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Infinity as an Essential Singularity and Transcendental Entire Functions

You see we have been looking at a point at infinity and what we have seen is situation when

infinity  is  an  isolated  singularity  okay  and I  have  already  told  you  what  happens  when

infinity is a removable singularity or infinity is a pole and even more generally we have also

seen the so-called residue theorem for the extended complex plane okay, so the point that one

has  to  remember  is  that  the  residue  theorem for  the  extended  complex  plane  which  we

discussed in the last lecture in that the contribution of the residue at infinity will always be

there okay irrespective of whether the point at infinity is a removable singularity or a pole or

an essential singularity.  

So the issue is that you know even if infinity is a removable singularity okay for example for

the function  f  of  w  equal  to  1 by w okay infinity  is  w equal  to  infinity  is  a  removable

singularity okay because the function tends to 0 as w tends to infinity but still the residue at

infinity is not 0 which does not happen for a point in the usual plane, in the complex plane at

a point at which the function has a removable singularity is a point where the function can be

redefined so that it becomes analytic and therefore if you calculate the residue at that point

you will get 0 okay whereas this does not happen for the point at infinity that is 1 point that

you should always keep in mind. 

Now we are going to talk about the situation when infinity is an essential singularity okay, so

what does it mean to say that infinity is an essential singularity, so basically you are looking

at a function for which the point at infinity is a singular point and isolated singular point that

means it is defined in a neighbourhood of infinity in a deleted neighbourhood of infinity and

it  is  analytic  in  a  deleted  neighbourhood of  infinity  which  means  that  basically  you are

looking at an analytic function which is analytic outside a circle of sufficiently large radius

okay  and  because  that  is  what  neighbourhood  of  infinity  is  okay  you  know  that  the

stereographic projection. 

Now what does it mean to say that the function has infinity as an essential singularity, it is the

same as saying…there are 2 ways of saying it of course in fact 3 ways of saying it and all the



3 ways of saying it are correct, so there is one way which is using the Laurent expansion at

infinity, so one way of saying that infinity is an essential singularity is by saying that if you

take Laurent expansion at infinity then the singular part has infinitely many terms okay and

there what you must remember is that the singular part is actually a polynomial part I mean it

is the…if you expand it in powers of the variable okay if w is the variable then you are going

to expand the function in positive and negative powers of w okay and you should look at an

expansion which is valid outside a circle of a sufficiently large radius mind you that is the

Laurent expansion in a neighbourhood of infinity okay and because you are looking at a point

at infinity the positive powers, the terms involving positive powers of w that is a singular part

okay that is a singular part and the term involving the constant and the negative powers of w

is the analytic part because negative powers of w behave well at infinity okay. 

So the condition for the function to have infinity as an essential singular point is that if you

write out its Laurent expansion in a which is valid outside at all points outside a sufficiently

circle of sufficiently large radius centred at the origin okay then you must get you must get

the positive powers of the variable that occur, they must be there must be infinitely many

terms which is the same as saying that the singular part at infinity has infinitely many terms,

so what should not happen is that the singular part has only finitely many terms at infinity

which means the singular part is actually a polynomial okay. So in other words what we are

saying is that you know how do you recognize that action has infinity as an essential singular

point, you write out the Laurent expansion at infinity valid in a neighbourhood of infinity

then what happens is that the singular part is not just a polynomial okay. 

In particular what this means is that if you take a polynomial functions they are certainly not

going to have infinity as an essential singularity and you know that you have seen it last time

a polynomial of degree polynomial is in fact have infinity as a pole and the order of the pole

is actually the degree of the polynomial okay, so this is one way of defining infinity as an

essential similar point of course the other way is that the limit of the function as you approach

infinity does not exist okay that is also correct okay. 

