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Topological Preliminaries - Translating Compactness into Boundedness

So what we are supposed to worry about is you know see we are worried about compactness

of families of meromorphic functions, okay. So so basically you are trying to to topology on

collection on meromorphic functions and see this is the technical background that is required

to prove the Picard theorems and many others theorems in fact because the root is through so

called Montel’s theorem, okay.

So you know what I wanted to do is I want you I want to go back to some topology and tell

you  about  compactness,  okay  so  that  you  realize  how  whatever  we  are  going  to  do  is

connected with all this we will have to bring into the discussion Arzela-Ascoli theorem and

then Montel's theorem, okay and then we will you see so let me say the following thing you

know what we have done so far is the following.

We have defined a spherical derivative, alright. So first of all so let me sum up what we have

done so far, we have first we have tried to think of a Meromorphic function as a continuous

function even at a pole, okay that is because we allowed the value infinity and so we are not

only look at looking at complex valued functions we are looking at functions with values in

the extended complex plane.

So  we  allow  the  value  infinity  the  advantage  of  allowing  the  value  infinity  is  that  a

Meromorphic function at a pole can be given the value infinity and it becomes a continuous

map it becomes a continuous map when you consider it as a map into the extended complex

plane which is identified with the Riemann sphere, okay you know it is a complete compact

matrix space, alright.

Now so first we have to deal with the point at infinity, okay so we try to think of infinity as a

isolated singularity  when is  infinity an essential  singularity, when is  infinity a removable

singularity, when is infinity a pole, okay all these things we discussed behaviour at infinity,

okay and then value of the function at infinity that also we have we worried about, okay. So

you allow in principle you allow functions not only to take the value infinity but you also

want to study functions at infinity, okay so the you see these are two different concepts in the



in  the  in  the  in  the  co-domain  of  the  function  usually  we  are  interested  only  complex

functions  but  now  you  allow  the  value  infinity  the  advantage  is  that  you  can  make  a

Meromorphic function in a continuous map even at a pole, okay.

Then not only that in the domain normally the domain of the function is usually a domain in

the complex plane but then you also want to study the function at infinity itself. So you want

to put infinity also in the domain, okay so you have to define you have to understand the

behaviour of the function at infinity, okay. So a function may have a pole at infinity, it may go

to infinity at infinity which is the case for example if you take polynomials one constant

polynomials they all have poles at infinity.

So you want to be able to work in this kind of generality that is the reason why we have to

study the function behaviour at infinity thing of infinity as a isolated singularity and classify

that kind of singularity and we also want infinity to be a value taken by the function. For

example the value of a Meromorphic function at a pole, okay so we had to deal with infinity

that was the first thing.

Then the second thing is is we were worried about this defining spherical derivative, okay we

were concerned about defining spherical derivative and see the important  thing about the

spherical derivative is that the spherical derivative will not change you can first of all you can

define it for a Meromorphic function, okay. So it is a derivative that will work even at a pole.

See if you take a Meromorphic function by which by definition is a function which is which

has  only  pole  singularities,  okay  of  course  it  may  be  completely  holomorphic,  may  be

completely analytic but we are interested in in the situations we are going to really encounter

those in which they are actually poles, okay.

So if you look at Meromorphic functions (())(5:20) Meromorphic functions you take a pole at

the pole it is not differentiable because after all you know at the pole the function goes to

infinity  and  it  is  not  differentiable  because  it  is  a  singular  point  it  is  not  a  removable

singularity it is a pole, the function is not differentiable in the usual sense of the term, okay

and the function value is also not defined in the usual sense of the term but what we do is we

define the function value at the pole to be infinity that is an extra definition we make and then

since you cannot (def) you cannot differentiate the function at a pole.

So what you do is you do this (())(5:55) of differentiating not with respect to the usual metric

which is Euclidean metric but you try to differentiate with respect to the spherical metric so



you introduce what is called the spherical derivative, okay so that gives you a derivative of a

function which will work even at a pole you see that is the advantage, okay.

If I take a Meromorphic function at a pole I cannot differentiate it but if I take the spherical

derivative the spherical derivative will exist and I have told you that spherical derivative we

calculated it last time I think it was 2 2 divided by the modulus of the residue at the simple

pole if it is a simple pole and it is 0 if it is if it is not a simple pole if it is a pole of higher

order.

