
Advanced Complex Analysis - Part 2: Compactness of Meromorphic Functions in the
Spherical Metric, Spherical Derivative, Normality, Theorems of Marty -Zalcman-

Montel-Picard-Royden-Schottky
Dr. Thiruvalloor Eesamaipaadi Venkata Balaji

Department of Mathematics
Indian Institute of Technology Madras

Lecture No 20
Introduction to Hurwitz's Theorem for Normal Convergence of Holomorphic Functions

in the Spherical Metric

Okay so this is the continuation of the previous lecture and we were just discussing Hurwitz’s

theorem which  (())(1:46),  so  let  me again  just  recall  what  we are  trying  to  show is  the

following if you have a sequence of analytic functions on a domain in the complex plane and

suppose you assume that the sequence converges normally to a limit function and you allow

this exception that the limit function can take values, the value infinity then what can happen

is either the limit function is completely analytic function or it is completely the constant

function infinity namely the function that takes every point infinity okay.  

So in other words and of course here when I say I am including functions that take the value

infinity it means that I am not just taking complex valued function, I am taking functions with

values in the extended complex plane which is the complex plane along with the point at

infinity okay denoted by this symbol infinity and of course the convergence whenever the

point at infinity is concerned the convergence should be taken with respect to the spherical

metric  okay  which  is  the  spherical  metric  on  the  Riemann  sphere  transported  via  the

stereographic projection to the extended plane okay and you must also remember that the

convergence in the spherical metric is the same as the convergence in the Euclidean metric on

the complex plane so far as domains of the complex plane are concerned alright so in the

proof of that result we needed Hurwitz’s theorem. 

You see I wanted to understand the beauty of that result, the beauty of that result is following,

see when you do a 1st course in complex analysis and you are not worried about the value

infinity okay you are only worried about complex options then you know that if you say a

uniform limit of analytic functions you will get an analytic function and more generally you

need not take uniform limit but you can take our local uniform limit which is for example (())

(3:50) by taking a normal limit, a normal limit is a locally uniform limit. So even if you take

a  locally  uniform limit  or  a  normal  limit  of  analytic  functions  you  will  get  an  analytic

function this is what you study in the 1st course of complex analysis. 



The proof involves just Clausius theorem and Morera's theorem okay at now what we have to

do is you see we have our aim is to prove the great Picard theorem, the little Picard theorem,

the Picard theorems and the problem is  that  to  prove that  you will  have to worry about

infinity as an isolated singularity okay and the problem is that you will have to worry about

Meromorphic functions and families of Meromorphic functions you should do topology on a

space  of  Meromorphic  functions  and  the  fact  is  that  you  allow  the  value  infinity  a

Meromorphic function becomes a continuous map into the extended plane. See if you take an

analytic function and suppose it has a pole at a point okay then as you approach the pole the

modulus of the function goes to infinity, so the function goes to infinity. 

So the function of course becomes discontinuous the usual sense but then if you allow the

function to take the value infinity you think of infinity as actually a value and where it is the

extra point that you have added get the one-point compactification of the complex plane. It is

the point at infinity in the extended complex plane, mind you the extended complex plane is a

nice topological space it is a compact matrix it is a complete metric space okay. It is because

it  is  just  equivalent  topological  isomorphic  to  the  Riemann  sphere  which  have  all  these

properties and now the point at infinity can be seen on the Riemann sphere as the North pole. 

So you can think of it as a valid point and now if you take a Meromorphic function and think

of it as taking values not just in complex plane but also allow it to take the value infinity then

the Meromorphic function becomes a continuous function because what you will do is at a

pole you will define its value to be infinity and this definition is continuous okay, okay it is

continuous for the topology on the extended complex plane or for example if you want to use

a topology and that is of course the topology induced by the spherical metric on the extended

plane okay. So now you see by allowing infinity we are value okay and taking continuous

functions which can take the value infinity you are also allowing Meromorphic functions,

now you see what you have done is? You have jumped from holomorphic functions on a

domain  to  all  the  way  to  Meromorphic  functions  on  the  domain  which  means  you  are

allowing even for functions with poles okay and then you go one step further and say that you

also allow the constant function infinity. 