So usually there are 3 characterisations one of any singular point there are 3 characterisations

one is you look at the Laurent series and look at the condition of the Laurent series whether it

has no terms at all in the singular part or whether it has finitely many terms in the singular

part or whether it has infinitely many terms in the singular part and the 2nd condition is on the

limit of the function as you approach that point okay. Of course the 3rd condition is about the



bounded mass of the function okay or the unboundedness of the function but of course the

boundedness  is  equivalent  to  the  point  being  a  removable  singularity  okay  and  the

unboundedness means that it is either it could either be a pole or an essential singularity okay.
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So let me write these points down infinity as an essential singularity of f of W, so you see so f

of w is assumed to be analytic in a deleted neighbourhood of infinity okay that is a standard

assumption blanket  assumption and well  so,  so what  are  the conditions  well  you write  a

Laurent expansion of f at infinity that is f of w equal to Sigma and equal is to minus infinity

to infinity a n w power n valid in a deleted neighbourhood of infinity has in finitely many

terms in its singular part and what is the singular part? 

The singular part is Sigma, the singular part is the positive powers of (())(9:47) so it is Sigma

n equal to 1 to infinity a n w power n and that is the same as saying that a n not equal to 0 for

many in finitely many n for infinitely many n, so and you see this definition is just the same

as usual definition that in order to say that a certain point for example in the complex plane

and isolated singularity is an essential singularity all you have to do is write out the Laurent

expansion at that point then you find that the Laurent expansion has in finite singular point

okay and there it will be in finitely many negative powers okay. 

So of course I should tell you that this is equivalent to g of Z is equal to f of 1 by Z has an

essential singularity at 0 okay, so g of Z f of 1 by Z has an essential singularity at 0 at Z equal

to 0 okay and this is of course you know this is of course based on this philosophy that the

behaviour of f of w at infinity is the same as the behaviour of f of 1 by Z at 0 okay you put w



equal to 1 by Z we already know that this is a homeomorphism okay and it is a holomorphic

isomorphism of the punctured plane, the plane minus the origin onto itself okay and so this is

one thing. Then the other thing is so this is one condition the other condition is limit w tends

to infinity f of w does not exist this is this is the other condition and of course this is the same

as saying that limit Z tends to infinity g of Z does not exist. 

So this  is  also something that you know and so well  of course the usually we will  have

another conditions which will be on the behaviour of the function in the neighbourhood of

that  point  and  well  certainly  you  cannot  expect  the  function  to  be  bounded  in  a

neighbourhood of that point okay because that is equivalent to the function being actually

analytic at that point and that is Riemann’s removable singularity is theorem right. Anyway

so let me go ahead and say some other things, so maybe I will put some I will change color

and put a few boxes here, so this is equivalent to this and this part is the same as this okay. 

Alright so now what I want to say next is that you know let us analyse this condition that

infinity is an essential singularity okay, now the…so for example what are the functions?

What are the entire functions which have infinity as an essential singularity, you can ask this

question?  Okay so we have  already answered a  similar  question  for  poles  okay and for

removable singularities. See you take an entire function mind you an entire function means a

function which is analytic on the whole plane okay and the moment it  is analytic  on the

whole plane the whole plane is also mind you a deleted neighbourhood of the point at infinity

you must not forget that there for a function is analytic on the whole plane is also having

infinity as an isolated singular point automatically okay. 

If you think of the Riemann’s stereographic projection you see that the infinity corresponds to

the North pole and the whole plane corresponds to the remaining part of the Riemann sphere

which is the Riemann sphere minus the North pole okay by this geographic projection, so the

plane itself is a neighbourhood of the point at infinity and therefore an entire function will

always have the point at infinity as an isolated singularity. Now what happens if that isolated

singularity is a removable singularity? Well then you are saying that the entire function as

infinity  as a removable singularity okay which is the same as saying that at infinity it is

bounded or it has a limit okay and then by Liouville’s theorem it will reduce to a constant

okay. 

So the moral of the story is that a non-constant entire function cannot have infinity as a

removable singularity we have already seen this okay and then you can ask the question is



when will an entire function have infinity as a pole okay and have seen that that will happen

if  and  only  if  the  entire  function  is  well  is  a  polynomial  okay  and  the  degree  of  the

polynomial will be the order of the pole okay. So now we ask the question, when will an

entire function have infinity as an essential singularity? And the answer to that will be that it

should not be a polynomial okay basically if you write out the if you write out its Taylor

expansion at any point, the Taylor expansion of course you will get you have to ride only a

Taylor expansion because it is an entire function okay. 

