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So this is the continuation of the last lecture more or less . So you see our situation is that we

have taken a sequence fn of functions, analytic functions defined on a domain in the complex



plane,  okay. And we assume that fn converges to f,  fn converges to f,  where f  is now a

function again defined on the same domain, okay, on which each of the fns is defined. But

now you are allowing the f to take the value is infinity. So f is considered as a function not

into the complex plane, it is considered a function in c union infinity, the external complex

plane, okay. And the convergence is normal and when we say the convergence is normal, we

mean that it is converging, this uniform on compact subsets of the domain, okay.

You call the domain as d, okay, and since you have taken the value infinity, the convergence

the point wise convergence is with respect to the spherical metric, okay. So fn of z converges

to f of z in the spherical metric, this is, this is the same as saying that the spherical distance

between fn of z and f of z, that goes to 0. And you wanted to go to 0 normally on d, okay.

And you know the reason why we are using the spherical metric, because f of z can take the

value infinity, then you will have to measure distance of the point on the complex plane to the

point at infinity, okay. 

And for that, you have to do it only on the riemann sphere, so essentially use a spherical

metric on the riemann sphere, okay. Fine, so what we were trying to grow, we were trying to

prove this very important theorem that you know if you take sequence of analytic functions,

suppose it converges normally to limit function, then the limit function is either analytic, that

is holomorphic or completely it is infinity, okay. And you do not get anything between, all

right. So what we do, we try to prove this by using, by applying hurwitz’s theorem and also

by using the fact that the spherical matrix, the spherical metric is invariant with respect to

inversion, okay, we have to use these 2 facts.
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And how was the going to use it? That is what we are trying to do, so we have assumed that

the limit function is not identically infinity, okay, so that means that this, so if you now look

at what we have written in the last lecture in the last couple of lines. D infinity is the set of all

z in d where f takes the value infinity, that is a proper subset of d and this is, this is because, f

is not identically infinity . So d infinity is a proper set and mind you d infinity is a closed

subset because you see i have already told you last time that f has to be continuous because

uniform limit of continuous function is  continuous and normal limit  in the local uniform

limit, so this also continuous.

And locally continuous is same as containers, okay, because continuity is a local property. So

f is certainly a continuous function. And f inverse, inverse image of a closed set under a

continuous map is  a  closed  set,  the  point  at  infinity  is  a  closed  point,  okay. The subset

consisting of only a single point is closed in the external plane because topologically it is the

same as the riemann sphere and the infinity, the point at infinity corresponds to the north

pole. So f inverse of infinity is exactly d infinity and that is closed, okay. What we are trying

to show is that we are trying to show d infinity is empty, okay.

We want to show, we want, we want to show d sub infinity is a null set, which means that d is

actually, so that will mean that that is f is analytic on d. Because you know that the fact is that

if you show t infinity is empty, then you are saying that every point s takes only a finite

complex value, okay, it does not take the value infinity. So f is not actually mapped into c

union infinity, it is actually mapped into c. And then you know if you have, if you have a

complex valued function which is a normal limit of analytic function, then it is analytic.



This is something that you have already seen, this is part of for example the 1st course in

complex analysis where you essentially have to use cauchy’s theorem and you had to use

morera’s theorem, okay. So all you have to show is d infinity is empty. And now how do you,

how do you show this, we exploit the fact that d is connected set. See d is a domain in the

complex plane, in the complex plane, so d is then open connected set.  Of course we are

always  worried  about  only  nonempty  sets,  d  is  nonempty  and  mind  you  d,  since  d  is

connected, we use, try to use this very important property of the connected space.

For a connected space the only subspace that is both opened closed has to either be the null

set or it has to be the full space. So what you try to do is that you try to show d infinity is

open, okay. So d infinity is already closed, suppose we show d infinity is open, so d infinity

has to be either, so it is an open and close circuit of d which is corrected, so d infinity either

has to be a null set has to be all of d. But it is not all of d because i have assumed f is not

identical infinity. So d infinity has to become the null set and you are done, and the theorem

is proved.

