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So see the point is that you know we are trying to look at families of Meromorphic functions,

we are  trying to  look at  trying to  look at  normally  convergent  families  of  Meromorphic

functions,  the  reason is  because  you want  to  do topology on the  space  of  Meromorphic

functions okay and because that is the kind of you know set up that you need able to prove

the big Picard theorem and the little Picard theorem okay. So you know let me briefly remind

you if you take inspiration from topology alright, what is the topology that you will put on the

space of functions, normally if you have a topological space and you have you are looking at

real valued or complex valued functions then you will restrict yourself to continuous bounded

real  valued  or  complex  valued  chance  that  is  that  is  a  banach  algebra  and  it  is  also  a

topological space it is complete as a metric space, the metric is induce by a norm and the

norm is essentially convergence in that norm is actually equivalent to uniform convergence

okay.  

So the moral of the story is that if you are going to inspiration from topology okay then trying

to do topology on the space of functions is the same as you studying functions under uniform

convergence okay, now this  is topological  so that means that you are only worried about

continuous functions  okay but  now suppose you come to complex analysis  then you are

worried about holomorphic functions or analytic functions okay and we are worried about

something  even  worse,  we are  worried  about  Meromorphic  functions  which  are  actually

which have the additional  problem that  they can have poles  at  finitely  many at  a  set  of

isolated points okay and of course finitely many if your domain is compact is the whole

Riemann sphere on the extended plane. 

So if you are looking at say holomorphic functions on a domain, a domain in the complex

plane or a domain in the extended complex plane that does not matter suppose if you looking

at  the  analytic  functions  or  holomorphic  functions  on  the  domain  and  you  want  to  do

topology on that set of functions okay. Mind you we have body seen that the set of functions

it is a ring in fact and then if you look at Meromorphic functions it is a (())(4:09) okay. It has



algebraic structure but we are now worried about the topology, so you want to do topology on

the set of analytic functions on a domain or you want to do more generally topology on the

set of Meromorphic functions on a domain which means analytic except for poles then you

know if you try to draw inspiration from ology you would just say that this is the same as

studying them under uniform convergence okay because topologically uniform convergence

corresponds to convergence in the space of functions okay but if you come to the case of

analytic  functions  okay  this  is  not  the  right  thing  because  you  do  not  get  uniform

convergence. 

So I was trying to explain to you last time that for example if you take the geometric series

you take the functions that correspond to partial sums of the geometric series okay then they

are of course polynomials and they converge absolutely in the unit disk to the sum of the

geometric series which is one by one minus the variable okay, so the geometric series is 1

plus Z plus Z square and so on where Z is a variable and you are restricting Z to be in the unit

disk that means you are making mod Z is less than 1 then one plus Z plus Z square and so on

that converges to one by one minus Z that is the high school formula or geometry series. Now

the point is that this convergence is absolute on the unit disk there is no problem about that

but it is not uniform on the whole unit disk okay that was something that I told you I asked

you to check it as an exercise I hope you have done it, it is very easy to do convergence is not

uniform on the whole unit disk is only uniform on compact subset of the unit disk okay. 

So you do not get uniform convergence but you get only normal convergence, so the moral of

the story is that when you want to do topology on a space of holomorphic functions you

should not look at them under uniform convergence you must look at them under normal

convergence so that is the 1st moral 1st lesson to be learned that is what you should keep at the

back of your mind, so that is one thing so you know more generally if you want to extend this

to Meromorphic functions in serve more complicated because now you have poles okay and

the other thing is that of course you know by going from uniform limits to normal limits

things are going to be good okay because normal convergence is just uniform convergence on

compact sets okay it is weaker than uniform convergence as it is okay but it is good enough

for our purposes because as I told you in the last lecture if we have sequence of holomorphic

functions  which  converge  normally  to  limit  function  then  that  limit  function  is  also

holomorphic okay this is something that I explained last time okay. 



Essentially it uses Clausius theorem and Morera's theorem and the fact that analyticity is or

holomorphicity is a local property. So therefore there is no harm in relaxing the condition of

uniform  convergence  with  the  condition  of  normal  convergence.  It  means  uniform

convergence only on compact sets okay and I also told you philosophically why that is good

enough for complex analysis because the moment you say uniform convergence on compact

sets you get uniform convergence on closed disk because they are also compact and therefore

you get uniform convergence on sufficiently small open disk okay that is good enough for the

analysis  for  the  differentiation  theory  and then  for  the  integration  theory  also it  is  good

because whenever you integrate on the contour, the contour is a compact set therefore you

will get uniform convergence on the contour okay, so that helps in the integration theory, so

for all practical purposes uniform convergence on compact sets that is normal convergence is

good enough okay, so that is what we have to worry about. 