Maybe the function that assigns every variable  to the value infinity  okay it  is  a constant

function infinity and mind you constant functions are continuous in any sense of the term

okay, so now since all  this  has happened now if  you again take normal  limit  of analytic

functions, a normal limit of holomorphic functions then you know of course if everything is



happening in the complex plane you are only worried at complex values and if this is really a

usual convergence okay then you will get the limit function to be analytic that is nothing

more but the pointers now you are allowing the extended complex plane, you are allowing the

value infinity and why could it not happened that sequence of analytic functions convergence

in the limit to Meromorphic functions. 

So suddenly a pole some poles can pop up in the limit that can happen right you do not

expect it to happen by continuity okay but we have already seen that you can get a function

which is identically infinity example I told you take the domain which is the exterior of the

unit circle and you take the function Z, Z square, Z cube, et cetera so the nth function is Z

power N. Now that sequence of functions, it is a sequence of analytic functions mind you in

fact entire functions that sequence converges if you look at it in the usual sense it will not

converge because you take any value Z with a mod Z greater than 1 Z power n will diverge

because mod Z power N will go to infinity because mod Z is greater than 1 but if you now

include  infinity  as a  value and think of  the extended complex plane,  Riemann sphere in

disguise okay. 

Then this Z power N will tent to infinity, it tends to a point a value in your set and a sequence

of function Z power N at converges to the constant function infinity at every point outside the

unit circle and low behold this convergence is even normal, this convergence is even uniform

on compact  subsets with respect to  the spherical  metric  that  is  amazing thing.  Once you

include the value infinity even you get normal convergence okay but the point is that it is

converging to the constant function infinity. Now what is the guarantee that something…

instead of converging at all points where infinity why cannot it just converge at some points

to infinity? Why cannot it converge on to infinity only at say an isolated set of points? That

means you are going to get  a Meromorphic function okay or why cannot  it  converge to

infinity on some subsets which is for example not even isolated. Why cannot such strange

things happen? 

Okay so that is the theorem you trying to prove, the theorem we are trying to prove is that

either what happens is normal what you expect normally that the limit function is actually

nice  complex  valued  analytic  function  or  the  other  extreme  happens.  Namely  the  limit

function is always infinity, it  is  a constant  function infinity  you do not get something in

between, you do not get the Meromorphic functions with poles they will not come in between



okay so you do not get that. So it does not go wrong in that sense and that is the theorem we

are trying to prove okay. 

See we have to be worried about all these things because you are allowing the value infinity

okay once you allow the value infinity anything can happen and then you will have to be very

careful and you have to prove things carefully. See these are all basically ingredients that you

really need but to understand very well if you want to understand the Picard theorems, the

proof of the Picard theorems that is the reason why I am doing this pretty slowly. So now in

order to prove that so how will be prove that what we will do is we will take sequence of

functions on some domain in the complex plane and assume that the sequence converges to a

function uniformly on compact sets okay that is normally and of course this convergence will

be…you are allowing the limit function to take the value infinity. 

So the limit will be in functions with values not in the complex plane but functions with

values in the extended complex plane as of course the convergence is going to be normal

alright and what you want to show is that suppose the limit function is not the function which

is identically infinity, you have to show that the limit function is actually analytic okay. The

limit  function  is  either  analytic  which  means  it  is  a  (())(11:19)  complex  valued  analytic

function or it is infinity that is all there are only these 2 cases there is nothing in between

okay that is what you are trying to prove. 

