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Lecture 33
Proof of one direction of Marty’s Theorem 

Alright  so  let  me  continue  with  this  discussion  about  Marty’s  Theorem,  okay  which  is

basically an analog of Montel’s Theorem except that your working with not with analytic

functions but with meromorphic functions, okay.
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So let us look at let us again look at the statement so you have this domain D in the complex

plane and you have this family script F of meromorphic functions on D so the script m D is

the you know it is the set of meromorphic functions on D and mind you we are considering

these as continuous functions from D into the extended complex plane, okay. So you are able

to do that because meromorphic function normally at a point which is a pole which is it goes

to infinity, okay but then you allow the value infinity and you declare the value at the pole to

be infinity so it becomes continuous.

So the set of meromorphic functions is a subset of this the set of continuous functions from D

to the extended complex plane C union infinity which as a metric space given the spherical

metric we think of as the just the Riemann sphere, okay with infinity corresponding to the

north pole, right. And so you have this family script F of meromorphic functions you can



either use a word collection or family or subset whichever you prefer but the point is when is

this family compact?

So in this  case you know normally I should since the word normal is  used technically  I

should say usually compactness is equivalent to sequential compactness and then that means

that you know saying something is compact is same as saying that every sequence has a

convergent subsequence. So if you want to say that the family script F is sequentially I mean

it is compact you will like to say it is sequentially compact if you want to say it is compact.

And then you would like to which means that you know given any sequence of functions in

this  family  you  are  able  to  extract  a  subsequence  which  converges.  Now what  kind  of

convergence?  If  we  are  usually  the  convergence  that  we  worry  about  is  the  uniform

convergence but ofcourse in the case of analytic functions, the meromorphic functions you

will  not  get  uniform  convergence  on  the  whole  domain  you  will  get  only  uniform

convergence on compact you will get only uniform convergence on compact subsets and that

is called normal convergence, okay.

So in other  words the compactness  of the family  F is  (())(4:09)  of as  normal  sequential

compactness which means that every sequence in F admits a subsequence that converges

uniformly on compact subsets of the domain, okay so this is what compactness for us means

and Marty’s Theorem says that this is the same as the family of spherical derivatives of F

namely you take for each small F in script F you take its spherical derivative F hash small f

hash and you get this family script F hash this is the family of spherical derivatives and that

should be normally uniformly bounded which means that it is uniformly bounded on compact

subsets.

So in some sense boundedness of derivatives is equivalent to compactness I mean if you want

to say it in a nutshell boundedness of derivatives is equivalent to compactness, okay and so

there  are  a  couple  of  aspects  that  I  want  to  stress  between this  and the  original  Montel

Theorem see the original  Montel  Theorem was for  analytic  functions,  okay so you took

instead of taking a family of meromorphic functions as we have done now, if you are taken

analytic functions, okay then we would have put the condition that the family is uniformly

bounded the family itself is uniformly bounded, okay.

And the and there the uniform boundedness of the family on compact subsets that would be

equivalent  to  the  family  being  normally  sequentially  compact  that  is  the  usual  Montel



Theorem,  okay and the  way we work there  is  you have the  uniform if  you restrict  to  a

compact  set  you  have  uniform  boundedness  of  the  family,  okay  then  from the  uniform

boundedness of the family you derive equicontinuity because from the uniform boundedness

of the family you get uniform boundedness of the derivatives and that is because of the fact

that the derivatives are expressed in terms of the original functions using the Cauchy integral

formula and you can make an estimation that are the Cauchy estimates.

So  uniform  boundedness  of  the  family  on  a  compact  subset  will  give  rise  to  uniform

boundedness  of  the  derivatives  on  the  compact  subsets  and uniform boundedness  of  the

derivatives always gives rise to equicontinuity. So you get along with uniform boundedness

on a compact subset you get equicontinuity for free if you are looking at analytic functions,

okay.

But you see Marty’s Theorem is slightly different what is happening is whereas in Montel's

Theorem uniform boundedness on compact subsets of the family is equivalent to the family

being normally sequentially compact. In Marty’s Theorem it is not uniform boundedness on

compact  normal  uniform  boundedness  of  the  family  but  it  is  actually  normal  uniform

boundedness of the spherical derivatives, okay.

