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Introduction to Marty’s Theorem – the Meromorphic Avatar of the Montel and Arzela-

Ascoli Theorems

So you see we are looking at compactness of families of functions, okay we want to look at

Meromorphic  functions  alright  and  so  you  know  what  we  did  last  time  was  Montel’s

Theorem, okay which was for analytic functions, alright. So let me recall this so that I will

give  you  the  background  for  the  formulation  of  the  version  of  Montel's  Theorem  for

Meromorphic functions which goes by the name of Marty's Theorem, okay and once you

have that then we can go ahead and try to we get closer to the proof of the Picard Theorems,

alright.
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So you see so you can recall so maybe I will put the tittle as Marty's Theorem so let me put

here version of Montel's Theorem for Meromorphic functions, okay. So let us recall see so

the idea is the following so you have D inside the complex plane its domain it is an open

connected set non-empty ofcourse, okay and you have script F is family of analytic functions

on D so this is this is subset of holomorphic functions on D, okay and mind you these are

ofcourse certainly continuous functions on D with complex values, alright.

So you have this family of holomorphic functions on D and then the whole idea is you want

to worry about the compactness of these familiar functions, okay and compactness in what

sense  compactness  can  be  you  know  in  general  compactness  is  the  same  as  sequential

compactness, okay as a general philosophy and so and you should expect therefore you want

conditions for which given a sequence of functions in F in the family script F you want to

pick out a convergent subsequence, okay.

Now the point is that you know ofcourse since you are working with holomorphic functions,

okay just convergence is not a very useful thing you would like to have a kind of convergence

that will reserve properties of original functions which are converging to the limit function

and  therefore  the  best  kind  of  convergence  you  can  expect  is  uniform convergence  but

ofcourse uniform convergence is  too much to expect  what  you will  normally  get is  only

normal  convergence,  okay  that  is  you  will  get  uniform  convergence  restricted  only  to

compact subsets, alright.

So that is the background and so what is it that you have? See on the one hand you want F is

normally sequentially compact and what do I mean by this? I mean that given any sequence



in  F,  I  can  find  subsequence  which  converges  normally  that  means  which  converges

uniformly  on  compact  subsets,  okay  so  let  me  write  that  any  sequence  in  F  admits  a

subsequence that converges uniformly on compact subsets on compact subsets of D, okay so

this is this is compactness for us, okay that and that given any sequence you can extract a

convergent subsequence but the convergence is only with respect to the normal convergence,

okay so this is what you want.

Now how do you what what are the necessary and sufficient conditions for this to happen

what are the necessary and sufficient conditions for this to happen? So you know if you want

to  go  from  here  to  here  if  you  want  to  go  from  here  to  here  alright  so  you  will  get

immediately that F is normally uniformly bounded, okay so that means that you given this

family of functions in scripts F and if you restrict it to any compact set then that family will

have uniform bound.

So there is some positive number such that the modulus of the functions is bounded by that

number and this will work for all functions and for all points on that compact set, okay. So

this is something that you will get and the other thing you will get is you will also get that F

is the family is equicontinuous, okay so plus so let me write this F is so for some reason let

me write it at a distance so I will write here F is equicontinuous.

So how does this come? These two implications come because of the they basically come

because of the Arzela-Ascoli Theorem, okay so this is so let me write this let me put AA here

where you know I will put AA here also where let me write here as a legend AA stands for

Arzela-Ascoli Theorem you know this is just the Arzela-Ascoli Theorem. See what Arzela-

Ascoli  Theorem says is  that  you know if  you are looking at  continuous complex or real

valued functions on a compact metric space, okay.

Then the condition that such a family of functions is compact,  okay is equivalent to that

family  of  functions  being  uniformly  bounded  and  equicontinuous  that  is  Arzela-Ascoli

Theorem. So if you now look at it if you now look at this thing that I have assumed on the

this property on the left side which says that this family is sequentially compact if I restrict to

any compact subset, okay. So if I take capital K a compact subset of D and I restrict this

family to that, okay then I am looking at a family of continuous functions on a compact

metric space, okay any compact subset of D is also a metric space it is a compact metric

space metric is just metric on D restricted to that subset, okay.