So what we will do is essentially for that you know for proving that we need 2 facts one fact

is the important property that the spherical metric is invariant with respect to inversion, so the

map is Z going to 1 over Z that defines an automorphism, self-isomorphism of the extended

complex plane okay it is a homeomorphism in fact isomorphism in the topological sense and

that when you translate it to the Riemann sphere it simply becomes rotation by 180 degree

around the x axis that is what I told you last time and of course distances on the sphere are

not going to change if I rotate the sphere okay that is obvious. So moral of the story is that

this tells you that the spherical metric is invariant under the inversion okay that is one fact

that we need. 

The other side that we need in the proof is Hurwitz’s theorem okay which I thing some of you

must have seen in the 1st course in complex analysis probably some of you have not seen but

anyway I will tell you what it is. See roughly this is what I was trying to tell you at the end of

the last lecture and I am now continuing roughly the philosophy of Hurwitz’s theorem is the



following. Suppose you have a uniform limit of analytic function and suppose that the limit

function is also a (())(12:41) analytic function okay. 

Then if you take a 0 of the limit function, mind you a 0 of the limit function as to be isolated

because the limit function is analytic and you know zeros of an analytic function are isolated

and you know this is equivalent to identity theorem if we have seen it in 1st course of complex

analysis, so the limit you take a 0 of the limit function then Hurwitz’s theorem says that you

see since your sequence of functions converging to a limit function then the 0 of the limit

function also comes as a cluster point or as a limit point of zeros of functions which converge

to that limit function. 

So that means there is a so you know geometrically what it says is suppose you have a 0 of

the limit function at a point Z naught then there is a small neighbourhood around Z naught

where that will be the only 0 this is because it is zeros of an analytic function are isolated and

the limit function is analytic okay and then you can use this neighbourhood sufficiently small

so that in that neighbourhood all the members of your original sequence which converge to

this  limit  function  beyond  a  certain  stage  that  means  for  all  sufficiently  large  indices

subscripts okay. The functions in your sequence also have zeros and that disk okay and the

number of zeros is also equal to the order of the 0 of the limit function at that point and these

zeros as you make the disk smaller and smaller and smaller is 0 actually converge. 

They converge to the 0 of the limit function, so in other words what it says is that you know

if the limit function has 0 at a point then all the functions in your sequence beyond a certain

stage should also have zeros in a neighbourhood of that 0 of the limit function okay. So a

limit function cannot get is 0 just like that okay it cannot happen that you know all your limit

functions never have any zeros then suddenly you know in the limit is certainly the limit

functions as 0 pops ups out of the blue out of nowhere that does not happen okay. So you see

intuitively this is very nice to believe but the problem with mathematics complex analysis of

mathematics is that you have all these intuitive things you believe that such thing should not

happen by continuity you believe at such nice things should always happen but then prove

them is the (())(15:06) that is where the meat lies you have to really sit down and work it out

and that is why all these analysis is being done okay.
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So the key to Hurwitz’s theorem is the so-called argument principle which I will try to recall,

so what  is  this  argument  principle,  so the  argument  principle  is  as  follows,  what  is  this

argument principle? So the situation is like this you are in some domain, so there is a domain

here and well and inside the domain there is some there is a simple closed contour gamma

okay and of course the interior of that on 2 are also lies in the domain okay. 

So both gamma and the interior of gamma okay they lie inside the domain and you have a

function f which is Meromorphic on the domain, it is Meromorphic on the domain means that

it is analytic with the exception of an isolated subset where it has poles that is what it means

okay you have a Meromorphic function and assume that, so you know the function f has only

singularities it has poles okay and of course it will have zeros also but you know any way



zeros  of  an  analytic  function  are  isolated  you know that,  so there  is  some subset  of  the

domain which is disjoined from the subset of poles which were the function has zeros okay,

now what you do is you make sure that this contour gamma does not pass through a 0 or a

pole, so you assume that f is not equal to 0 on gamma f has no pole on gamma okay. Now

what is argument principle if you recall it? 