There is no question of Laurent expansion okay, so at any point you choose any point in the

plane  it  is  analytic  everywhere,  the  plane  so you choose any point  and write  the  Taylor

expansion at that point. That Taylor series will have in finite radius of convergence because

this function is entire okay and the point is that the Taylor series should be a power series, it

should not be a polynomial okay, so the moral of the story is an entire function as infinity as

an essential singularity if and only if its Taylor series is not a polynomial okay. 

So and the Taylor series of an entire function being a polynomial is the same as you entire

function itself being polynomial okay therefore all you are saying is that you know an entire

function if you wanted to have an essential singularity at infinity okay then it should not be a

polynomial alright and for this reason we call such entire function as transcendental okay so

usually a polynomial function and the Meromorphic functions which are given by quotients

of  polynomials  they  are  called  algebraic  and  everything  that  is  not  algebraic  is  called

transcendental, so such entire functions which have infinity as an essential singular point are

called transcendental entire function okay. 
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So let me write that down an entire function that has infinity as an essential singularity is one

that is not a polynomial okay, so and you know what will happen if it is a polynomial, if it is

a polynomial infinity is a pole okay, if it is a polynomial of positive degree of course if you…

we also consider conscience as polynomials, polynomial is of degree 0 and that is the case of

a constant function, so if you are looking at a non-constant entire function okay then it is…

the only way infinity is an essential singularity is that it is not a polynomial of positive degree

okay. 

So or a polynomial, if constant has infinity has a removable singularity and if non-constant

has infinity as a pole of order equal to its degree okay, so a polynomial is certainly not an

entire function that has an essential singularity at infinity and conversely if an entire function

as  an  essential  singularity  at  infinity  because  you  take  any  point  and  you  write  out  the

retailers expansion at that point you will see that if infinity is a is a pole then the Taylor

expansion should terminate and it has to be a polynomial, so if infinity is not a pole then your

Taylor series will have infinitely many terms okay which is the same as saying that there are

in finitely many terms in the Laurent expansion at  infinity okay, mind you if  you take a

polynomial the polymer normal itself is the Taylor expansion of the function that it represents

at the origin okay and sense that expansion is valid on the whole plane it is also a Lauren

expansion at infinity. 

The expression for the polynomial itself is a Lauren expansion at infinity and it is except for

the  constant  part  the  positive  part  terms  involving  positive  part  of  the  variable,  that  is

automatically the singular part at infinity and that it has only finitely many terms tells you



that infinity is a pole okay. So let me write that down, conversely if f of w has infinity as an

essential singularity then its Taylor expansion at any point of C has to have, at any point of C

has to have in finitely many terms, so does not a polynomial okay, so say things in short a

transcendental entire function is something that is different from a polynomial. 

Now I want to make the following statement that take any entire function okay exponentiated

a, so you take f of w to be an entire function okay, f of w may have infinity as you know

either a pole or may be an essential but if you take E power f of w okay if you take E power f

of W, I claimed that it will always be transcendental okay, so that means I am saying that or

the power f of W, w equal to infinity will always be an essential singularity okay that is also

very easy to see and how do you see it let me tell you the argument and words you see so I

know that f of w is entire and am looking at E power f of w okay. 

Of course E power f  of  w is  also entire  because  it  is  a  composition  of  entire  functions,

exponential function is of course entire okay and E power f of w is f of w allowed by the

exponential function it is composition of entire function, so it is entire okay and what other

possibilities of E power f of w at infinity? Infinity can either be removable singularity or it

can be a pole or it can be an essential singularity. If infinity is a removable singularity you

know then the power f of w must be a constant because of the Liouville’s theorem and if E

power f of w is a constant then f has to be a constant because f is if E power f of w is a

constant  that  constant  is  a  complex  number  which  are  not  be  0  because  (())(23:45)

exponential function never takes the value 0 and f has to be log of that okay. 