So you move from the family in some sense you move from the boundedness of the family to

the boundedness of the derivatives that is the switch, okay and the point is that in a sense this

is stronger than the original Montel Theorem because in the original Montel Theorem if you

know if you are looking at a family of analytic functions and suppose you know that their

derivatives are normally uniformly bounded suppose I am not given that the family itself is

uniformly  bounded  but  suppose  I  am  given  just  the  derivatives  are  normally  uniformly

bounded, okay.
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Then what happens is if the usual derivatives are normally uniformly bounded then it also

happens that the spherical derivatives are normally uniformly bounded because of this reason,

okay because you see if you the spherical derivatives are bounded by 2 times they bound for

the normal derivatives the usual derivatives. So if the usual derivatives are bounded, okay

then the spherical derivatives are bounded.

So if you take a family of analytic functions on a domain such that the usual derivatives are

all uniformly bounded on compact subsets that is normally uniformly bounded then also you

will get you know a normal sequential compactness, okay because of Marty’s Theorem but

the only thing is that now you could have you know because you are considering these as a

meromorphic functions you could have the extreme case that all these analytic functions go to

infinity, okay and by that I mean they go to the function which is infinity on all points of the

domain which is also considered as a continuous functions, okay and mind you for such for

that function the spherical derivative is 0 because it is a constant function, okay.

So now what  I  want  to  say is  so this  is  one  aspect  that  when you move from Montel's

Theorem  to  Marty’s  Theorem  you  are  actually  moving  from  uniform  boundedness  on

compact subsets of the family of functions to the uniform boundedness of the derivatives,

okay and because you are worrying about meromorphic functions usual derivatives will not

work. For example at poles so you will have to look at spherical derivatives, okay now that is

one aspect.



Now here is  another  important  aspect,  see if  you know that  these Montel's  Theorem for

example is actually deeper version or it is an application of the Arzela-Ascoli Theorem, okay

and what  is  the philosophy original  what  is  the philosophy of  the original  Arzela-Ascoli

Theorem? The philosophy is that if you want to say a family of functions is compact which is

same as saying sequentially compact namely you want to extract a convergent subsequence

from any given sequence.

See you will have to put the conditions of the family being equicontinuous and uniformly

bounded that is why the Arzela-Ascoli Theorem is often referred at as uniform boundedness

principle, okay. So you need uniform boundedness plus you need equicontinuity together to

give you sequential compactness, alright. If you are working with analytic functions uniform

boundedness is enough, okay because equicontinuity will come out as a immediately it will

come out for free because you have the Cauchy integral formula, okay.

Now in the case of Marty’s Theorem there is a slight advantage the advantage is that if you

see I have if I look at it in one direction that is why is it that the uniform boundedness normal

uniform boundedness of derivatives should give me a normal sequential compactness, okay

what you can guess immediately is that always boundedness of the derivatives gives rise to

equicontinuity it always give rise to equicontinuity.

So even on a compact set if you want to extract a convergent subsequence from a given

sequence, okay you would like to apply Arzela-Ascoli Theorem. So what is missing? What is

missing is uniform boundedness because if you want to apply Arzela-Ascoli Theorem you

need uniform boundedness together  with equicontinuity so that you can extract  from any

given sequence as convergent subsequence.

So if I restrict to a compact set what I if I assume that the derivatives spherical derivatives are

bounded,  okay  I  can  expect  only  equicontinuity,  okay  I  will  not  get  the  I  will  get

equicontinuity of the given family of functions but I cannot get I do not seem to be getting

uniform boundedness of the family, but here is where the beautiful thing is you do not need

any uniform boundedness, okay.

The reason is because the values are being taken in a compact metric space, okay see the

values are being taken as far as meromorphic functions are concerned where are values being

taken the values are being taken in the extended complex plane extended complex plane mind

you is identified as a Riemann sphere and is a compact metric space, okay and you know a



compact  metric  space is ofcourse bounded it  is totally bounded, it is bounded, okay it is

complete, okay.

So there is no unboundedness phenomena that is going to occur in a compact metric space,

okay. So this uniform boundedness condition is not necessary that is the whole point, okay.

So what I want to say is that your Arzela-Ascoli Theorem in the Arzela-Ascoli Theorem okay

we  were  looking  at  functions  continuous  functions  either  real  or  complex  valued  on  a

compact metric space, okay.

Now I am saying and there for sequential compactness of a family of functions you needed

both uniform boundedness and equicontinuity but if I instead of looking at real or complex

valued functions suppose I was looking at functions with values in a compact metric space,

okay that is the change I am making you try to look at functions defined on a compact metric

space and taking values in another compact metric space the target is no real numbers or

complex numbers but the target is another compact metric space.