So let me write that down, because of the connectedness, the connectedness of d it is enough

to show that d infinity is open, okay. That is enough to, it is enough to show that, what does it

mean? It means that if you give me a point of d infinity then there is a whole neighbourhood

surrounding that point which is also in d infinity, that is what openness means. It means that

every point is an interior point, so in other words what does it mean, it means that if you take

a point, i did not in d infinity? Namely a point z0 where f takes the value infinity, then there is

a  small  neighbourhood,  that  is  a  small  disc surrounding z0 where also f  takes  the value

infinity. That is what you have to show.

If f is infinity at a point, then f is infinity for all points in a small disc surrounding that point.

This is, this is what we will mean to say that d infinity is an open set, okay. So that is what we

are going to do, that is exactly what we are going to do, all right. And for that we are going to

use the same, we are going to use the invariance of the spherical metric  with respect  to

inverse. And how we will do this, you will see is a. So let us start with, and z0 is in d infinity,

okay. And of course i should tell you that, of course i am assuming d infinity is nonempty to

begin with.

If you want to be very logical, you can say that let us assume t infinity is nonempty because if

t infinity is empty, we are anyway done, okay. And so you assume t infinity is nonempty and

then prove and get a contradiction, okay. So if you want to be very radical you can say like



that. So in any case am assuming, i start with the point, this is, this is often a feature of

mathematics. See finally d infinity is empty, that is what you want to show. You want to show

that the set is empty, you want to show that there is no point in that set. But then it is a

roundabout way you do it, what you do is, you assume it is nonempty and then you try to,

once  it  is  nonempty,  you  try  to  get  some  properties  of  the  set  with  will  give  you  a

contradiction.

So in this case you assume t infinity is nonempty, okay and then you get the fact that t infinity

has to be everything and that is not true because f is not identical infinity, okay. So this often

happens in mathematics. So you start with the point z0 in d infinity, so f of z0 is what it is.

And, now mind you f is a continuous map, okay, f is a continuous map into c union infinity.

And  it  is,  therefore  discontinuous  at  z0  also.  And  what  i  want  to  say  is  that  since

discontinuous at z0, okay, you can find the sufficiently small neighbourhood of z0 such that

all the function values on that neighbourhood are close to infinity to within whatever epsilon

distance you want.

And mind you you have to now use the spherical metric, okay. So i am using the continuity of

f at z0. So since f is continuous, the given epsilon greater than 0, there exists it has to greater

than 0 such that, well mod z minus z0 less than delta in d will imply that, i should write this

with respect to spherical metric, d sub s, f of z, f of z0 by the way is infinity, this can be made

less than epsilon, okay. So you see i have to use the spherical metric, okay. So i am just

saying that since f takes the value infinity at z0, in a sufficiently small neighbourhood of z0, f

has to take value close to infinity.

So the difference between the function f z and infinity which is f of z0, that can be made as

small as i want if i choose sufficiently small neighbourhood, that the neighbourhood of z0.

And of course i have to choose it in d of course, because i want f of z to make sense. F of z

makes sense only for z in d, okay. Fine, now you see, mind you what this means, you see try

to understand what it means. It means that if you take this wall disc centred at z0, radius

delta, then the image of that disc lies in the neighbourhood of infinity, because the distance

between f of z and f of z0 which is equal to infinity is less than epsilon means f of z lies in the

neighbourhood of infinity.

That means that small this centred at z0 radius delta is mapped to the exterior of sufficiently

large circle, okay. So you must think that as epsilon becomes smaller and smaller, you are

getting the exterior of sufficiently larger and larger circles, okay. So if you are thinking in in



terms  of  radii  of  circles,  you  should  think  of  1  by  epsilon  often  by  epsilon  square  of

something like that, as epsilon goes to 0. Because then 1 by, are positive power of epsilon

greater than 1 will go to infinity, okay. Fine, this is what it means. Now, you see, so you

know, so let me tell you basically what the philosophy is all about.