Now the other  important  thing that  I  want to  tell  you is  that  you see at  least  if  you are

working with Meromorphic functions you know the Meromorphic functions have poles okay,

so at a pole a function is going to behave in a bad way in the sense that the modulus of the

function  is  going  to  blow  up  to  infinity  okay,  so  for  example  that  is  one  of  the

characterisations of a pole, the limit of the function as you approach a poll is going to infinity

and by that time limit goes to the point at infinity okay and of course here you are using the

topology on extended complex plane namely the complex plane the point at infinity given by

the one-point compactification which makes it holomorphic to the Riemann sphere okay. 

Now is another pathology and that is the pathology that I was trying to explain what is the

and of the last lecture, so the pathology was the following, you take the exterior of the unit

disk or Z greater than 1 that is a variable, we are on the Z plane the complex plane and you

are taking the exterior of the unit disk mod Z is greater than 1 and what you are doing as you

are looking at these functions powers of Z you are looking at one which is Z power zeros if

you want then as Z square and Z cube and so on okay. Now that is a sequence of functions

and a point is that this sequence of functions you can see point wise it will go to infinity

because sense mod Z is greater than 1 mod Z to the n to the power of n is going to go to

infinity because it is for a real number greater than 1 you know its higher powers will diverse

to infinity, so mod Z…so Z power n so this sequence of function is going to converge point

wise to the function with the constant function at infinity. 



Namely it is a function which associate every point the value at infinity, so you have to worry

about this crazy function okay so this is a pathology that happens that you have to take care

of and the point is that therefore we are forced to introduce a function call infinity okay and

this function infinity is what it is just the constant function infinity, namely it is the function

which maps every value to infinity that is what it is and then if you think of that as a function

I mean it is a function of course theoretically if you want it is a function from your domain to

the extended complex plane because after all in the extended complex plane infinity is a valid

point okay it is a member of that site, so you can really think of the function infinity as he

constant function taking the value at infinity provided you extend your values to not just

complex values but also the extended plane you include the value at infinity that is one thing. 

So in that sense you can say that this sequence of functions f n of Z is equal to Z power n that

converges to infinity you can say that and when I say that converges to infinity I mean that it

converges point wise in the exterior of the unit circle to the function which is infinity okay.

So you have this is very nice situation, it is a very nice pathology you have these Z power n

which are all holomorphic functions in fact they are entire functions they are just polynomials

and they converge to the function infinity in the exterior of the unit disk the convergence is

again  a  normal  convergence  it  is  uniform  on  compact  sets  okay.  It  is  still  a  normal

convergence is not just a point wise convergence but it is in fact even a normal convergence

in a way I will explain to you. 

So what is the moral of the story? The moral of the story is you have (())(12:35) sequence of

holomorphic  functions  you  have  (())(12:39)  sequence  of  analytic  functions  which  is

converging to the function infinity normally that also happens. You see this is the extreme

case that happens and this also has to be taken care of in our arguments okay and mind you if

this  is  happening for  holomorphic  functions  will  happen also for Meromorphic functions

because you know holomorphic functions are very good Meromorphic functions are worst

because they have poles, so even for a family of holomorphic functions even for a family of

analytic functions if you can get normal convergence the functions which is infinity okay you

should expect the same thing happen also for Meromorphic functions. 

So what I am trying to tell you is that if you sum up all this if you want to study topology on

the  space  of  Meromorphic  functions  1st of  all  you  must  study  with  respect  to  normal

convergence  okay the 2nd thing is  you have to  introduce  this  function keeping mind this

function which is the function infinity okay and then you have to justify this business of



trying to make sense of normal convergence okay and so let me begin by trying to you know

explain at least in this particular case where this normal convergence comes from okay, so let

us do the following thing will worry about metrics on the plane and metrics on the extended

plane which are transported from metrics on the Riemann sphere okay. 

