions I have to use the

spherical metric okay but when I am comparing values of the spherical derivative, okay I

have to use the usual distance function on R because spherical derivatives are non-negative

real numbers.

So what this means is that given an epsilon prime greater than 0 there exist an N prime such

that if the index is greater than N prime then the distance between f n i l hash and f not hash

for any z is can be made less than epsilon prime, okay I can do this for all z in K this is what

it means and I am using a modulus function here because these values are all real values,

okay. you see I will now interpolate so what I will do is that I will use a triangle inequality

and write this is f n i j of z i j and then I will add a f not of z i j okay I can do this plus then I

will write this f not of z i j minus f not and ofcourse everything is a spherical derivatives not

just the original functions so and then I will have f hash of z not so this is just by (())(24:09)

triangle  inequality  on  the  real  line,  alright  I  have  just  added  and  subtract  the  spherical

derivative z i j, okay and of f not okay.

So now you know now you know what I am going to do so this will be n i j that is what this

quantity is alright and now you know by now you know what is going what is happening.



You see this quantity is n i j and as i j tends to infinity this quantity this is going to go infinity

okay this is going to go infinity as i j tends to infinity, okay you know that alright. So what

you are saying is what is there on the left is the distance from f not hash of z not, okay to a

pint to a value which is going bigger and bigger and you are saying that can be bounded by

the sum of two quantities okay see the first quantity see the first quantity can be made less

than epsilon that is because of the uniform convergence of f n i j to f not, okay.

See I have just written it down above the f n i j’s they converge uniformly to f not on K so the

lemma says that therefore the spherical derivatives also converge. So the distance between f n

i j hash and f not hash at any point can be made as small as I want. So the moral of the story

is that this quantity here can be made less than epsilon, okay and this is okay this is okay for

any z okay so I plug in z i j so I can make this less than epsilon, okay.

And look at this quantity here what is it? So this is less than epsilon ofcourse I will have to

put in some condition and the condition is that if this n i j is chosen greater than N I think it

was so it is less than epsilon prime if you choose the i j greater than N prime so let me write

that so it is this can be made less than epsilon prime if so let me write it correctly i j can be

made greater than N prime, okay I can do this, right.

And again I think I missed the subscript needs to be corrected here so let me do it this is an

issue with double subscripts or triple subscripts, okay so this quantity this can be made less

than epsilon, okay so I have this and then what about the second quantity the second quantity

is spherical derivative at so there is a 0 missing here the spherical derivative of f not at z i j

minus spherical derivative of f not at z not, okay.

But mind you this also I can make sufficiently small that is because of the continuity of the

spherical  derivative spherical  derivative is anyway continuous,  okay. So the moral  of the

story is that I can make this also this also can be made less than if you want epsilon double

prime if you choose some ya again I have this problem copying up that I will have to worry

about this double subscript let me write this n i j if n sub i j if i j is sufficiently large is greater

than say N double prime I can do this and this is just what am I using here I am just using you

have space to write but may be I will continue here continuity use continuity of f not hash at z

not and remember that the z n i j's also tend to z not the z not was a limit point, okay.

So that is it you have a quantity on the left okay which is very close to very large number

okay and this  large number is becoming larger that  it  is very close to a large number is



because it is bounded by a quantity on the right which is very small okay the sum of epsilon

and epsilon prime I can make it as small as I want. So it means that the quantity on the left

which is the spherical derivative at z not of f not that comes arbitrarily close to any large

number okay and that is  impossible because that  is a this  is a contradiction because this

quantity  is a finite  quantity  the spherical derivative at  any point is  a finite  quantity so it

cannot go it cannot be within an epsilon distance of an increasing sequence of numbers just

cannot happen so that is a contradiction.

So let me put this here so this is finite quantity and the totality of all is that well that the

whole thing that you have written down manage to get is observed, okay. So let me write that

down so this is observed, okay all this is observed cannot happen so we get a contradiction,

okay and that finishes the proof, okay so spherical derivatives need to be bounded okay and

the point I wanted to remember is that ofcourse you know sometimes writing down these (())

(30:00) details is a pain you will have to worry about subscripts and things like that but then

once in a while you should do this because then you get a you get a (())(30:12) of having

written down something very accurate, okay.