And  then  by  the  Arzela-Ascoli  Theorem  that  the  family  script  F  will  become  actually

compact  you know with respect to the topology given by the supremum norm, okay the

supremum norm is defined and you have the metric induced by that norm and the topology

induced by the metric so with respect to that this family script F actually becomes a compact

family, okay it becomes a compact subset of points, okay and you are now considering this

family inside C K, C namely the set of all continuous functions on the compact set K with

values in C, okay because analytic functions are ofcourse continuous, okay.

So then by the Arzela-Ascoli Theorem what will happen is that on that compact set K what

will happen is that this family will be uniformly bounded, okay that is bounded with respect

to the sup norm which is uniform boundedness and you will get equicontinuity. So and since

this and equicontinuity is something that is needs to be checked at every point so you will get

equicontinuity  for  the  family  the  whole  family  throughout  all  of  D,  okay  to  check

equicontinuity at all of D at every point of D I just have to check equicontinuity at each point

of D and to check at each point of D it is enough to check on each compact subset of D even

a point is a compact subset if you want, okay.

So equicontinuity  will  fall  out  and restricted  to  that  compact  subset  I  also have uniform

boundedness, okay therefore restricted to compact subsets I have uniform boundedness and

that is normal uniform boundedness so that is how I get these two implications, okay but the

serious thing is to go so that the serious thing is to go the other way round, okay so starting

with starting with you know the Arzela-Ascoli Theorem in another direction tells you that is

you are on a compact metric space and you are looking at continuous functions complex

valued or real valued, if you know these collection of functions is uniformly bounded and it is

equicontinuous then your family is compact, okay.

Now so if I start go from this direction suppose I assume F is normally uniformly bounded

script F is normally uniformly bounded namely this condition so I will purposely change

colour  because I  want  to emphasize something else.  So you know I take this  I  take this

condition script F is normally uniformly bounded alright then the beautiful thing is we do not

have to add equicontinuity that is the big deal, the big deal is you can go from here to here

directly as a theorem and this is the this is Montel's Theorem so this is Montel's Theorem that

is you start with a normal uniformly bounded family of analytic functions, okay then it is

normally sequentially compact that means you can given given a sequence you can extract a

subsequence which converges normally, alright.



And mind you so I have I have to tell you few things here this is this Montel Theorem is

stronger than Arzela-Ascoli, okay in the following sense. See what Arzela-Ascoli Theorem

will say is that you know if you restrict yourself to a compact subset of D if you take a

particular compact subset of D, okay and suppose I have this condition that this family script

F is normally uniformly bounded then family script F will become uniformly bounded on that

compact  subset  and  again  I  will  get  equicontinuity  and  I  will  apply  the  Arzela-Ascoli

Theorem  and  I  will  be  able  to  pick  a  subsequence  which  converges  uniformly  on  that

compact subset, okay.

And the  ofcourse  equicontinuity  comes  because  of  the  derivatives  being  bounded which

comes as a result of the Cauchy integral formulas and some estimations, okay and the Cauchy

estimates of the first derivative, okay but let us forget that for the moment basically what

happens is you are able to for every compact subset if I start with the sequence in the family

F for every compact subset I am able to get a convergent subsequence I am able to pick a

subsequence such that on that compact subset the convergence is uniform.

But the point is if I change the compact subset the subsequence can change, okay if I apply

only the Arzela-Ascoli Theorem if I change the compact subset then the subsequence can

change but the Montel Theorem is very strong what it says is that I can uniformly find a

single subsequence of the original sequence which will converge uniformly on every compact

subset it will work for every compact subset, okay that is the power in the Montel Theorem

and if you remember this  we got this  by diagonalization argument,  okay we covered the

domain D by an increasing sequence of compact sets, okay which fill out the domain and on

each member of this sequence of compact sets we picked out a convergent subsequence using

Arzela-Ascoli  Theorem,  okay  and  then  we  wrote  down  this  metric  of  convergent

subsequences  by  you  know  for  the  first  compact  set  in  the  sequence  we  picked  out  a

subsequence in the sequence of sets covering the space D we picked out one sequence from

the original sequence we from Arzela-Ascoli, okay.

Then from this sequence we picked out another subsequence which will work on the next

bigger  compact  subsets  and  then  we  went  on  like  this  and  all  these  compact  subsets

eventually filled their union filled the whole of D, okay and the diagonal sequence gave us a

sequence of the original sequence which will converge uniformly on every compact subset of

D because every compact subset of D is contained in one of the members of this sequence of



compact sets that we increasing sequence of compact sets that we constructed to cover D,

okay.