F can be one of the logarithms of that constant, nonzero constant okay and so in that case you

power f so what am trying to say is that if you are looking at an entire function a non-constant

entire function okay the power have has to be transcendental okay job the only case you will

have to worry about is the constant function. When of course E power a constant is also a

constant, so if you have a non-constant entire function okay the power f also will be non-

constant right,  so infinity  or the power f if  infinity is a removable singularity then f is a

constant, so if you are looking at a non-constant f then he power f will not have infinity as a

removable singularity. 

So it can be a pole now if E power f is a pole has a pole at infinity, infinity is a pole for E

power f then E power f has to be a polynomial because we have seen that the only entire

functions which have pole at infinity are the polynomials so E power f has to be a polynomial

but that is not possible because you see if you take a polynomial of constant a non-constant



polynomial of positive degree the fundamental theorem of algebra says that it will have zeros,

so there are…it will assume the value 0 but that is equal to E power f and E power anything

can never be 0 okay therefore E power f cannot be a polynomial alright at means that infinity

cannot be a pole for E power f so therefore the only thing that is left is E power f should have

infinity as an essential singularity, so the moral of the story is that you take any non-constant

entire function and you take E power that, the resulting function will certainly have infinity as

an essential singularity in other words I am saying that the resulting function it will always be

transcendental okay. 
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So let me write that down okay so let me use a different color an entire function that has

infinity as an essential singularity is called okay, an entire function that has infinity as an

essential  singularity  is  called  transcendental  and  so  all  entire  functions  which  are  not

polynomials  are  transcendental  okay. Thus  the  entire  functions,  the  transcendental  entire

functions are precisely the non-polynomials, precisely those that are not polynomials okay if f

of w is entire and non-constant then he power f of w is always transcendental. For if E power

f w has w equal to infinity as a removable singularity then E power f w reduces to a constant

by Liouville and contradicts f being non-constant also E power f also infinity cannot be a pole

as then he power f would be a polynomial which must have zeros okay. 

So that also cannot happen so as a result you take any entire function and you which is not

constant and the exponentiated what you get is a transcendental entire function okay. So in

this context let me also say that you know we entire function the functions which are either



polynomials or quotient of polynomials okay they are called Meromorphic functions they are

all called algebraic okay and the non-algebraic functions are the transcendental ones okay. 
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So  let  me  write  that  in  general,  the  polynomials  and  more  generally  the  Meromorphic

functions in the extended plane are called algebraic okay at least in the sense of algebraic

geometry  okay  in  the  sense  of  complex  algebraic  the  non-algebraic  ones  are  called

transcendental, okay. Examples, examples of transcendental functions, this is something that

one should look ahead, so you take for example E power Z this is transcendental because Z

equal to infinity is an essential singular point and why is that so because basically if you write

the expansion for E power Z Taylor expansion or MacLaurin expansion which is a Taylor

expansion in the origin you write the usual expansion that we all know and you know it has

infinitely many terms okay. 

So E power Z and then similarly you can take the trigonometric functions you can take sin Z

you can take cos Z and so on okay, so these are all transcendental functions and the way of

course you know you can also see that infinity is an essential singular point because if you

change if you invert the variable you will get origin as the essential singular points, so if you

take E power 1 by Z origin will be an essential singular point, if you take sin 1 by Z origin

will be an essential singular point, if you take cos 1 by Z origin will be an essential singular

point okay, so these are examples of transcendental functions and the other thing that I want

to tell you is that I want to also recall the big Picard theorem in this connection okay take

now you see you know take an entire function, take an entire function which is not constant

okay and of course if infinity is an infinity cannot be a removable okay because if infinity is a



removable singularity then it will reduce to a constant. Since I have taken a non-constant

entire function, infinity is not a removable singularity. 

The next possibility is infinity is a pole in which case the entire function is a polynomial and

you know the image of a polynomial map is the whole plane okay because a polynomial can

assume we will assume all values okay you take any value you can equate to the polynomial

and you can solve for it and you will get solutions that is because of the fundamental theorem

of algebra, so if you take a polynomial mapping it will be the image of the whole plane under

a polynomial mapping will be the whole plane then you look at the 3rd case namely when

infinity is an essential singular point okay. Now if infinity is an essential singular point okay

you see what does the big Picard theorem say? 