So even the spherical derivative make sense and on top of all this one more beautiful thing

about the spherical derivative is that the spherical derivative will not change if you change

the function by its reciprocal that is if you take the Meromorphic function f and calculate the

spherical derivative we will get the same thing if you took 1 by f, okay mind you which is

also Meromorphic with only the only thing is that the poles and zeros will get interchanged

when you move from f to 1 by f but for 1 by f also if we calculate the spherical derivative you

will again get the same thing as a spherical derivative of f.

So what it tells you is it if you are studying the spherical derivative you can actually apply the

thrift  analytic  functions and stop worrying about even poles because at a pole of f I can

simply if I am working with the spherical derivative in the neighbourhood of a pole of f it is a

same as a spherical derivative in a neighbourhood of that point for 1 by f but for 1 by f that

point is 0, okay and therefore it is analytic 1 by f becomes analytic at that point that is the

advantage.

So working with a spherical derivative allows you to reduce to analytic functions, okay you

do not have to even worry about poles that is an advantage and the other thing is it gives you

a derivative of that works even at poles, okay. Now so this is the this is this is what we have

done so far. Now why did we do all this we did do the idea is that there are two concepts on

the one hand we are worried about compactness of a family of Meromorphic functions that is

our main aim we want to do topology on a collection of Meromorphic functions on the space

of Meromorphic functions, we want to what kind of topology of course topology means there

are many things right there is connectedness connectedness, compactness so on and so forth

but we are interested in compactness, okay.

And so that is on that is on the one end on the other end what we have is this spherical

derivative that is that is what we have which is close to a derivative in the case of a in the



case of a Meromorphic function, okay. So now I need to I need to tell you people how I need

to tell you people how to connect these two things, okay so we need to do some topology. So

I will give you some topological background.

(Refer Slide Time: 9:12) 

So  topological  background  so  this  is  very  very  important  because  only  then  you  will

understand what is going on, okay in the broad sense what are we trying to do, okay. So if

you want to get an idea of that this is very very important. So so what we will do is we start

with let us say let us say you are working with a metric space suppose you are working with a

metric space, okay mind you the topology I am worried about the topological property that I

am worried about is compactness, okay.

So we will try to do try to understand everything connected with compactness, right so start

with a metric space which is a simplest kind of topological space that you can think off which

naturally  occurs,  okay  then  what  do  you  have?  The  following  are  equivalent  is  a

compactness, number 2 is sequential compactness and number 3 is the so called Bolzano-

Weierstrass property, okay.

So so we have these three these three properties are equivalent, okay so I am just trying to

recall what is equivalent to compactness, okay just it helps to translate a property in different

ways to find out equivalent properties so that you can work with them, okay. So compactness

is so this is a this is something that you should have done in the first course in topology, what

is compactness? Compactness is that every open cover admits a finite sub cover, okay that is

when you are are given a collection of open sets whose union is a full space then it is enough



to pick only finitely many among those collections among in that collection whose union is

also  the  whole  space  you  can  extract  a  finite  sub  cover  from every  open  cover  that  is

compactness, okay.

It is a very it is you see it is defined only in terms of open sets and it is a very general thing so

it  works for any topological space compactness space can be defined for any topological

space because for any topological space open sets make sense, okay defining the collection of

open sets is exactly the what giving a topology is, okay so compactness make sense for any

topological space but it is a very abstract notion at least for metric spaces where the topology

is induced by a metric,  okay that means that you know your open sets are defined to be

unions of open balls and open balls are they are the analog of open balls in euclidean space

you take points of the space and then you take all points which whose distance from the given

fixed end point is less than some positive number which you call the radius of the open ball,

okay.

And of course you say strictly less than because if you put less than or equal to then you are

also include the boundary and it will not remain an open set it will become a close set, okay

so you put strictly less than the distance should be strictly less than some positivities, okay

and if I said is called open if it is union of such open balls and this is how you and you know

this involves the notion of distance that is why the metric in the space is used.