Then because  the target  is  already compact  this  uniform boundedness  is  not  needed just

equicontinuity is enough and it is equivalent to sequential compactness that is the whole point

that  is  the whole point,  okay so what I want to tell  you is that when you go to Marty’s

Theorem, okay you switch to the uniform boundedness of the derivatives and you do not care

about  boundedness  of  the  original  family  of  functions  locally  that  is  because  how  the

functions are already taking values in a compact metric space and you do not have to worry

about it, okay.
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So let me explain the proof so whatever I have circle here is to tell you that what this tells you

is that if the family of derivatives of a collection of a family of analytic functions functions is

uniformly bounded then so is the family of spherical derivatives so the boundedness of the

ordinary derivatives implies boundedness of spherical derivatives, okay so that is something

that I am writing here I think I have cramped it a little bit so let me get rid of this lemma and

rewrite it later, okay fine.

So what I will do is I will try to give you the proof of this so let us go in one direction so let

me  again  rewrite  the  Arzela-Ascoli  Theorem is  valid,  okay  in  the  sense  that  sequential

compactness is same as equicontinuity you do not worry about uniform boundedness, if you

are looking at functions which are taking values in continuous functions values in a compact

metric space, okay if that is if you replace real and complex numbers by a compact integrals

that is the whole point so just equicontinuity is enough, right and I will try to instead of trying

to prove a theorem in that generality I will even explain to you how you can get sequential

compactness so what you do is.

So let  us start  this  way suppose so maybe I  will  use so suppose F is suppose F hash is

normally uniformly bounded, okay suppose it is normally uniformly bounded, what do I have

to show? I have to show that it is normally sequentially compact that means you will have to

pick up given any sequence in the family script F you have to show that there is a convergent

subsequence, right convergence in the sense of normal convergence that is convergence on

compact subsets so that is what I have to do, we need to so let me write that down.

We need to show show that any sequence f 1, f 2 and so on admits this sequence in ofcourse

in I should not say well when I put subset this is I am not writing this sequence as set, okay

because there could be repetitions in the sequence, okay so this is by this notation let me put

let me put belongs to okay so this I mean that f 1, f 2, etc is a sequence in F you have to show

that any sequence admits a convergent subsequence, subsequence and ofcourse it should be a

normally convergent subsequence that is something that converges on compact subsets, okay

uniformly on compact and ofcourse on compact subsets the convergence is uniform, alright

so uniform convergence.

So now so how do I go about this? So as usual the moment usually if you have boundedness

of the derivatives the first thing that you do is you get equicontinuity of the family, okay that

is always always you should remember as a philosophy boundedness of the derivatives is a

strong condition that will imply equicontinuity of the original family. So what you do is that



so that is what I am going to demonstrate we will demonstrate that this family script F is

equicontinuous, okay.
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So we will show script F is equicontinuous, how do I do that you check equicontinuity at

every point so what you do is fix z not at D and disk a closed disk centred at z not at z not in

D of sufficiently small radius, okay so now you know so the situation is like this you have the

you have the complex plane and you have this you have some you have this domain D okay

and so this is D, I am always trying to draw a bounded domain but it will not be a bounded

domain, okay because it is an unbounded domain which I cannot show on a picture.

So here is the domain D it is the boundary is this dotted line and what I am having is a point z

not  in  D and I  am choosing  a  sufficiently  small  disk  such  say  of  radius  rho,  okay  rho



sufficiently small so that the whole closed disk is inside D okay the open disk with z not

centre z not, radius rho along with the boundary circle that is also in D, okay and what do I do

I just so I remember that you know my if you take a function f small f in script F mind you

the function is being now (())(21:05) as going into the Riemann sphere, okay it is going into

C union infinity  and the C union infinity  is  identified so I  put a  triple  line,  okay this  is

identified with Riemann sphere so what is it? It is just so this is just S 2 the real two sphere in

three space real three space radius 1 centred at the origin.

So it is this you know it is this thing so this is the Riemann sphere and this points corresponds

to the north pole which corresponds to so this infinity corresponds to the north pole, okay. So

here function is taking values on the Riemann sphere that is how you think about it, right and

now what is it that I am given? I am given that I am given that the family I am given that the

family of spherical derivatives is normally uniformly bounded so that means it is uniformly

bounded on compact  subsets  of  D and this  closed disk centred  at  z  not,  radius  rho is  a

compact subset of D so it is uniformly bounded on that, okay.