So the argument principle is if you integrate over gamma the logarithmic integral of f okay

which is by definition and integral over gamma f dash of Z by f of Z D Z okay because you

know D log is a suggestive notation, the derivative of log f is one by f times the derivative of

F, so it is f dash by F. So integrating D log means you are integrating f dash by f alright, so

you calculate this integral of f dash over f you calculate this integral over gamma okay and

mind you this integral is very well-defined because you see notice that the integrant is f dash

by f the only problem is that for the integrant is where f has zeros because when f has zeros

then f is in the denominator, so f dash by f will have poles okay but I have not allowed any

zeros of f to lie on gamma. 

Mind you when you integrate thing the variable of integration is varying only on the region of

integration, here the region of integration is gamma which is the contour and on the contour f

is not going to vanish. So that function I have written down f dash by f there is going to be no

problem with the denominator and the numerator there is going to be no problem because you

see if a function has a pole at a point then its derivative will have a pole of order 1 more at the

point okay because if a function has a pole at a point Z naught it locally looks like some g of

Z by Z minus Z naught power N where N is the order of the pole at Z naught okay and if you

take this g of Z by Z minus Z naught our end and differentiate it once you will get Z minus Z

naught power n plus 1 in the denominator, so that means you know if it has a pole at a point

then its derivative will have poles of 1 higher-order at that point. 

So the only way this integrant and get into trouble because of the numerator is because of the

poles of f but then I have also told you that none of the poles of f should lie on gamma, so the

integrant has got nothing has no problems on gamma, so this integral is well-defined okay

and the argument principle is that this integral is going to give you 2 pi i times the number of

zeros minus the number of poles inside gamma okay that is the argument principle, so this is

equal to 2 pi i times number of zeros minus number of poles and here of course n zeros is

number of zeros of f inside gamma and n poles is number of poles of f inside gamma okay. 



So what I am saying here is that when you say number of zeros or number of poles I want

you to realize that you have to count them with multiplicity that is very important, so For

example if you have a pole you may have only 3 poles inside gamma but each pole may have

different orders okay suppose you had a 3 double poles inside gamma then the number of

poles will become 6 because we have to count the double pole twice even though it is one and

the same point okay, similarly 0 should be counted with multiplicities okay for example if

you take Z power N at 0 the multiplicity is N as a 0, if you take one by Z power N at the

origin,  the  multiplicity  of  the  pole  is  N,  you  should  think  of  it  as  n  poles  the  point  is

geometrically  it  looks like only one point  at  actually  algebraically  there are  nth of  them

because there are n factors alright. 

So  when  you  write  number  of  zeros  minus  number  of  (())(21:40)  you  have  to  count

multiplicities. It is not just the number of points which are zeros minus the number of points

which are poles that is not correct okay. Now well this is called the argument principle and

you know the point is that if your function is actually analytic there are going to be no poles

and what you are going to just get is 2 pi i times number of zeros okay and why is this called

the argument principle, the reason why it is called the argument principle is that if you take

this number on the right side and divided by i will get 2 pi times an integer okay and this 2 pi

times an integer as you know it is actually an angle 2 pi n is an angle, so 2 pi itself is one full

rotation, so actually this 2 pi times is integer is actually the it is an angle and what is that

angle? That is the change in the argument of f as you go around right that is the change in the

argument that you get as you go around and in fact there is a change in argument of f as you

go around and the way to see it is like this you know.
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If you (())(23:02) wright log f as Ln mod f plus i times argument of F, suppose you write it

like this okay then you know you can see that if I put a D to this then I will get D log f is D

Ln mod f plus i d arg f, this is what I will get and now if I integrate this over gamma okay if I

integrate this over gamma, what you will get is? So I will get integral over gamma d log f is

equal to integral over gamma d Ln mod f plus i times integral over gamma d arg f, now you

see what is this? This will be 0 see d Ln mod f it will be an exact differential, it will be 0 and

basically you see it is a derivative of Ln of mod f and Ln of mod f is a nice real valued

function okay. 