So the metric space the metric induces a topology so when we say metric space and you think

of it as a topological space you always mean the topology induced by the metric, okay the

open sets are precisely those which are given by union of open balls  and open balls  are

defined by the metric  alright.  Now for such a metric  space compactness which is  a very

abstract  thing is  connected with what is  is  equivalent  to  sequential  compactness,  what  is

sequential  compactness it has to do with sequences what it says is that you give me any

sequence of points in the space I can always find a convergent subsequence that is what

sequential compactness is, okay.

If you give me a sequence in the space the sequence itself may not converge but at the worst

you can pick out a subsequence which converges, okay that is sequential compactness and

that is equivalent  to compactness is what this basic result  says. And then there is a third

property  which  is  called  the  Bolzano-Weierstrass  property  what  is  Bolzano-Weierstrass

property? It is just a property which is satisfied by the euclidean spaces which you namely

which you would have come across namely the fact that you take any infinite subsets it has



an accumulation point or a limit point, okay given any infinite subset all there is a cluster

point there is a point where there is a point at  the space such that  if  you take any open

neighbourhood of that point and delete that point there is a point of your infinite subset there,

okay.

So points of your infinite subset come closer and closer and closer to atleast one point of the

space and that point is a limit point of that set, okay. Now that every infinite subset has a limit

point  is  Bolzano-Weierstrass  property  and  that  is  also  equivalent  the  space  having  this

property  is  also  is  also  compact  okay  so  all  these  three  are  three  different  avatars  of

compactness,  okay alright  sequential  compactness  and then  Bolzano-Weierstrass  property,

okay.

And well if you are looking at euclidean spaces okay that is R n n dimensional real spaces

finite dimensional real spaces then what happens is that this is also equivalent to if you look

at a subset of euclidean space, compactness is equivalent to closeness and boundedness put

together,  okay  and  that  is  what  we  most  of  the  time  when  you  are  working  in  R  n  n

dimensional real space we keep using that all the time. Whenever you want to say something

is compact you say it is you just verify that it is closed end bounded.

For example if you take the close disk in the complex plane that is close disk in the complex

plane is compact because it is disk of finite radius so it is bounded and it is closed so it is both

closed and bounded so it is compact so we keep using this all the time, okay.

So  let  me  write  that  down  for  for  euclidean  spaces  R  to  the  n  we  also  we  also  have

equivalence of the above with with 4 so this is for if fact I should say for subsets of for

subsets of euclidean spaces. So the subset should be closed and boundedness, okay. So if

something is closed and bounded is compact and conversely, okay. So mind you you know

you know my bag what is the background of our trying to understand all this the background

of our trying to understand all this is you want to do this for functions for space of functions

you want to do this for space of functions.

For a space of functions if you take a space of functions it will be a subset of all functions of

the  given type.  So for  example  if  you take a  space  of  continuous  functions,  real  valued

functions it will be a subset of space of all continuous if you want continuous bounded real

valued functions, okay or you might be looking at a space of analytic functions or you might

be looking at a space of Meromorphic functions that is the that is the background in which



that  is  the  generality  in  which  you want  to  do  all  this  and you want  to  make  sense  of

compactness for such a set of functions.

So usually we use various sometimes we say family of functions if you want to specify an

index set, or sometimes we say sequence of functions if you want to think of sequence of

elements which each is a function or you take a subset of the space of all functions okay so

you refer to it in different ways but then basically you are looking at a subset of functions and

you want to study compactness for that, okay.

Now now you see the question is ofcourse that you know how do you how do you go from

this to something else. So there is a very important there is a very very important property

and that is called total boundedness, okay there is something called total boundedness, okay.

Now what is this total boundedness? It is a very very strong form of boundedness it is a very

very strong form of boundedness.

So what is this total boundedness so I will try to explain to you so basically what happens is

that you know you have some space x okay and let us assume that x is x is a say metric space.

Suppose x is a metric space there is something so the idea of total boundedness is like is to

you know fill out the whole space by finitely many open disks of a fixed radius, okay no

matter how small that radius may be that is the idea.