By hypothesis of normal uniform boundedness of the family script F there exist an M such

that the spherical derivatives of all the spherical derivatives in the family are bounded by M

so let me just put in mod z minus z not less than or equal to so I have this, okay this is just the

uniform boundedness of the spherical derivatives restricted to this compact subset given by

this (())(23:02) right.

Now what you do mind you that in this situation since the functions are taking values in the

extended complex plane, okay on the target the target metric space is extended complex plane

and the target metric is the spherical metric that is what you have to remember, okay the

target metric space is the extended complex plane and on the extended complex plane the

metric  is  the spherical  metric  it  is  actually  the spherical  distance on the Riemann sphere

transported by the (())(23:31) of the Riemann sphere with the extended plane, okay.

So you should  remember  this  is  the  big  point  to  remember  you have  to  remember  that

whenever you are working with values in the extended complex plane, okay the in the target

space the extended complex plane the metric involved is spherical metric. So if you keep that

in mind this is what is going to happen. See if I take two points suppose I take so let me use

the different colour.



Suppose I take two points say z 1 and z 2 okay inside this closed disk and I take the straight

line segment from z 1 to z 2, okay then and suppose I call this segment as L, okay then under

if I take the image of the segment straight line segment under this map f, where f is any

function any meromorphic function and the collection script F, okay what I am going to get is

I am going to get something on the on the Riemann sphere I am going to get something, okay.

So it is going to be again it is going to be a contour with starting point f of z 1 and ending

point f of z 2 mind you now f of z 1 and f of z 2 are being thought of as points in the extended

plane, okay and the image contour is going to be just f of L, okay and what is the if you now

you know you can you know that from f z 1 to f z 2 on the Riemann sphere that is in the

extended complex plane the spherical distance is actually the shortest distance on the sphere,

it is just the is it the minor arch of the greater circle passing through f of z 1 and f of z 2 on

the sphere, okay.
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And so what you can write is the distance the spherical distance between f z 1 and f z 2 this is

certainly is the shortest distance because it is the geodesic okay curves of shortest length on a

surface occur geodesic okay in general if you have a space with a metric then the if you give

me two points in the space it is not necessary that the straight line distance if it makes sense is

the shortest, okay there could be some other curves depending on the metric especially you

could have you could find the distance along the curve to be smaller than the straight line

distance in some cases.

For example for spaces for negative curvature, okay but in any case if you take a space where

metric is defined on if you take two points in the space then the shortest distance the curve of

shortest  distance from this point to that  point on the space is called geodesic  and that  is

geodesic distance on the sphere the geodesics are all given by the minor archs of the major

surface, okay so that is the spherical distance and this is certainly this is the smallest and so

this is certainly less than the length the spherical length so let me now abbreviate it spherical

length of f of L, okay said to be and well what is the spherical length of f of L you know that

how to get the formula for the spherical lengths the formula for the if you give me a curve on

the  plane  that  is  a  contour  on  the  plane  then  the  length  of  the  contour  is  just  given  by

integrating mod d z okay where z is very low you integrate mod d z from the initial point of

the contour to the final point of the contour you get the length of the arch or contour on the

plane.

But if you want to get the length of the image of the arch what you will have to do is you

have to multiply by the factor which is given by the spherical derivative, okay if you multiply

the ordinary derivative and if it is a analytic function you will get the length of the image arch



in the complex plane itself, okay that is if you use modulus of the derivative of the analytic

function as a scaling factor but if you use the spherical derivative or scaling factor and you

will take the spherical derivative corresponding to meromorphic function then you will get

the spherical length of the image of this arch on the Riemann sphere, okay.

So what is this? This is going to be just integral from z 1 to z 2 of f hash of z mod d z this is

the spherical derivative, alright and what will happen is that you see now since you know

now the point is that this integration is being carried out from z 1 to z 2 and ofcourse this

integration is over let me put L here because this integration is along the straight line path

from z 1 to z 2, okay and that path lies inside this closed disk, okay and on this closed disk all

the spherical derivatives are all bounded by M.

So you know mind you spherical length is always a non-negative quantity, okay it is a non-

negative real number, okay so what I will get is that this is this is certainly less than or equal

to M times mod z 1 minus z 2 this is what I will get because I can replace this f hash of z by

M because M is upper bound and the integral from z 1 to z 2 mod d z is just the is just along

the straight line segment is just the length of that segment mod z 1 minus z 2, okay so I get

this.