So you see we have got this very strong statement from Montel's Theorem, okay so that is

one point you have to remember, okay and the other important point about Montel's Theorem

is that you do not worry about you really do not worry about equicontinuity, okay and this is

basically because you are working with analytic functions. So what is happening is that this

condition that the family is normally uniformly bounded tells you that if you take the family

of derivatives  of these functions then that  family of derivatives  is also uniform normally

uniformly bounded, okay.

And so let me write this so I will write this as F prime is normally uniformly bounded so

there is this thing here in between, okay so when I write ofcourse when I write F prime I

mean the set of all I mean all those derivatives of functions f which are in small f which are in

script F, okay so so script F prime is just the derivatives of the functions in script F, okay and

mind you the functions in script F are all analytic therefore the derivatives you know if you

take a function which is analytic then all orders of derivatives of that function exist and they

are also analytic, okay.

So script F prime is also a bonafied family of holomorphic functions on the same domain,

okay and the point is that that is normally uniformly bounded, okay and that is because that is

simply because of the fact that the derivative of a function can be expressed in terms of the

function using the Cauchy integral formula, okay and therefore if the original functions are

uniformly bounded then the derivatives are also uniformly bounded on closed on sufficiently

small closed disks, okay.

So the moral of the story is that the derivatives are normally uniformly bounded and because

the derivatives are normally uniformly bounded you know this is the philosophy that I told

you last  time whenever the derivatives  are bounded uniformly then the original  family is

equicontinuous,  okay because you just  have to integrate,  okay so this  so there is  another

implication  that  is  going  like  this  whenever  the  derivatives  whenever  the  family  of

derivatives is uniformly bounded then the original family is equicontinuous.

So what happens is that because I assumed that the family is normally uniformly bounded I

am also getting equicontinuity the way I am getting equicontinuity is because I am getting

actually normal uniform boundedness of the family of derivatives that is the whole point and



the reason I am able to get this is because of the Cauchy integral formula because of the

Cauchy estimates, okay. So this is how this is how everything works.

Now what is that so what is that we want to do with meromorphic functions okay so if you

now if you are see so far we are working here in the set of all holomorphic functions I mean

analytic functions, alright but you know you want to work with meromorphic functions the

problem with that is that if you are working with meromorphic functions then you are going

to allow the value infinity, okay.

So you are going to take values not if you are going to take a meromorphic function you

cannot just considered it  as a function into complex numbers because then at  a pole you

cannot define it. Whereas if you considered it as a function into the extended complex plane,

okay then at a pole you can define the function value to be infinity and still keep the function

continuous even at a pole, okay.

So if you are working with meromorphic functions you want to do a same you want to have

the same kind of theorem, okay then you know it is little it is little troublesome somehow you

can see that in this whole game you have to pass through this red box that I have put here

which is that the derivatives are normally uniformly bounded, okay and that see will work for

analytic functions as it is not work for meromorphic functions because the problem will be at

the poles at a pole I cannot apply any kind of Cauchy integral formula I cannot express in fact

even derivative at a pole is not defined it is a singular point, okay so I am in trouble.

And  you  know  in  order  to  overcome  this  we  had  introduced  this  concept  of  spherical

derivatives, okay so that is what we are going to use. So in fact we will get this theorem that

now  you  again  take  a  domain  in  the  complex  plane,  you  take  family  of  (holo)  not

holomorphic  but  meromorphic  functions  on  the  domain  but  mind  you  you  are  now

considering  this  as  functions  not  into  the  complex plane  but  functions  into  the  extended

complex plane, okay.

And when you consider it as functions into the extended complex plane mind you the target

plane is not complex plane it is the extended complex plane and the extended complex plane

has been made into a metric space by putting the spherical metric and with respect to the

spherical  metric  it  is a compact  metric  space,  it  is a beautiful  metric  space,  it  is  just  the

Riemann sphere with the spherical metric on that, okay alright.