So it is the exact so the 1st integral is exact and for an exact integral by fundamental theorem

of calculus the integral will be final value minus the initial value of the anti-derivative. The

anti-derivative the 1st integral is Ln mod F, so it is Ln mod f final value minus Ln mod f initial

value but this is a close look, so final value will be the same as initial value okay therefore it

will be 0, so 1st integral is just 0 and what is the 2nd integral? The 2nd integral (())(24:46) is the

change in the argument of F, it is a change in the argument of the function f of Z as Z goes

one around gamma okay and that is what this 2 pi i times number of zeros minus number of

poles okay and now you see that you know there is this i here there is this i here alright, if

you get rid of this i you now see the reason why it is called the argument principle, what it

actually says is that integral over gamma d arg f is actually 2 pi times number of zeros minus

number of poles. 

So what it actually says is that if you integrate the logarithmic derivative what you are going

to get is just the change in the argument of f and what is that change in the argument of F? It



is 2 pi times an integer and so the change in the argument of f is mind you it is multiples of 2

pi, it is a multiple of 2 pi and what is that multiple? That multiple is actually number of zeros

minus number of poles, and that is what the argument principle says and one needs this for

Hurwitz’s theorem and how does one get the proof of Hurwitz’s theorem on this? It is very

simple you just you in use uniform continuity. Let me go to the proof of Hurwitz’s theorem I

am just giving you a short sketch details can be filled in later. 
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So here is the proof of Hurwitz’s theorem so what is the situation in Hurwitz’s theorem? You

are given that f n converges to f normally, f in the domain D, this is in a domain D in the

complex plane and f n and FR analytic okay f has zero Z naught in d of multiplicity otherwise

order N okay this is given and what is Hurwitz’s theorem, Hurwitz’s theorem is that all the f n

also will have n zeros okay, they will have n zeros counted with multiplicities in a small

neighbourhood of Z naught and these as n tends to infinity the zeros will come close and

closer and closer and in the limit they will all coalesce to this 0 Z naught that is Hurwitz’s

theorem, so Hurwitz’s theorem says that the 0 of a limit just does not pop-up like that, it pops

up as the limit  of zeros of the original  function which gave that  limit  okay that  is  what

Hurwitz’s theorem says. 

So what do we do? We prove this just by using the argument principle is pretty easy, so see

you have Z naught here alright and then what you do is you choose a sufficiently small disk

centred at Z naught radius delta okay, so this say radius delta mod Z minus Z naught less than

delta is contained in D you take a sufficiently small disk and in fact you also make sure that I

will also put mod Z minus Z naught less than or equal to delta is D which means that I am



also including the boundary, the reason is I want compactness by including the boundary I am

making it a closed disk, closed disk is compact because it is closed end bounded and why do I

need that because I can now use normal convergence because normal convergence means that

whenever you have a compact subset it is uniform convergence. 

So inside this closed disk and in particular on the boundary of the closed disk which is a nice

circle centred at Z naught of radius delta mind you that is a compact set that is also closed

end bounded. Even on the circle I have uniform convergence because it is a compact subset

of D okay that is the reason why I am including a circle and now you see you can of course

choose this disk in such a way that Z naught is the only 0 of f that is because you know f is

analytic function, zeros of an analytic function are isolated which means that if you give me 0

of an analytic function I can find a sufficiently small disk surrounding that 0 where there is

no other 0 okay, so you make that also. So let me write that Z naught is the only 0 of f in the

above disk and of course am not removing that there is any other 0 even on the boundary of

that disk okay mind you alright then what does your… 
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Now what does your now let us write out the argument principle integral over mod Z minus Z

naught is equal to delta, D log f is going to be 2 pi times in this is what I will get I think I will

also get an this okay 2 pi i n this is what I will get okay. If I write the change in argument and

I have to remove i if I am just writing the logarithmic integral then I will get 2 pi i okay.