But now what is  the advantage what is  the advantage of this  now it  tells  me I have got

equicontinuity. See so for epsilon greater than 0, okay if we choose for epsilon greater than 0,

if we choose delta to be you know epsilon by M okay then mod z 1 minus z 2 less than delta

will imply that the spherical distance between f z 1 and f z 2 is going to be less than epsilon I

will get this inequality, given epsilon greater than 0 whenever the distance between z 1 and z

2 is less than delta I can find a delta such that whenever distance between z 1, z 2 is less than

delta this is the spherical distance between f z 1 and f z 2 is less than epsilon and this works

for all f in the family script F so long as z 1 and z 2 lie in that closed disk.

So what have I got? I have got equicontinuity, I have got a kind of uniform equicontinuity

you can think of this as either equicontinuity at z 1 or thinking at z 2 as a variable or you can

think of  equicontinuity  at  z  2  thinking of  z  1  as  a  variable  in  any case  it  is  a  uniform

equicontinuity, okay. So what I have got is that f from D f from this disk mod z minus z not

less than or equal to rho to the extended complex plane is equicontinuous and this but then

ofcourse I can cover the source domain D I can cover every point by such a closed disk lying

in the domain therefore I have got equicontinuity at every point so this implies that so and



this is equicontinuity f in script F. So basically what I am saying is that F is this family script

F is equicontinuous on D so I get equicontinuity, okay.

So  basically  what  I  have  done  is  I  have  just  shown  that  boundedness  of  the  spherical

derivatives gives me equicontinuity and that is a very general philosophy whenever you have

boundedness of the derivative you integrate and you get equicontinuity that is a very general

thing, alright.

Now what I have to show what do I have to show? I have this I started with this I have this

sequence here in script F okay and I will have to extract a subsequence which converges

uniformly on compact subsets that is what I have to do, what I want to indicate is that you can

now do it exactly in the way you proved equicontinuity and uniform boundedness implies

sequential compactness in one way of the proof of the Arzela-Ascoli Theorem, okay so what

you do is you do so these are the steps, okay.
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So what you do is we retrace we retrace the steps in one way of the proof of the Arzela-

Ascoli Theorem to extract a normally convergent so I am using cgt for convergent as a an

abbreviation subsequence from the given sequence, okay. So what you do so I will put it as a

star list so the first thing is find a countable dense subset x 1, x 2, etc so you given given start

with a compact subset K of D given a compact subset K of D first find a countable dense

subset, okay here it is just the general statement that a compact metric space is separable,

okay.

Then what you do is now you have now go back and think about the the proof of the Arzela-

Ascoli Theorem what you do is that you take the original sequence you will apply it to x 1,

okay and you apply it to x 1 you get all these real or complex numbers, okay and now you

will  use the fact  that  the original  sequence is  uniformly bounded to say that  you have a



sequence  of  bounded  sequence  and  you  will  extract  a  subsequence,  okay  any  bounded

sequence of real numbers or complex numbers admits a subsequence convergent subsequence

that is how you use it.

But now you see look at the present situation if I apply f 1, f 2 if I apply this sequence to x 1

mind you let me change just change the notation to from x 1, x 2 if you want to z 1, z 2

because all my points are actually my compact subset K is actually a point is a subset of D

and all my points are complex numbers so let me change it to z 1, z 2 and so on, okay. Now

what I will do is I will apply to z 1 I will apply the sequence, okay and I will get a convergent

subsequence I will get a convergent subsequence, why is that? That is because if I apply these

functions I am going to get a sequence of points on the Riemann sphere which is compact

therefore  it  is  sequentially  compact  therefore  every  sequence  gives  me  a  convergent

subsequence you see so it works that is the whole point.

So apply apply the sequence f 1, f 2 to z 1 what will you get? You get f 1 of z 1, f 2 of z 1, f 3

of z 1 on the Riemann sphere, okay but but this is compact it is a compact metric space so it

is sequentially compact and because of that what I will get I get a subsequence f 11, f 12, f 13

such that f 1j of z 1 converges, okay so this is the key step okay this is the key point of

difference. When we were looking at real numbers or complex when we are looking at real or

complex valued functions, okay when you apply the sequence to a point you got a sequence

real sequence or a complex sequence but then you extracted a subsequence because you know

it  is  bounded  and  where  from  did  the  boundedness  come,  it  came  from  the  uniform

boundedness of the original family, okay.