(Refer Slide Time: 14:30) 

So here is what I am going to do so let me draw a diagram, I have this so this is my usual

complex plane xy, so this is my usual complex plane which is the xy plane and then I have

the of course you know we are going to compare everything with the Riemann sphere using

the stereographic projection, so what I am going to do let me draw this thing here which is

Riemann sphere, so this is supposed to be 1 this is minus 1 on the x axis and here is my

sphere its  cross-section on the plane is the unit  circle,  so it  is going to be so this  is my

Riemann sphere as it is and then of course I have this 3rd axis which I will not call as Z I will

call it as u because Z is supposed to stand for x plus i y okay Z is supposed to be x plus i y

and well and here is the North pole okay suppose I start with 2 point Z 1 and Z 2 on the

complex plane okay. 

See what kind of the distances can I define on these points, what kind of metric and I define

on the complex plane that is the usual metric which is D of Z 1, Z 2 so I will put d sub e for

Euclidean metric and you know what that is? It is simply modulus of Z 1 minus Z 2 it is just

the distance between these 2 points okay. This is the good old metric that we use always in

Euclidean space right. It is actually the length of the line segment okay joining Z 1 and Z 2.

Then the other thing you can do is you can take the images of these points on the Riemann

sphere because of the stereographic projection and you can measure the distance between



those 2 points and call that as the distance between these 2 points, so what you can do is so

here is the stereographic projection, so p 2 is this point here on the sphere which is the unique

point of intersection of the line joining n and Z 2 on the sphere okay and similarly p 1 is

unique point on the Riemann sphere which is the intersection of the surface of the sphere with

the line joining n and Z 1. 

Now you see p 1 and p 2 lie on the sphere, now what I can do is that I can measure the

distance between p 1 and p 2 okay. Now that distance I measuring in 3 space because now

everything once you draw the Riemann sphere you are actually in R 3 and your R 2 which is

xy plane corresponds to the complex plane alright, so what you can do is you could define the

following new distance also d let me call this as d c is the chordal distance from Z 1 and Z 2

it is just length of the cord from p 1 to p 2 where p 1 the stereographic projection of p 1 is Z 1

and the estimated projection of p 2 is Z 2 okay so this is another distance that I can define it

makes…see what this distance does is that actually it is the metric in R3 after all the cord

joining p 1 p 2 is exactly the line segment p 1 to p 2 in 3 space and I am just taking the length

of that line segment, so it is actually the metric in R3 it is metric in R3 and so it is a metric

space you know whenever you have a metric on space and you restrict to a substance then the

subspace also becomes automatically a metric space. 

So this distance will make the Riemann sphere into a metric subspace of R3 okay and what

we are doing is that to the stereographic projection you are transporting that metric to the

complex  plane  because  after  all  this  geographic  projection  is  the  bisection  between  the

extended complex plane and the Riemann sphere okay. The moment you have bisection of a

set with a metric space it can transport the metric on the metric space to the set, so I will just

transported the… basically what I have done is I have simply transported the metric on R3

restricted to the Riemann sphere. I have simply unsupported it to the plane that is what this d

c is. 

So this d c also will also d subsea that is also a metric you can check that that also makes the

complex plane into a metric space okay and but the big deal is that all these metrics are all

equivalent okay namely the topologies that they induce on the complex plane there are all the

same that is the whole point okay and that is very important because what it tells you is, it

tells you the following thing if I want to study convergence of functions you know as long as

you are worried about continuous functions I can use any of these metrics and the point is so

let me tell that in advance, why I am worried about these extra metrics is because I can also



define the distance of a point on the complex plane to the point at infinity okay because that

the point at infinity will correspond to a finite point namely the North pole on the Riemann

sphere and distance to that is something that I can measure okay, so that is the advantage. 

The advantage is you see I want to be able to measure the distance the point at infinity R I

cannot do it with the Euclidean metric because 1st of all the point at infinity is not in my set

okay it is an extra point I have added for compactification and once I had these extra points I

have to add this extra topology, the topology of the one-point compactification but then that is

not enough I have to even make it a metric space and where will I get the metric structure?

The only way is I will have to get this metric structure from the Riemann sphere which is

what is holomorphic to the extended plane okay and therefore I am lead to look at the metrics

on the on the Riemann sphere, so this is the chordal metric okay, so d subsea is the chordal

metric and then here is the 3rd metric which is the spherical metric so d sub s of Z 1, Z 2 this

is the length of the arc of the minor R from p 1 to p 2 along is a length of the minor arc from

p 1 to p 2 along the great circle through p 1 and p 2. 