See the idea is very very simple , let me give you the idea of the proof. You see f is, so there

is this neighbourhood of z0, okay at z0 f is infinity, okay, and that is the small neighbourhood

of z0 where f is close to infinity, okay. So you know if i if i draw a diagram, it is going to be

something like this, so let me draw the diagram, it helps to draw a diagram.
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So here is z0 and this is a small disc surrounding z0, radius is delta and what f is doing is that

it  is  mapping  this  onto  neighbourhood  of  infinity  which  is  you  know  the  exterior  of

sufficiently large disc, this is what is happening. So the interior of this, okay is going to be

exterior of the sufficiently large disc. And this is, this disc is centred at z0 is radius delta

sufficiently small and the image of this disc, i am not saying the image is all of the you know

exterior of that large circle but it is a subset of that. So yah, so this is a situation.

See  what  this  tells  you  therefore  is  that  f  is  certainly  bounded  away  from  0  in  the

neighbourhood of z0, right. Because at see at z0 f is taking the value infinity, all right and in

the neighbourhood of z0 it has to take value is close to infinity. And values close to infinity

are certainly nonzero values, because values close to infinity are supposed to be values which

lie on the exterior of the large, the exterior of a large circle. So f is going to be nonzero in

particular, okay. And now imagine your fn converges to f, uniformly on compact subsets of t,



that is given to you, that is given to us from because we have assumed fn converges to f

normally on d, all right.

So because  of,  so  in  particular  if  i  choose  this  delta  sufficiently  small  so  that  even  the

boundary of that circle, mod z - z0 equal to delta is also inside d, i can do that if i make this is

little bit smaller you want, okay. Then mod z minus z0 less than equal to delta becomes a

compact set because you know it is now closed and bounded, it is a compact subset of d. And

therefore fn will converge to f normally on that, right. Because if, in fact uniformly on that

because it is a compact set. So if i choose delta sufficiently small, i can make sure that on this

close small closed disc centred at delta, centred at z0 radius delta, the convergence of f n to f

is uniform, okay.

But then f is never 0 there, f is nonzero on that common that closed disc common that small

disc. Because of this, f values are in the neighbourhood of infinity, so f is not 0. So that

means because of uniform convergence, fns is also nonzero beyond a certain stage in that, in

the closed disc. And if fns are nonzero, they are nonzero analytic functions, so 1 by fns will

become holomorphic, they will become analytic, okay. And you know fn converges to f in the

spherical  metrics  because  of  the  property  of  the  invariance  of  the  spherical  metric  with

respect to inversion,  fn converges to f in the spherical metrics will  tell  you that 1 by fn

converges to 1 by fn, 1 by f in the spherical metric, okay.

So 1 by fn will converge to 1 by f and the 1 by fns are all analytic in the disc and 1 by f

therefore will become analytic in the disc. But what is 1 by f of z0, it is 1 by infinity, it is 0.

So  z0  becomes  0  for  1  by  f  and  1  by  fn  is  the  sequence  of  analytic  functions  that  is

converging normally to1 by f in the disc. Apply hurwitz’s theorem, what it will tell you that

all the 1 by fns beyond a certain stage, they will have zeros, as many zeros with multiplicities

as the zeros z0 of 1 by f, okay. But then you see if one by fn has zeros, that means fn will

have more poles, all right.

But fn are all analytic, how can they have poles, that is the contradiction. Therefore the moral

of the story is that you get a contradiction and therefore, so you can, see you can either see

there is a contradiction or you can go one step further and say that see you can look at where

hurwitz theorem will go wrong. See hurwitz theorem can go wrong in the following sense. If

you take a sequence of analytic functions, if they are converging normally to limit function,

okay, then hurwitz  theorem says that  0 of the limit  function come from the zeros  of the



functions which converges to that limit, okay. It comes as a limit point of zeros are functions

that converge to that limit function.