And now what you do is you get this version of the Montel the correct version of the Montel's

Theorem  for  meromorphic  functions  will  tell  you  that  now  you  again  take  a  family  of

meromorphic functions the condition that it is normally sequentially compact is equivalent to

saying that the spherical  derivatives  are bounded that  is  it,  okay. So what I  want  you to

understand is that it is rather funny when you move from the holomorphic version of the

Montel  Theorem  to  the  meromorphic  version  of  the  Montel’s  Theorem  which  is  called

Marty's Theorem, okay your condition changes from the normal boundedness of the of the

family  of  functions  to  the  normal  boundedness  of  the  derivatives  but  what  derivatives

spherical derivatives that is the big change, okay and with that everything works, okay so that

is what I am going to state next.
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So here is Marty's Theorem. Let D in C be a domain ofcourse non-empty as usual and script

F is  a  family  of  meromorphic  functions  on D,  okay mind you this  is  a  subspace  of  the

continuous functions on D with values in the extended complex plane,  okay you have to

remember this this is very very important we are considering meromorphic when you say

meromorphic  function  you  are  allowing  the  value  infinity,  okay  otherwise  you  will  not

continuity at the pole at poles, okay that is very very important, okay.

Then F is sequentially is normally sequentially compact compact i.e, every sequence in script

F in script F admits a subsequence that converges uniformly normally that is uniformly on

compact  subsets of D if  and only if  so I  will  write  F hash,  what  is  F hash? This is  the

collection of spherical derivatives of the functions in F so we use prime for derivative when it

is an analytic function when it is not an analytic function but it is a meromorphic function we

use hash, okay which is which is the notation we introduced earlier so this is set of f hash

such that f belongs to script F is normally uniformly bounded that is uniformly bounded on

on compact  subsets,  okay so this  is  Marty's  Theorem so this  is  meromorphic  version of

Montel's Theorem meromorphic version of Montel's Theorem.

So let me write that here and the big deal in this statement is essentially to say that instead of

requiring that the original family of functions is normally uniformly bounded which is what

the original Montel Theorem want you know needed you shift to the spherical derivatives of

these functions that is the difference, okay.

Now you see what does this say in retrospect I mean what it says in retrospect is that in

principle it says that if you take a family of even if you take a family of analytic functions,

okay  even  if  you  take  a  family  of  analytic  functions  the  condition  that  the  the  usual

derivatives  are  normally  uniformly  bounded  is  also  equivalent  to  the  normal  sequential

compactness of the family that is the big deal, the big deal is you know if you go back to this

diagram, okay we had this we had this red box here which said that the derivatives the usual

derivatives which in this case are they make sense because functions are analytic the usual

derivatives are normally uniformly bounded they are uniformly bounded on compact subsets,

okay.

Now this itself this itself is good enough to give you normal sequential compactness, okay

but there is only there is only one small  issue since the compactness is I mean since the

convergence is with respect to functions which can take the value infinity the convergence

point wise convergence is with respect to the spherical metric that is the difference, okay. So



what it means is it means the following suppose I have a family of analytic functions on a

domain how do I decide that this family is compact, okay that is it is normally sequentially

compact one direct way is use the usual Montel Theorem for which I need all the functions in

the family to be normally uniformly bounded to be I must be able to find uniform bound for

this family on every compact subset.

There is another way the other way is verify that the derivatives the family of derivatives of

these functions that is normally uniformly bounded if you verify that okay then what happens

because of this meromorphic version of Montel's Theorem that family of see if the usual

derivatives  are  uniformly  bounded  on  a  set  then  the  spherical  derivatives  are  also  be

uniformly  bounded  on  the  set,  okay  that  is  because  of  the  way  in  which  the  spherical

derivatives are defined.
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See how is the spherical derivative defined see it is defined like this for for f meromorphic

function, recall that the spherical derivative of f at z you know it is defined as 2 times mod f

dash of z divided by 1 plus mod f z the whole square this  is  the definition of spherical

derivative this is how spherical derivative is defined, okay this is how we define spherical

derivative.

And ofcourse you know there is an issue I have used a mod f dash in the numerator that

makes sense only if f dash exist and therefore I can write this only at point z which are not

poles but at poles what happens at poles you know we did this in an earlier lecture at poles

you extend the  spherical  derivative  by continuity  and what  happens is  that  the spherical

derivative will become 0 at a pole of higher order, okay and at a pole of order 1 namely at a



simple pole the spherical derivative is 2 divided by the modulus of the residue of the function

at that pole, okay.