Actually it is 2 pi i times number of zeros minus number of poles mind you the limit function

f is analytic, so it has no poles okay so it has only zeros and the only 0 it has is at the center

which is Z naught that is because I have made sure that there are no other zeros nearby, the



zeros of an analytic function are isolated and what is the order of that 0 at Z naught, it is an

okay that is what I have used here that is one part of the story. 

Now look at the following thing, f n if on the other hand on this side suppose I write integral

mod Z minus Z naught is equal to delta and if I write d log f n suppose I write this, what will

I get? I will get number of zeros minus number of poles of f n times 2 pi i where I count zeros

and poles of f n inside that open disk with multiplicity okay that is what I am going to get and

essentially what will happen is you see, so this is going to be some you know let me use

better notation okay so let me put this as capital N sub n small n okay times 2 pi i and again

you know I will not have any poles because the f n are all anyway analytic functions there are

no poles. Normally I should write number of zeros minus number of poles times 2 pi i but

there are no poles here okay. 

So I get 2 pi i times N n and now notice this is the big deal if I take the limit as n tends to

infinity of this integral okay, now you see this is the point f n converges to f normally on D

and the set on which I am doing that I am worried about is the set where I am doing this

integral it is this circle because you see I am worried about this integrant, the integrant the

variable of the integration varies over the region of integration, the region of integration is the

circle, so I am worried about this circle but this circle is compact it is a compact subset of D

and on this circle therefore there is uniform convergence. 

Now you know because of uniform convergence I can interchange limit and integral okay,

now this is one of the important properties of uniform convergence. Uniform convergence

allows you to do things like changing limit and substitution which is continuity and then limit

and differentiation which is differentiability term by term and it also allows you to change

limit and integration which is the same as saying that you can integrate term by term okay. So

because of uniform convergence I can push the limit inside okay and when I push the limit

inside what will I get? I will get the thing on the right I will get simply integral mod Z minus

Z naught is equal to delta limit n tends to infinity d log f n and that is equal to actually this

limit n tends to infinity d log f n is just d log f okay, so what I get is, look at the moral of the

story, the moral of the story is that limit as small n tends to infinity capital N sub small n is

capital N this is what I will get finally this is just by applying argument principle but you see

what does it say? 

Capital N sub small n is a sequence of integers okay and a sequence of integers is tending to a

constant means that the sequence becomes constant beyond a certain stage okay. See what



does this mean, this means that for n sufficiently large N n is the same as capital N sub small

n is the same as capital N, see sequence means it should come closer and closer but when

these are integers closer means they are the same literary okay. If you say one integer is

within an Epsilon of another integer they have to be the same okay if Epsilon is less than 1

alright, so N n is equal to N for n sufficiently large, what does that mean? It means this f n

they have what is this capital N sub small n? It is the number of zeros of f n inside that this

and what have you got? 

You have gotten that beyond a certain stage all the f n have exactly n zeros and these n zeros

and that n is the same as multiplicity of 0 of the limit function f at Z naught that is what it

says and now mind you whatever I have done here will work if I make delta is smaller. After

all if I make delta smaller the right side is not going to change because I am always going to

get only the order of 0 of f at Z naught, so therefore this whole argument will work if I make

delta smaller and smaller and smaller and smaller, so that means what? All the zeros of f n

beyond a certain stage you see they are all you know they are going to go and cluster they are

going to go closer and closer and closer and there are going to cluster and they are going to

finally coalesce into 0 at Z naught and that is what Hurwitz’s theorem. 

It says that the 0 of a normal limit of analytic functions that 0 does not just pop-up just like

that, it comes zeros of the original sequence of functions beyond a certain stage okay that is

what Hurwitz’s theorem. So now we will have to use this to give the proof of a fact that if a

sequence  of  analytic  functions  does  not  converge  to  an  analytic  function  then  it  has  2

completely converge to infinity, the constant function infinity. So now let us go ahead with

and to prove whatever we were trying to prove. 
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So we go back to the old problem that you are worried about, the statement that we 1st gave,

so let f n be a sequence of analytic functions on D which is in the complex plane in domain.