But now you do not need any uniform boundedness in this case to extract a subsequence

because the values are already being taken in the extended complex plane which is compact

and is already sequentially  compact  I do not need anything more to extract  a convergent

subsequence that is the big difference, okay. Now what you do is now you iterate, what you

do is apply to z 2, okay and you get a subsequence further subsequence which is f 21, f 22, f

23 and so on such that if you take f 2j z 2 this converges, okay and you do this ad infinitum

what you will end up with is that you will end up with this matrix as usual so you know you

will get this you will get this f matrix of functions 13 and so on f 21, f 22, f 23 and so on f 31,

f 32, f 33 and so on so it goes on like this and you know it is the diagonalization trick that we

used what we do is that we extract this diagonal subsequence, okay.



Then what is the advantage of this diagonal subsequence? This diagonal subsequence will

give you a sequence which will converge at all points of this dense subset this countable

dense subset of K, okay so f 11 so g 1 is equal to f 11, g 2 equal to f 22, g 3 equal to f 33 and

so on is a subsequence that converges on the countable dense subset z 1, z 2 of K, okay

alright.

And now what you do is I will not repeat those steps now you use we have just now proved

that all the functions in this family are equicontinuous, okay we have just now proved that. So

just  use  equicontinuity  and  on  this  sequence  of  functions  to  hook  up  to  show that  this

sequence is actually Cauchy on the whole space, okay and therefore it is convergent, okay. So

the moral of the story is that at this point you use the equicontinuity of the family and mind

you that equicontinuity came from the boundedness of the spherical derivatives that is what

you have to remember, okay.
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So use the equicontinuity of use the equicontinuity of this family script F to get to show that

to show that g 1, g 2, etc is convergent on all of K, okay. So this is exactly as we did in the

Arzela-Ascoli Theorem I am not going to repeat it, okay. Now so what have we succeeded

using what we have succeeded is given any compact subset of D given a sequence, given any

compact subset I am able to extract a uniformly convergent subsequence, okay.

But then what do I need? I need one if I change the compact subset, okay my subsequence

could change but I want one global subsequence which works on every compact subset and

how do you get that you again get by another diagonalization argument, what you do is you



fill up D by a sequence of increasing compact sets, okay with the property that any compact

subset  is  contained  in  one  of  one  set  of  this  sequence,  okay  and  then  use  again  a

diagonalization argument as we used in the proof of Montel's Theorem to extract from this we

have global subsequence which is going to be convergent uniformly on every compact subset

and  that  finishes  the  proof  one  way  of  proof  of  Marty’s  Theorem  that  boundedness  of

spherical derivatives implies if family is normally sequentially compact, okay boundedness of

the  derivatives  on  compact  subsets,  okay  so  normal  boundedness  of  derivatives  implies

normal sequentially compactness.

So let me write that (())(42:00) as in the proof proof of Montel's Theorem fill out D by an

increasing  sequence  sequence  of  compact  subsets  and use  a  diagonalization  argument  to

extract a global subsequence that converges uniformly on every compact subset of D so this

proves one way, what is the other way you have to show that if you have a normal family you

will have to show that it is the spherical derivatives are bounded and the other way is proved

by contradiction,  if  the  spherical  derivatives  are  not  bounded,  okay then  I  can  extract  a

sequence I can find a compact set and a sequence of functions and a sequence of points at

which the spherical derivatives are becoming bigger and bigger and bigger, okay.

Now from this sequence of functions because I assume normal sequential compactness I can

also  get  a  subsequence  which  converges,  okay if  the functions  you know if  a  family  of

functions converge meromorphic function converges to a limit function then the family of

spherical derivatives will also converge, okay but mind you the spherical derivative of any

function is always a finite quantity spherical derivative of any function meromorphic function

is only a finite quantity even if you take the function which is uniformly infinity (())(44:00)

derivative is 0, okay you will only get a finite quantity. 

So  if  this  sequence  of  functions  converges  to  a  function  then  the  sequence  of  spherical

derivatives  converges to the spherical  derivative of the limit  function and that  is  a finite

quantity  but  on  the  other  hand  the  original  sequence  had  points  where  the  values  were

becoming larger and larger so that is a contradiction so that contradiction will proof that you

know if you assume that the family is normally sequentially compact spherical derivatives

have  to  be  normally  uniformly  bounded  that  is  the  other  way  for  the  proof  of  Marty’s

Theorem, okay and with that we we are through with the proof of Marty’s Theorem, alright.