And ofcourse you also should try to be very elegant and say without any notations you must

be able to say in words. So if you want to say all this this crazy things in words you know

what you will say is that well I have a sequence of points and I have a sequence of functions

which that is  if  I want to proof by contradiction I  will  find a compact  set on which the

uniform boundedness of the derivatives will not be true on that compact subset I can get a

sequence  of  functions  and  a  sequence  of  points  such  that  the  corresponding  spherical

derivatives are going to be unbounded, okay and but then the points have to converge because

it is a compact subsets atleast subsequence of points have to converge because it is a compact

subset, okay.

So and also the functions must allow a convergent subsequence if you put these two together

what  will  happen  is  that  you  will  get  a  sequence  of  spherical  derivatives  becoming

unbounded, okay but coming arbitrarily close to the spherical derivative of the limit function

at that given point and that is not possible because the spherical derivative of a function at a

given point is a finite quantity, okay.

So that is how you can say it elegantly inverse, okay fine so that finishes Marty’s Theorem.

So mind you Marty’s Theorem is very very powerful because you see it is more powerful

than it is more powerful than the usual Montel Theorem because you see Montel’s Theorem



the original Montel’s Theorem says that you know it is only for analytic functions and what

you had required there was well you needed normal uniform boundedness of the family of

analytic functions, alright.

Whereas  in  Marty’s  Theorem  you  generalize  from  analytic  functions  to  meromorphic

functions, okay and you do not require normal uniform boundedness of the functions but you

require normal uniform boundedness of the spherical derivatives of the functions, okay so

this is the difference.

So if you so suppose I have a family of analytic functions, okay and suppose I know that their

derivatives  are  uniformly  bounded  normally  uniformly  bounded  I  can  still  conclude

something from I cannot apply the original Montel Theorem, okay but I can apply Marty’s

Theorem and say that I can still conclude that this family of analytic functions will converge

to a limit and since it is normal convergence, okay I mean if you take a sequence of functions

on this family I can extract a subsequence that will converge to a limit and that limit will

either be holomorphic or it will be identically infinity. So you see Marty’s Theorem is more

powerful that is what I want to tell you, okay.
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So let me again go back to that slide that I wrote out here it is so here is so this is let me go

back to this slide you see there was this thing that I have circled in violet in surrounded by a

small I have written it in red the family of derivatives is normally uniformly bounded is an

intermediate step, okay so if I start with a family which is normally uniformly bounded and

suppose it is a family of analytic functions because of the Cauchy integral formula okay I get



the  family  of  derivatives  is  normally  uniformly  bounded,  okay  and  from  that  I  get

equicontinuity and once I had equicontinuity and uniform boundedness I can apply Arzela-

Aascoli Theorem, okay and then whatever I want I get by doing a diagonalization argument.

But now see suppose I am given a family of analytic functions, okay on a domain. Suppose I

am not given that the family is normally uniformly bounded suppose I am not given that,

okay I cannot apply the original Montel Theorem. Suppose I am given instead of given that

the original family of analytic functions is bounded suppose I am given that the family of

derivatives usual derivatives which makes sense for analytic functions suppose I am given

that family is uniformly normally uniformly bounded, okay I cannot apply Montel’s Theorem

because I do not have the uniform boundedness normal uniform boundedness of that family

itself I have only the normal uniform boundedness of the derivatives of the family, I cannot

apply the usual Montel Theorem.
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But then the uniform boundedness of the ordinary the boundedness of the ordinary derivative

will  give  rise  will  imply  the  boundedness  of  the  spherical  derivatives  because  of  this

inequality you see if you go down because that is the so this is what I have circled in violet

you see the spherical derivatives is bounded by 2 times the bound for the normal derivative

the usual derivative.