The big Picard theorem says that you take any neighbourhood of an essential singular point

no matter how small, the image will be the whole plane and or it may be a punctured plane it

might miss at one point okay. Now you see this is the so what you are saying is that if I take a

transcendental entire function okay For example E power Z or sin Z or cos Z okay then the

big Picard theorem tell you that even if you take the image of not the whole plane but the

exterior of a circle no matter of how large radius you will still get the whole plane or the

punctured plane and you can compare it to the little Picard theorem which tells you that the

image of whole plane is either the whole plane or the plane minus a point, so I want you to

understand the significance. 

See if I take for example take E power Z okay the little Picard theorem will tell you that the

image of E power Z is either the whole plane or it is the whole plane minus a point because

you know it is E power Z we know it is the plane minus the origin okay but the little Picard

theorem never tells you what is the image of anything other than the whole plane okay but if

you apply the big Picard theorem to E power Z okay you are applying mind you when I apply

the big Picard theorem to E power Z I am trying to apply I  have to apply it  only to an

essential singularity and where does E power Z have an essential singularity at infinity.

So if I apply the big Picard theorem to E power Z at infinity okay then you see that you take

any neighbourhood of infinity okay which is you take the outside the reason exterior to a

circle of any radius, no matter how large, the image of that itself will be the whole plane or a

punctured plane okay and in fact every value is taken in finitely many times, so you see you

see in that sense how the big Picard theorem is far stronger than the little Picard theorem in

the case of entire functions you can see that of course for polynomials there is nothing special



because your fundamental theorem of algebra which will tell you things very clearly but if

you are looking at non-polynomials. 

If you are looking at transcendental entire functions you see you can really see the amount of

difference in the conclusion and you can see the strength of the theorem, you see the great

Picard theorem is you much more than the little Picard theorem okay, so if you take E power

Z and you take the image of the exterior of a circle matter how large radius it will still be the

punctured plane okay that is what the big Picard theorem applied to E power Z will tell you

okay whereas if you try to apply the little Picard theorem you will not get anything it will

give you only the image of the whole plane but it will not tell you anything about the image

of the exterior of a circle okay, so in that sense you see how powerful the big Picard theorem

is okay. 

Now what I want to do next is tell you about tell you about Meromorphic functions okay, so

you see so I want to concentrate on Meromorphic functions and you know we need to study

Meromorphic functions in order to get to our main aim which is the proof of the Picard

theorems alright,  so the 1st fact  about Meromorphic functions is that you see if  you take

domain either the domain may be in the plane or it may be a domain in the extended plane

which means it could include the point at infinity as an interior point. On a domain if you

look at the set of Meromorphic functions on the domain that is automatically a field okay, so

you get an algebraic structure called a field and it will be an extension field of the field of

complex  numbers  okay.  So  and  this  field  extension  its  algebraic  properties  are  deeply

connected with a geometric properties of the domain you are studying okay. 
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So let me make that statement so let me go to the next thing the field of the Meromorphic

functions,  so let  me recall  what is a Meromorphic function? So it  is  basically  a function

which is analytic and has only isolated singularities which can be at most (())(39:36) okay

and of course they could be removable singularities but if they are removable singularity is

you  really  do  not  consider  them because  they  are  actually  points  where  the  function  is

analytic okay otherwise the only (())(39:50) singularities that it  has are poles okay, so the

moment am talking about a Meromorphic function I have to remember that 1st of all what is

allowed is … what kind of singularities are allowed us are only poles which means there are

only isolated singularities there are no non-isolated singularities okay. 

There are only isolated singularities and they these isolated singularities are actually only

poles  okay and the  point  is  that  you see  if  you look  at  a  Meromorphic  function  in  the

extended plane okay then you see that since an isolated set in the extended plane has to have

only finitely many points okay because the extended plane is compact okay therefore there

will be only finitely many poles okay, so the moral of the story is that if you are looking at

Meromorphic functions on the extended plane it will have only finitely many poles okay. I

think probably I will stop here.