(Refer Slide Time: 19:52) 



So total boundedness so here is my space x it is a metric space, okay and then for every

epsilon positive no matter how small it is there exist a subset A epsilon subset of x A epsilon

and this is the point is this is a finite set so it is only a finite collection of points A epsilon

finite, okay such that you see the union if you take the union of all the if I take the union of

all the open balls centred at points x i of A epsilon and take radius epsilon and I do this for i

equal to i so you know in fact let me not put a subscript let me get rid of the subscript and just

put x belongs to A epsilon. So when I say x belongs to A epsilon there are only finitely many

such x because A epsilon is finite.

And for each such x i so you know so here is one x here and then I have this this ball centred

at x this open ball centred at x and radius epsilon, okay and I do this for all the points of A

epsilon I take the open ball centred at each of the points of A epsilon with radius epsilon,

okay and if I take the union that should be equal to x that is the that is the requirement. So I

can cover x by finitely many such open balls and the beautiful thing is that the all these balls

have the same radius epsilon, okay and there are only finitely many of them they cover all of

x, okay.

And this must happen for every positive epsilon this should happen for every epsilon (())

(22:10) if it happens for a particular epsilon such a collection of points finitely many points

see epsilon is called an epsilon net, okay so this is called an epsilon net so this is called an

epsilon net and this is the net condition, okay. Now this is this this see you are saying that no

matter how small an epsilon you take I can make sure I can find I can make sure to find only

finitely many points in x such that every other point of x is at a distance less than epsilon

from atleast one of these balls that is what you are saying, right so let me repeat it what is this



epsilon net  condition?  Given an epsilon no matter  how small,  okay you are able  to find

finitely many points that they will constitute their elements of the set A epsilon such that

given any point of x it is distance from atleast one of these points is less than epsilon that way

you cover every point of x, okay.

It is a very very strong point and you know the point is that this is this is a very strong form

of  boundedness  because  this  implies  boundedness  because  you see  why does  this  imply

boundedness if you see you know so so let me say it inverts so let me put this here this

implies rather let me write it above I will put it here this implies boundedness and why is that

true?

See  in  fact  what  it  will  tell  you is  that  you know it  will  tell  you that  diameter  of  x  is

comparable to the diameter of any of these A epsilons that is what it will tell you. See what is

the diameter of a space a metric space the diameter is supremum of the lens between two of

its points and you allow those two points to just vary so it is like trying to draw the longest

line segment through that space if you want to think of it and measure the length of that

ofcourse this  longest may not exist  so it  might  become infinite  so your space may have

infinite diameter. So that is the reason instead of taking maximum you take supremum.

So basically what you do is you take supremum of the distances between two points of your

space and you allow the points to vary, okay. If that has a finite value that is called the

diameter of your space and the point is if your space is totally bounded then its diameter can

be compared to any epsilon net. So for example you know if you take an epsilon net such as

A epsilon, okay and you measure the distance between two points of the space, what you can

do is that each of these points is within an epsilon from one of the points in the net and the

distance between two points and the net cannot exceed the diameter of A epsilon mind you A

epsilon is only a finite set so it has a finite diameter the finite subset always has a finite

diameter because you are just going to take supremum of the finitely many distances between

pairs of points in that set and that is only finitely many pairs, okay.

So the diameter of any finite subset is of course finite, alright and and you know if you look

at the diameter of A epsilon okay that will be an upper bond for the distance between any two

points of A epsilon, okay. Now if you take any two points of the space for each point I can

find a point of A epsilon which is to within an epsilon so what this comparison will tell you

by triangle  inequality  is  that  the diameter  of  the space cannot  exceed the diameter  of  A

epsilon plus 2 times epsilon if you write it out, alright if you use a triangle inequality the



diameter of the space cannot exceed the diameter of A epsilon plus two epsilon for every

epsilon greater than 0 that will tell you that the space has finite diameter, okay.

So you can see it is a very very strong condition and ofcourse if the diameter is finite it means

the space is bounded if the diameter of the space is finite that means if the diameter of the

space is say lambda positive number lambda then the space is ofcourse bounded because you

take any point in that space and take disk take an open ball of radius greater than lambda the

whole space will be contained in that so it becomes bounded. So totally bound is very strong

it implies boundedness, alright.