So you see this is a spherical distance, what is a spherical distance? This is spherical distance

actually am trying to measure distance on the Riemann sphere on the surface of the sphere, so

it is the curve distance okay and I am trying to measure the shortest curve distance and you

know you can imagine this…basically what one is doing is that one is doing a kind of some

kind of Riemann in geometry, what is happening is that you have a surface okay you imagine

some nice smooth surface you have 2 points okay then you can try to connect those 2 points

by many arcs by many arcs on the surface passing on the surface okay and then you can

measure the lens of each of the arcs and you can take the smallest length okay and the arc of

smallest length is called a geodesic okay. 

So now what is happening is that if you take the sphere it is quite easy to see that the if you

give me 2 points on this sphere, on the surface of the sphere then the geodesic is exactly the

following for those 2 points you get a big circle, a great circle a circle of largest radius on the

surface of the sphere passing through those 2 points and you take the minor arc okay any 2

points of a circle will split the circle into 2 arcs and you take the minor arc the one of smaller

length and take the length of that, that is exactly the spherical distance okay and that is what I

am denoting as d of s it is a geodesic for the sphere for any 2 points on the sphere, so the

great circle are the geodesic minor arcs of the great circle are the geodesic for points on the

sphere. 



So what is happening is that now I have all these 3 metrics, the beautiful thing is that these 3

metrics give you metrics not only on the complex plane the point is they give you metrics on

the extended plane okay see what I have drawn here is for Z 1 and Z 2 imagining Z 1 and Z 2

as points on the complex plane but I can very well make Z 1 or Z 2 to be the point at infinity.

Now when I say I make the point Z 1 or Z 2 to be the point at infinity I cannot see it on the

complex plane okay but I can see its image on the Riemann sphere it is the North pole, so

basically  what  I  am doing is  I  simply  taking 2 points  on the Riemann  sphere  and I  am

measuring  their  distance,  the  distance  between  them either  the  chordal  distance  or  I  am

measuring the spherical distance, so the moral of the story is that these distances help you to

give a metric on the extended plane and the topology induced by all these metrics is one and

the same, all these metrics are equivalent okay. 

So this is the fact that you need to check from you know this is very easy fact to check are

logically  let  me tell  you how to do it  how will  check the 2 metrics  are equivalent  for a

topological space it is very simple, what you do is that you show that you take an for each

point of the topological space you take small open balls with respect to one metric and show

that it contains a small open ball with respect to the other metric and do this for both metrics

symmetrically and then you are done okay, so you can see pictorially you can see that it is

true okay if for all the 3 metrics, so therefore all these 3 metrics will give you one and the

same topological space structure on the extended complex plane which is the same as the

one-point compactification and that will be exactly holomorphic to the Riemann sphere by

the stereographic projection okay and the advantage of doing all this, why do all this? You

can ask me why do all this? 

The advantage of doing all this is that now I can say, now I can make sense of the following

statement. A sequence of f function f n converges normally to infinity with a function infinity

it makes sense now because I can say I can say convergence with respect to this metric one of

these metrics namely the 2nd and 3rd one which are also defined for the point at infinity okay

and that is the reason why we need to use that okay, so let me write this down, all the so let

me write somewhere here may be use a different color. All the metrics below are equivalent

on C alright and the last 2 metrics are equivalent on the extended plane. The latter to so let

me make some space let me get rid of this, the latter two namely these 2 are equivalent on the

extended plane C union infinity okay and of course I rubbed of Z equal to x plus i y so let me

write it here okay and now here comes the here comes our the advantage of this. 



(Refer Slide Time: 27:49) 

We can now say that f n of Z equal to Z power N, n greater than or equal to 1 converges

normally to infinity on mod Z greater than 1 you can say this you can make this statement it

makes sense okay and why is that correct? You have to do a little bit of you know why I am

spending so much time on this is because you see this normal convergence the function which

is infinity is something that is hard to…as it is if you do not analyse it is very hard to digester,

so it is very important that you understand what is happening here and you must understand

that therefore even if you are looking at the normal convergence of (())(28:54) holomorphic

analytic functions can still end up with a function which is infinity okay. So you see what is

happening? 

So again let me draw another diagram, so you see here is the here is your complex plane as it

is in R 2 and this is the origin and of course I have, so let me draw the Riemann sphere here

okay so this is the situation and you see of course mod Z greater than 1 is this is the region of

the plane exterior of the unit circle okay, so basically so this is mod Z greater than 1 yes it is

very hard to draw that in three-dimensional diagram, so let me do the following thing let me

use another color you know I just looking at so it is all these, so it is this exterior of this unit

circle on the complex plane which is thought of as xy plane okay and of course you know the

3rd axis is I am calling it as u. 