So  f  n  is  in  our  notation  get  is  in  H of  D,  H of  D stands  for  the  analytic  function  or

holomorphic function on D and mind you this H of D is contained in m of D, m of D is a set

of Meromorphic function on D that is further contained in the set of all continuous functions

from D to C union infinity okay and mind you here are when I am writing it like this I am

treating the Meromorphic functions also as functions which can take the value infinity and

the Meromorphic function the value at a pole is defined to be infinity mind you okay and the

sequence f n is in here and you assume that f n converges to an f point wise okay. 

So f n converges to f normally with respect to the spherical metric okay and mind you I have

to allow the spherical metric because I have the point at infinity also as a value alright and

mind you this is sitting inside the set of all maps, not necessarily continuous from D to C

union infinity okay and this script C is continuous maps, this is continuous maps alright and

mind you let me again insists this is convergence with respect to this spherical metric okay

point wise convergence with respect to the spherical metric. Why I need the spherical metric

is because the limit function at some point can be infinity then I will have to measure distance

with respect to infinity and I can do that only with the spherical metric okay. 

Now I have already proved a lemma last time it is something that you or you know that

whenever you have a normal limit of continuous functions it is continuous, so there is quite

clear because a normal limit is a locally uniform limit and therefore and you know uniform

limit of continuous functions is continuous and the function which is locally continuous is



also  continuous  because  continuity  is  a  local  property,  so  this  f  this  limit  function  f  is

certainly continuous okay f is continuous, so f is actually here. f is continuous map from D to

C union infinity and what is the claim? This is the big theorem that you trying to prove, the

claim is if f is not analytic then f is identically infinity that is our theorem, that is what we are

trying to prove okay. 

So we have to show that if f is not analytic or let  me write more logical way if f is not

identically infinity then it is analytic this is what we have to show okay so let me find out you

have situation where…so the limit function f either lies it is either the function here which is

the constant function infinity or it is here itself it is in H of D itself. It cannot go into this it

cannot become Meromorphic that is it cannot become honestly Meromorphic okay so you

know it is like saying that what is the meaning of saying it cannot be honestly Meromorphic

it means that suddenly a pole cannot pop-up okay in the limit you have sequence of analytic

functions it is converging to limit function. 

A pole simply cannot pop-up out of the blue of course the original sequence does not have

poles because they are analytic functions okay by continuity you should expect this also to

happen but again you know this is the point is has to be proved and you can see it is like there

is already the flavour of Hurwitz’s theorem which says that when you have limit of analytic

functions 0 of the limit just does not just pop up out of the blue it comes from a limit of zeros

of the original functions. So that is what we trying to prove, so assume that f is not identically

infinity then show that f is analytic okay and what does it mean? It means that if f does not is

not going to be the identically the function infinity, it cannot assume infinity even at a single

point mind you. It has to assume only complex values (())(41:59) point there is a strong thing

there. If it assumes value infinity at a point and if that point is isolated, point where it is

assumed the value infinity it means it is a pole okay but that does not happen that is what it

says, alright. That is what we have to prove. 
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So how does one see that well you see you take the subset D sub D infinity this is a set of all

Z in the domain where f of Z is infinity okay and this is a proper subset of your domain it is

the proper subset of the domain because you have assume that f is not identically infinity. If f

is identically infinity then it is the same as saying D infinity is D okay but when you say f is

not identically infinity it means that the limit function f has some point where it has some

finite complex value, a value which is different from infinity in the extended complex plane

okay. Now mind you this is the closed set actually okay because it is the inverse image of

infinity under f which is a continuous map I already told you that f is continuous and infinity

single point is always closed okay in one-point compactification, so if you take the inverse

image of infinity that will be D infinity, so D infinity is just f inverse infinity and that is

closed inside the it is a closed subset just by continuity of f alright. So I will stop here.