And in fact actually for euclidean spaces you see boundedness is same as total boundedness,

okay and in fact more more generally if you take a Banach space you take a complete norm

linear space you take a Banach space even for a Banach space you see the fact that every

subset that is bounded is also totally bounded is a very strong condition it will happen if and

only if the Banach space is finite dimensional, okay it cannot happen in infinite dimensional

Banach space, okay.

So if you go to infinite dimensional spaces okay which is like non-euclidean kind of spaces

then  you  are  in  trouble,  okay  there  is  a  difference  between  total  boundedness  and

boundedness, okay but total boundedness A priory is a very very strong condition, right. So

for  example  you  know  if  you  take  R  infinity  infinite  sequences  of  you  know  infinite

sequences of real numbers.

Then what  will  happen is  that  if  you take the unit  ball  there that  is  ofcourse you know

bounded but it is not totally bounded because if you take the diagonal sequence which consist

of 0 everywhere 1 in the ith place for i equal to 1, 2, 3, 4 is called the diagonal sequence,

okay  then  that  sequence  will  never  have  a  convergence  subsequence  because  distance

between any two points of that sequence is finite quantity.

So it  is  a  finite  positive  quantity  it  is  a constant,  okay and therefore  you cannot  have a

convergence  subsequence  because  if  there  is  a  convergence  subsequence  then  distance

between points should come closer and closer but this does not happen all distance between

any two points in that sequence is equal to some fixed positive quantity, okay. So if you take

R infinity the unit ball is bounded but this is certainly not totally bounded, okay.

And what I am trying to say here is basically a theorem in fact what I am trying to say is that

you know if you have compactness which I have written on the left side in its various avatars



in its various avatars I have written compactness sequential compactness. See all these things

they all implied total boundedness, okay compactness or sequential compactness or Bolzano-

Weierstrass property they are imply total boundedness ofcourse what I wrote below is that

you know they they all imply for euclidean spaces they all imply closeness and boundedness,

okay but it is not just compactness in general gives you very strong thing it gives you total

boundedness.

Now the question is how do you come back from total boundedness how to you come back to

compactness, okay and the answer to that is theorem if you want to come back this side what

you need to do is you will have to put the condition that your space is complete, okay. So

with completeness so let me let me try to use a different color so that you understand the

implication that is involved with completeness. So if I go like this plus completeness. If I take

a metric space that is totally bounded and I add completeness to it, okay completeness is the

condition  that  every  Cauchy  sequence  convergences,  okay  I  will  put  this  completeness

condition then you will get compactness, okay this is a so you know in so what I am trying to

tell you is see we are trying to move from compactness which is a very abstract thing to

something that is related to boundedness, okay.

And why we are doing this is because when you are studying functions or spaces of function

it is easier to verify something is bounded if you want to say a function is bounded that is

easy to verify, okay where is if I want to say that a collection of functions is compact it is

very very abstract, okay. So boundedness is something that for functions it is easy to verify

under under many situations.

So that is why we are trying to move from compactness to boundedness and this is the route

compactness  implies  boundedness  for  example  in  euclidean  space,  okay and if  fact  it  is

equivalent  to closeness and boundedness but if  you forget euclidean spaces,  compactness

gives  you total  boundedness  which is  a  very strong form of boundedness  but from total

boundedness if you want to come back to get compactness you need to complete this.

So the  translation  so far  is  we so basic  topology teaches  us  that  you can  translate  from

compactness to completeness plus total boundedness, okay. Now what I need to do is that I

will have to now translate all this to functions spaces of functions, okay and that is where

what we will come across is the so called Arzela Ascoli theorem and then so what we will do

is there we will try to see how to decide a certain collection of functions is compact, okay.



So you will you can expect that you know you will say the condition that will be (())(32:31)

total boundedness and completeness but completeness you will get if the collection is already

a close subset because a close subset of a complete space is complete. So if you are working

for example with the Banach space of real  valued functions  or complex valued bounded

continuous  functions,  okay  then  any  subset  any  close  subset  that  any  close  subset  will

automatically be complete.

So the only thing that is required for it to be compact by what I just said is that it should be

totally bounded, okay but then from total boundedness you want to even remove the totalness

and come down to boundedness that is where you have to bring in the Arzela Ascoli theorem,

okay. So I will explain that in the next lecture. 