So therefore this so in particular you know if you look at it in a very logical kind of way even

if you take the function which is identically infinity, okay mind you that function is also there

in (())(31:01) because we are considering functions with you know values possibly being

infinity  also.  If  you  take  the  function  which  is  always  infinity  that  function  is  also  by

definition  one  for  which  you  have  to  define  the  spherical  derivative  and  the  spherical

derivative will be 0, okay so this is something that we make as a default definition, okay.

And this so I am just trying to say if you take the function which is uniformly infinity whose

infinity at every point on your domain that function is also included and that function also

spherical derivative is also included spherical derivative is 0, the way you think about it is a

that  you know usually the derivative  should be 0 if  the function is  constant  after  all  the

function which is infinity at every point is just the constant function infinity so you should

expect the derivative to be 0 that is one way of looking at it.

The other way of looking at it is what is the spherical derivative? If you take a meromorphic

function you treat it as a map into the Riemann sphere, okay and what it does is it is the

magnification factor of the length of the image I mean it is a magnification factor that you

will have to put in to calculate the length of the image of an arch under this mapping. So

suppose you have an arch on the suppose you have a suppose you have a an arch or contour

on the complex plain in your domain where your meromorphic function is defined, okay and

you take its image under this meromorphic function it will land on the Riemann sphere where

I am thinking of the extended complex plane as the Riemann sphere.

So I am going to get an arch on the Riemann sphere, ofcourse this arch can pass through

infinity, it will pass through infinity if the original arch in the plane pass through some poles

of your meromorphic function wherever original arch in your complex plane hit a pole the

image will hit on the north pole on the Riemann sphere which corresponds to the point at

infinity, okay.

And if you take the image arch how do you get the length of the image arch, what you will do

is you will integrate the meromorphic function not the meromorphic function in fact you will

integrate spherical derivative along the original arch and you will get the length of the image

arch. So the length of the spherical derivative is a magnification factor, okay and if this if



your original function is just the function which is constant function infinity then it is going

to map your whole domain onto a point, okay if you take the function which is constant

function  infinity  then  your  whole  domain  is  going  to  be  collapsed  to  the  point  which

corresponds to the north pole.

So any arch is going to be collapsed to a single point, okay so what is the magnification

factor 0 and that should be the spherical derivative. So this is another way of saying that you

know if you take if you take the constant function infinity you must think of the spherical

derivative of that to be 0, okay that is another point that you will have to remember in mind.

So but in any case the spherical derivative as it is is always a continuous function and that is

the reason where we are able to integrate integrate it always even if your path of integration

passes through some poles of f that is very very serious, okay.

But anyway what you see from here is that because that is this mod f dash term here, okay

what  it  will  tell  you  is  that  if  you  are  looking  at  a  family  of  analytic  functions  whose

derivatives  are  normally  uniformly  bounded,  okay  then  these  numerators  are  normally

uniformly bounded, okay but then you know I can forget the factor 1 plus mod f z squared

denominator, okay because that is a factor greater than or equal to 1 and its reciprocal is less

than or equal to 1.

So actually I can write f hash of z is actually is less than or equal to 2 mod f dash of z I can

write this this make sense, okay because the denominator I can forget the denominator, okay

and what does this tell you? This tells you that whenever f dash is defined okay in particular

if you are looking at a family of analytic functions okay and the derivatives are make sense

then if you know the derivatives are bounded then it means that the spherical derivatives are

bounded  because  the  spherical  derivative  is  bounded  by  2  times  bound  for  the  usual

derivatives.

So if you start with a family of analytic functions such that the derivatives are bounded then

the spherical derivatives are bounded and Marty's Theorem will tell you that these family of

analytic  functions  considered  as  a  family  of  meromorphic  functions  mind  you  analytic

functions  are  also  meromorphic  functions  but  when  you  considered  it  as  a  family  of

meromorphic functions you are allowing the value infinity with that consideration this family

becomes sequentially normally sequentially compact that means given any sequence you can

get hold of a subsequence which converges normally.



So finally what happens is that this box that I wrote down here is the crucial condition that is

crucial for both the original Montel Theorem and also the meromorphic version of Montel's

Theorem which  is  Marty's  Theorem so  this  is  the  crucial  thing  the  boundedness  of  the

derivatives, okay. So but the only thing that can happen is that your sequence of analytic

functions may go to infinity because that is (())(36:50), okay.