Now you see, so let me change color again so I have this let me draw this also so that this is u

and I have the North pole here okay, now you see these red lines that I have drawn they are

supposed to extend outside unit circle the whole exterior of the unit circle and what they are

going to give me? They are going to give me this  domain  mod Z greater  than 1 if  you



consider it as a domain in the extended plane it is a neighbourhood of infinity okay and what

is its image under the stereographic projection it is exactly the upper hemisphere okay it is the

whole upper hemisphere which you can see clearly is neighbourhood of the North pole okay

that is the reason you are looking at alright. 

Now you see take a compact subset of mod Z greater than 1 take a compact subset is a close

and bounded subset of mod Z greater than 1 okay and so you know if you are looking at a

compact subset on the plane okay then any compact subset in mod Z greater than 1 on the

plane to be has to lie within a sufficiently well-chosen annulus okay it should lie within an

annular  region  consisting  of  an  inner  circle  and  an  ouster  circle  centred  at  the  origin

sufficiently  small  inner radius greater  than 1 and sufficiently  large radius  greater  than of

course the inner radius. So you see if I take some compact set here, so here is some compact

set, k compact set in the complex plane then you see this is k of course lies inside suitable

annulus, so it is going to look like this you know I am going to get something like this, I am

going to get this annulus here so I  am going to get this  annular  region mind you this is

annular region on the complex plane consisting of the region between these 2 circles and am

also including the boundaries go make it compact okay. 

So it is a closed and bounded set it is compact and this is a compact set and the point I want

to make is that instead of just considering any compact set k in the complex plane which is

lying in this domain mod Z greater than 1 it is enough to just consider such annuli which lie

in the exterior of that circle okay the exterior of the unit circle and you see if you watch

carefully how is this annulus going to be given by well this annulus is going to be given by

mod Z less than small r I mean less than capital R less than or equal to capital R less than or

equal to small r which is greater than 1 this is how it is going to be where small r is the radius

of the inner circle capital R is the radius of the outer circle okay. 

This is what this annulus is going to be given by and well what is its image going to be on the

Riemann sphere (())(33:39) stereographic projection I am going to get this, see I am going to

get something like this here this is what I will get, I will get a curved annular region centred

at the North pole alright and now you see that now you can see why the f n converges to the

function infinity normally okay because our definition of convergence is in the following

sense okay. So the definition of convergence will be of course point wise convergence okay

but then point wise convergence if you try to write it in the metric it will create a problem

when you put the point at infinity okay, so I cannot say that or each point Z naught f n of Z



naught  converges  to  infinity  as  n  tends  to  infinity  I  cannot  say that.  I  can  say that  in  a

topological sense but I cannot say that in a metric sense but if I use Euclidean metric but then

if I use a spherical metric I can say that okay. 

So the moral of the story is that if you look at the distance the spherical distance between a

point Z I take the point Z in K my compact set okay. If I look at  the spherical  distance

between f n of Z which is in this case Z power n okay and the point at infinity okay and here

you see what I mean here is infinity of Z. See infinity of Z I am thinking of the function

which is constant function which gives the value infinity to every point so what I have written

there is actually infinity of Z and I am saying that it is spherical distance between f n of Z and

infinity of Z that can be made uniformly less than Epsilon irrespective of Z if I choose n

sufficiently large, so I can make this less than Epsilon okay for an a grade than or equal to

capital n irrespective of… 

So given if I start with an Epsilon greater than 0 okay for Z in K I can make the spherical

distance between f n of Z which is Z power n and infinity I can make it less than this Epsilon

for n whenever small n is greater than or equal to a large enough n such a large enough n

exist the point is that this large enough n does not have anything to do with the Z. It will work

for all Z in the compact set that is the uniformness that is uniformness of the convergence on

the compact set, so n this n is so there exit this n and this is independent of Z and you see this

fact is true this fact is very. See suppose I give you an Epsilon okay what is the spherical

distance between f n of Z and infinity it is actually the spherical distance between Z power n

and infinity alright and Z power n is going to lie where, it is going to lie in mod Z power n is

going to lie in this annulus okay and you know if you see if I… 

The inner radius of this annulus is r power n small r power n the outer radius is capital R

power n and you know if I and since R is greater than 1 if I increase n R power n is small R

power n itself is going to shoot up okay, so moral of the story is that this region if I have its

image in the on the Riemann sphere, what I am going to get is sufficiently small annular

region surrounding the North pole and clearly the spherical distance can be made less than

Epsilon for any point in that region okay, so that is you know that is pictorial justification or

the statement. 