But then there is one extreme possibility, the limit function itself could have been identically

0, okay. If the limit function is identically 0, okay, then that, then that is a case which we do

not deal with in the actual hurwitz theorem. In the hurwitz theorem we always assume that

you have an isolated 0 of the limit function, so the only way this hurwitz theorem can fail to

apply here is that 1 by f becomes identically 0. But then if you think, if you see that 1 by f

becomes identically 0, you are just saying that f is identically infinity in the neighbourhood of

z0.

And that means that wherever f is infinity, if you take a point where s is infinity, that there is

a neighbourhood surrounding the point where again f is infinity, so d infinity is open and we

are done, okay. So there are both, there are these ways of looking at it which will give you the

proof of the theorem, okay. 
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So now let me write down things inverse, okay. So let me write this, we can, we can choose

delta small enough so that mod z minus z0 less than equal to delta is in d, okay. And now you

see you also have this uniform convergence, since fn of, fn converges to f uniformly, i should

say normally, fn converges to f uniformly and i am abbreviating uniformly to ufly on mod z -

z 0 less than equal to delta, okay. And well note that, so what does this mean? This means that

if for the spherical metric if you take fn of z and f of z, this, see this distance can be made



lesser, i mean this distance goes to 0 uniformly on mod z minus z0 less than equal to delta,

because of course mod z minus z0 less than equal to delta is compact, okay.

And what  is  uniform convergence  means?  Uniform convergence  means  that  you can  an

index, capital n large enough such that for all small n greater than capital n, you know you

can make this spherical distance is less than epsilon differential you want. So mind you feel

already started with some epsilon, let us keep that epsilon, so there exists an n sufficiently

large so that n greater than equal to, n greater than or equal to, small n greater than equal to

capital n, greater than equal to capital n implies that the distance, spherical distance between

fn of z and f of z can be made less than epsilon but here is the uniform, here is the uniformity

of the convergence.

For all z in mod z minus z0 less than equal to delta independent of n. So the point is that you

can choose this  capital  n  in  a  way that  it  has  got  nothing to  do with this  z,  that  is  the

uniformity of the convergence, okay. In general if it is point wise convergence for the capital

n will depend on epsilon of course but it will also depend on the z, particular z that you are

looking at,  the  point  z.  If  the  uniform convergence  is  that  naye  you have  this  capital  n

depending only on epsilon and not depending on z, z could have seen anything.
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So let us look at this, d sub s of, i am trying to compare fn of z and f of z 0 which is infinity

and this is by triangle inequality it is d sub s fn of z and now you could f of z, okay. Okay,

and then put d sub s, f of z and f of z0, this i can do, put fz, okay, you introduce this fz as the

3rd point, the final apply the triangle inequality, okay. If you do this, see this is certainly less



than, ds, fn z, fz, that is less than epsilon as i underlined above, so will get an epsilon. Plus

the ds, fz fz0 is also less than epsilon, that is because of continuity of f at z0.

So i will get epsilon plus epsilon is to epsilon, okay. So what this will tell you is that, this will

tell you what we want. And you know this is for, this is for n greater than equal to capital n.

So, what this will tell you is that beyond a certain stage, all the fns, they are in neighbourhood

of infinity, so they do not vanish and that is what i want. I want all the fns not to vanish your

dissidence taste. Why, because then i can invert them and say that they will, the inverses will

also be analytic. So thus, so this is what i want, the fn for n greater than equal to small n

greater than equal to capital n do not vanish on mod z minus z0 less than equal to delta and

hence 1 by fn, n greater than equal to capital n are analytic there, analytic or holomorphic

there, okay.
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I wanted to invert the fns and why i wanted to invert the fns because you see i want to use

this you know the invariance of spherical metric with respect with version. So now ds of f of

fn of z, f of z, this is the same as ds of 1 by fn of z, 1 by f of z, you have this. Okay, here is

where i am using the invariance of spherical metric with respect to this inversion. And mind

you what is it that we have, what is basic assumption, our basic assumption is that this fellow

on the left goes to 0 normally on d, okay. This is our assumption, original assumption.