So if I am given a family of analytic functions such that the usual derivatives are normally

uniformly bounded it follows that the family of spherical derivatives is normally uniformly

bounded, okay so I can apply Marty’s Theorem Marty’s Theorem will tell me now therefore



that  any  sequence  in  that  family  admits  a  convergent  subsequence  normally  convergent

subsequence,  okay and that  normally  convergent  subsequence  is  what  it  is  a  convergent

sequence of holomorphic functions but the only thing is that the convergence is with respect

to the spherical metric and then you know what happens my limit function will either be

holomorphic that is analytic or it will be identically infinity, okay.

So what is upshot of all this? The upshot of all this is let me state it if you have a family of

analytic functions on a domain and suppose you know that usual derivatives of the analytic

functions are normally uniformly bounded, okay then that family is compact in the sense that

give  me any sequence  in  that  family  I  can find a  subsequence  of  convergence  normally

convergent  subsequence  and the limit  function will  either  be again analytic  or  it  will  be

identically infinity this is what I will get because of Marty’s Theorem.

And mind you I cannot apply the original Marty’s Theorem because for the original Marty’s

Theorem I need boundedness uniform boundedness on compact subsets of the original family

that is not given to me, what is given to me only uniform boundedness on compact subsets of

the  derivatives.  So  in  that  sense  Marty’s  Theorem  is  very  very  strong  is  stronger  than

Montel’s Theorem, okay.

So with that you know I have more or less we are more or less come to one point here in our

discussion I will tell you what we need to do next, okay. So if you see in all these things that

we have proved we have been looking in the complex plane, okay. So what are the things we

proved  first  we  proved  that  so  for  a  domain  in  the  complex  plane  we  defined  normal

convergence, okay that is uniform convergence on compact subsets and then we proved that

if  you take a  normal  limit  of  analytic  functions,  okay then the  limit  is  either  identically

infinity, okay if you use the spherical metric or it will be again an analytic function, okay.

And if  you take  same thing happens for  meromorphic  functions  if  you take  a  family  of

meromorphic functions okay if you if it is if the family for example if you take a sequence of

meromorphic functions which is normally uniformly convergent then the limit  function is

again going to be either meromorphic or it will  be identically infinity we do not get any

strange situations, okay.

The moral of the story is when you take a normal limit of analytic functions you will get a

analytic functions and the extreme case is you will get the function is identically infinity,

same for meromorphic functions, okay. And we have seen that for example if you take a



sequence of meromorphic functions is not going to go to sequence of analytic functions is not

going to go to a strictly meromorphic functions okay a pole cannot pop up at the limit such

things cannot happen so it is all very well behave and then we have proved the Montel’s

Theorem and we have proved Marty’s Theorem, okay.

Now all this is for usual domains what about a domain which can tends the point at infinity

that is the next we want to include all the extend all these results to a domain in the extended

plane, what is the problem with the domain in the extended plane? The problem with the

domain in the extended plane is the point at infinity for the point at infinity, okay you cannot

find a compact neighbourhood atleast some usual plane, okay.

So if you take suppose D so what I am trying to say is that you know if you say that if I have

a if I am taking a domain in the extended plane that means it is actually a domain in the usual

plane it is in the exterior of the large enough disk and it introduce the point at infinity, okay

and whenever I take compact subset of that it will not include the point at infinity the point at

infinity cannot come into any compact subsets, okay.

So there is a problem if you take a domain which contains the point at infinity, okay you are

never able to get a compact neighbourhood of infinity in the usual sense, okay. So what is the

meaning  of  normal  convergence  at  infinity  that  has  to  be  made  (())(40:11)  you  have  to

understand what normal convergence at infinity means you will have to understand that in

that context you have to extend all these theorems, okay.

So what I will do in the coming lecture is coming lectures is you know try to look at normal

convergence at infinity and extend all these results to the case when your domain is a domain

in the extended plane which can possibly contain even the point at infinity, okay. So this is a

very very important step, okay and then we have enough tools to go ahead with the with

another theorem called Zalcman’s lemma and that will lead directly to a stronger version of

Montel’s Theorem on omission of values and that will lead to finally to the Picard Theorems,

okay. So we will see that in the fourth coming lecture.