So the moral of the story is now you know you are able to justify that this sequence Z power

n  converges  normally  the  function  infinity  okay  on  the  exterior  of  the  unit  disk  in  the

extended plane okay and the point is that you are using the spherical metrics okay that is the



advantage you are using the spherical metrics because it allows you to give you to measure

the distance even to the point at infinity from a finite point in the complex plane which you

cannot do with the Euclidean method and the way all this is done it will also extend the usual

definition of normal convergence. Suppose you have a sequence of analytic function which

converges to a (())(39:22) analytic function itself okay a finite valued function. 

A function that does not take values infinity then what is the usual convergence that we talked

about, the usual convergence that we talk about when you for example when you do a 1st

course in complex analysis the usual convergence that you talking about is with respect to

Euclidean metric okay you have to only worry about the Euclidean metric, nobody is worried

about the point at infinity to begin with okay. Now if you take a usual (())(39:56) sequence of

holomorphic functions on a domain, analytic functions on a domain suppose it is converging

normally again to an analytic function on the domain okay. Then suppose this convergence is

in the usual sense I am saying this convergence is also correct with respect to the spherical

metric. 

The reason is because the spherical metric when you restrict it to the usual complex plane it is

equivalent to the usual Euclidean metrics, so you do not lose anything. So what I am saying is

that this definition of sequence of functions converging to another function normally on a

domain that works irrespective of whether you are using the Euclidean metric or whether you

are using the spherical metric but the point is it helps you when infinity values are taken it

helps you because when infinity values are taken you cannot use Euclidean metric you can

use only the spherical metric okay. So the normal convergence under the spherical metric is

just an extension of the normal convergence under the Euclidean metric as far as subset of the

complex plane is concerned convergence under this spherical metric is same as convergence

under  the  Euclidean  metric.  Normal  convergence  under  the  spherical  metric  is  same  as

normal convergence under the Euclidean metric because they are equivalent okay, so this is 1

point that you need to understand. 
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So you know so let me say this so let me write this specifically we need to therefore worry

about by the time it include we need to worry about that this include the function infinity that

takes  the  value  infinity  at  every  point  of  your  domain.  Then  we  may  define  normal

convergence  as  follows;  let  f  n  be  a  sequence  of  holomorphic  functions  or  analytic

holomorphic is same as analytic functions on a domain D in the complex plane. We say f n

converges to f on D normally okay. If the spherical distance between f n of Z and f of Z goes

to 0 normally which means uniformly on compact sets on D where we allow f to be the

function infinity this is an exceptional case okay, so you define normal convergence in the

following way. 

So what  is  the  normal  convergence  you have sequence  of  functions  on a  domain  in  the

complex plane you say f n converges to f on the domain okay. If the spherical distance okay

that converges to 0 okay and you this spherical distance is a function of Z, so Z is varying on

the domain, so I wanted to understand this Z is varying on the domain. This quantity here is

also a function of Z it measures for each Z it measures the spherical distance between f n of Z

and f of Z okay and what I want is that a function of Z should go to 0 the constant function 0

uniformly in Z on compact subset of set of the domain, so I wanted to go to 0 normally on the

(())(45:09)  that  is  my definition  and now the  beautiful  thing  is  you know we need this

definition because if you take the domain as I told you if you take the domain to be mod Z

greater than 1 and you take f n of Z to be Z power n such a definition is necessary. 

So what it  tells  you is  that now you have to also worry you are not worried only about

functions which takes complex values you have also allow functions in the value infinity but



then notice if you take the value infinity if you allow function take the value infinity then you

can include Meromorphic functions because you can define the value or the Meromorphic

functions at a pole to be infinity and the beautiful thing is the very same definition this very

same definition works absolutely well if you change holomorphic by Meromorphic. So that is

because of a  circle  and cemetery  rotational  symmetry  that  is  the about  for  this  spherical

metric that I will explain in the next lecture at the point is so the important observation is that

this same definition works with holomorphic replaced by Meromorphic and that is all that we

need to do all the analysis we want okay. So I will stop here.