But that quantity is equal to the quantity on the right side, okay. And you see but there is a

small thing, this is, this, the quantity on the left side goes to 0 normally on d, it goes to 0

uniformly on mod z minus z0 less than equal to delta because it is a compact subset of t. So



uniformly on mod z minus z0 less than equal to delta, that, let me write that. But see this

equality is evident, that is valid everywhere but the only problem is, you know i want, see i

want  1  by fns  to  be analytic,  okay. And that  does  not  happen everywhere,  that  happens

anyway on mod z - z 0 less than equal to delta.

So see i am worried about equality only in mod z minus z0 less than equal to delta because 1

by fns are analytic there. For small n greater than equal to capital n, okay, 1 by fn converges

to 1 by f, okay and this is uniformly in mod z minus z0 less than or equal to delta, all right,

this is uniform convergence. And the 1 by fns, these 1 by fns are all analytic. They are all

analytic in mod z minus z0 less than equal to delta. Okay. So you have a sequence of analytic

functions that is converging to limit  function, okay and this is,  this converges is actually

uniform convergence.

And mind you the limit function is also complex valued, that is the big deal. So you notice, f

is, f takes values in the neighbourhood of infinity, right. F at z0 is infinity and in that small

disc surrounding z0 f takes value in the neighbourhood of infinity. That is the reason why the

distance, spherical distance between f of z and f of z0 which is infinity is less than epsilon,

that is what it means. So f takes values also in the neighbourhood of infinity there and if f

takes values in the neighbourhood of infinity, f is not 0 of course. Okay. And 1 by f will

become very small because f is very large.

And 1 by f is bounded, so the moral of the story is that this is a 1 by f is a not in that

neighbourhood mod z minus z0 less than equal to delta, 1 by f is a complex valued function,

that is it is a bounded complex valued function. That is a big deal there. It does not take the

value  infinity, 1  by  f  never  takes  the  value  infinity, okay, because  f  takes  values  in  the

neighbourhood of infinity. So 1 by s, this is bounded in mod z minus z0 less than equal to

delta, okay.

Now we are again using this standard theorem from our 1st course in complex analysis that

your normal limit of analytic functions, if the limit function is also complex valued functions

that the limit function is continuous and in fact it is analytic. So the moral of the story is, see

all this pays to say that 1 by f makes sense and 1 by f is complex valued. Of course 1 by f, 1

by f z0 is going to be 0 because 1 by f z 0 is 1 by infinity which is 0 according to our

convention.  So  this  1  by  f  is  in  the  neighbourhood  of  0  actually,  it  takes  values  in

neighbourhood of 0 because f takes values in the neighbourhood of infinity. So okay.



So let me write that here, it takes values in a neighbourhood of 0 which is actually 1 by f z0.

Okay. Now what does all  this  tell  you? All  these things will  now tell  you that 1 by f is

analytic at z0 and of course, at z0 what happens? At z0 1 by f is 0 because it is infinity, f of z

is infinity, f of z0 is infinity. Therefore z0 becomes a 0 of analogy function and what is the

property of analytic function? It is isolated. So the moral of the story is that 1 by f is analytic

at z0, z0 is the zero of 1 by f, now appeal to hurwitz theorem.

Now appeal to hurwitz theorem and what will hurwitz theorem then say? Hurwitz theorem

will say that if 1 by f is not identically 0 then z0 will be an isolated zero for 1 by f. And

suppose it has a certain order l, then all the fns, all the 1 by fns for n sufficiently large will

also have l zeros in the neighbourhood of z0. But zeros of 1 by fn are the same as poles of fn,

right. And that is not allowed because fns r: analytic, can they have poles. So you cannot

apply hurwitz theorem, you should not be able to apply hurwitz theorem. The only way out is

that 1 by f should be identically 0 in that neighbourhood.