See if you go back and think we proved the following thing you take a sequence of analytic

functions on a domain, okay if you take convergence with respect to the spherical metric

either they will converge to an analytic function or they will converge to a function which is

identically infinity, okay and the same kind the of thing happens in meromorphic functions

you take a sequence of meromorphic functions which converges normally on a domain, okay

then either  the  limit  is  a  meromorphic  function  or  it  is  the function  which is  you know

identically infinity you do not get bad behaviour you do not get a sequence of holomorphic

functions  or  analytic  functions  going  to  a  function  which  is  meromorphic  strictly

meromorphic  or  you  do  not  get  a  sequence  of  meromorphic  functions  which  goes  to  a

function which has funny singularities namely it may have non isolated singularities or it may

have isolated essential singularities such these kind of horrible things do not happen, okay.

So if you take this thing that I have put down which I have now rounded in a long ellipse as

the important condition, okay then that is the condition for sequential compactness that is

what I want to say and see these conditions work if the functions are analytic, okay and the

analogous condition namely the derivatives replaced by the spherical derivatives that works if

the functions are meromorphic, okay so this is the very very important point in our theory

that we are finally managed to translate compactness of a family of meromorphic functions or

analytic functions to just uniform boundedness of derivatives that is all, okay.

And if they are usual analytic functions use the usual derivatives, if they are meromorphic

functions use spherical derivatives that is all, okay. So bringing in the derivatives is the big

deal here, okay. So we will now need to see a look at a proof of this theorem and the proof is

pretty except that you will have to worry about all these issues there are little little things that

need to be checked, okay.

So I will try to write down the proof pretty short steps and I will ask you to do some small

verifications so let me say the following thing so you see let me write the so here is what I

have to proof I have domain in the complex plane, I have a family of meromorphic functions

I assume if I have to assume first that the family is normally sequentially compact and I have



to show that the spherical derivatives are bounded, okay normally uniformly bounded and I

have to do the other way round.

And what does the proof actually involve it involves the few simple results so let me write

this  so here the few lemmas that I want to worry about or rather let  me say lemma if a

sequence f k of meromorphic functions converges to f, okay in m D okay then the same thing

happens to the sequence of spherical derivatives, okay ofcourse here again I must so I have

written  in  very very simple words but  I  must again  insist  when I  say converges  I  mean

converges normally, okay it means it is uniform of compact subsets.

So if f k is a sequence of meromorphic functions on D it converges uniformly on compact

subsets to a function f we have already seen that this f can either be meromorphic or it can be

the  function  which  is  identically  infinity  that  we  have  already  seen  then  this  normal

convergence preserves derivatives, okay. So this is something that we have seen with analytic

functions if a sequence of analytic functions converges normally to a given function then the

limit function is also analytic and you know you can the nth order derivatives of the original

sequence of functions will converge normally to the nth order derivative of the limit function

this is all just because of normal convergence uniform convergence of compact subsets, okay.

So the same thing happens with spherical derivatives this is one fact that we will have to use,

okay. So you can check this and well if you want to go back to the let me tell you about the

let me tell you atleast in words about the proof of this theorem ya atleast one way is very

clear,  okay.  Suppose  your  family  is  normally  sequentially  compact,  okay  and  suppose

contrary to what is required the family of derivatives spherical derivatives is not normally

uniformly bounded then you know there is a compact subset on which these derivatives will

go to infinity, okay.

And so there is a compact subset and a sequence of functions where the spherical derivatives

will go to infinity, okay that is what you get if you contradict a normal uniform boundedness,

okay of the spherical derivatives but if that happens then the original family could not have

be normal because if the original family were normal then what would happen is that the

original  from every sequence you can pick out a normally convergent subsequence if  the

subsequence  is  normally  convergent  then  the  spherical  derivative  is  also  normally

convergent,  okay but  then  we have  already  obtained  a  sequence  of  spherical  derivatives

which does not converge, okay.



So the point you will  have to remember here is  that when you are considering spherical

derivatives the convergence is with respect to the usual distance function on the real line,

okay mind you that  is  another  important  point the spherical  derivative  is  a positive non-

negative real valued function, okay and whenever you talk about convergence of the spherical

derivatives you are working with convergence on the real line that is something that you

should not forget,  okay and therefore you get  a contradiction.  So this  is  one way of the

theorem the other way I will prove in the next lecture, okay.