And 1 by f being identically 0 in that neighbourhood is the same as f being identically infinity

in that neighbourhood and therefore we want some okay. So you see here is where hurwitz

theorem comes in, all right. So let me write that down. 
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So let me write this here, by hurwitz theorem either 1 by f is identically 0 and mod z minus

z0 less than equal to delta which means, so i should say, yes which means f is identically

infinity in mod z minus z0 less than delta, right. Or z0 is an isolated of 1 by f free of order l

and for n is recently large, 1 by fn also has l zeros in mod z minus z0 less than equal to delta



which is impossible, which is impossible as fn will then have l pole in mod z minus z0 less

than delta for n sufficiently large, okay. So what this tells you is that the only way out, so f is

identically infinity, that is the only way out for mod z minus z0 m delta, okay.

And this mean that mod z minus z0 less than delta is contained in d infinity, okay. So you

start with, start with z0 in d infinity, i am able to find whole disc surrounding z0 which is also

in d infinity, so d infinity is open. So t infinity is open but already we know d infinity is

closed, so d infinity is both open and closed subset of, it is both open and closed subset of d

which is connected. So there is no other choice, it has to either be d or empty but it is not d

because f is not identically infinity, so it has to be empty, just the empty set and we are done.

Thus d infinity is both open and closed in d which is connected, i should remove the comma

here, so d infinity at the null set or d but f not identically infinity implies that d infinity is not

d. So d infinity is a null set and this means f is analytic on d. And that finishes the proof,

okay. So this is a very very nice theorem, okay. So if a sequence of holomorphic functions on

a  domain  converges  the  spherical  metric  normally,  then  the  limit  function  is  either

holomorphic, that is analytic or you go to the other extreme, the limit function is identically

infinity, you do not get something in between.

And the idea is what could you get in between, well if you want something mild you can have

a meromorphic function which means that you get some points which are isolated where the

limit  function develops  poles,  okay. But  what  this  theorem says  is  that  it  simply cannot

develop a  port  somewhere,  okay. And you know now the  reason,  philosophically  why f

cannot develop a pole at a point because you see if fn converges to f in the spherical metric

and f develops a pole at a point, then because of the invariance of the spherical metric with

respect to inversion, 1 by fn will converge to 1 by f. But then 1 by fn will converge to 1 by f

and if f has a pole at the point, 1 by f will have a 0 there.

So 1 by fns will start having zeros by hurwitz theorem. And they will give rise to poles of fn,

means it is not possible, okay. Of course there is a much worser thing that you can expect,

that this fn converges to f, of course you know this f, if you look at the locus where f is not

infinity, that is of course is an open set, because that is the complement of d infinity. And on

that open set f is going to be analytics, there is no problem, it is a honest complex valued

function which has a uniform limit of analytic function, so it is analytic, there is no problem.

But what kind of d infinity is very very, you know, it is very mysterious.



What would have happened if this d, what is, what, what prevents d infinity from being a set

with nonempty interior, okay? Why should it be an isolated set of points? If d infinity is

isolated set of points, it  means that f is a meromorphic function but why should it be an

isolated set of points? Why cannot d infinity be a curve? Okay, if it is a constant d infinity,

then it  means that your f  has nonisolated singularities,  okay. Why should,  why should d

infinity, you know if you want f to be meromorphic, the condition is that d infinity must be an

isolated set of points.

So the next theorem that you are going to prove in the next lecture is that if you draw drop the

assumption that the fns are holomorphic, assume that they are meromorphic, then also the

limit function f will be meromorphic, it will not be any worse. That is d infinity will only be a

set of isolated points. And it cannot be, it cannot contain nonisolated points, so you cannot

have a sequence of, sequence of meromorphic functions. If it goes to a limit function, then

that limit function, you know it cannot have horrible non-isolated singularities. It can only

isolated singularities and they have to be only be poles, okay. This is again a very good thing

and we will prove this in the next lecture, okay.


