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Okay so welcome again to lectures on advance complex Analysis, so what we are going to do

today is ask very basic question okay so let me switch to the writing board.  
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So suppose f from D to C is an analytic function, of course the analytic means the same as

holomorphic, so analytic is the same as holomorphic and always as usual we assume D is a

domain in the complex plane okay so D domain in the complex plane so that means that D is

a  subset  of  the  complex plane  D is  open,  D is  connected  and of course you know D is

certainly non-empty I mean because by definition you know the empty set is also open okay,

so of course we are not interested in looking at the empty set, so D is connected and of course

you  know  in  this  context  that  for  an  open  set  connectedness  is  equivalent  to  path

connectedness,  so D is also part  connected so you have a function f,  f  is analytic,  f is a

function  which  is  complex  value  function,  it  is  a  complex  value  function  of  1  complex

variable and that one complex variable you might call it as Z. 

So you can think of the function as f of the Z and Z varies over D okay and what is the

fundamental question that we are asking? The fundamental question that we are asking is

what is  the image of f? So that is  the question so here is  the so let  me change color to



something else so here is the question, what is the image of f? So this is the question so in

other words so that is you take you look at f of D okay, what is f of D? It is set of values of f

okay so this is equal to the set of all f of Z where Z varies in D okay this is the set of values

of f, this is all the values that f takes on D okay and obviously it takes complex values, so f of

D is a subset of the complex parent, the question is what kind of a subset is this okay so here

yes so what is the image of f that is that is if f of D is equal to this then what is the nature,

what is the nature of f of D. 

So when I say what is the nature of f of D you know you ask what do you mean by nature?

Nature of course one can ask a lot of things one is of course topological nature okay, so f of D

is subset of the complex parent you know complex plane is a topological space so you can

ask whether f of D is open, whether f of D has any one of these properties that substance of a

topological space satisfy okay. Properties that you know are open sets, sets being opened, sets

being closed sets being connected, sets being part connected, sets being compact and so on

okay. 

So you can is what is the nature of this set of f of D is in the topological (())(5:09) okay then

you can ask another question, how big is f of D okay what is the… How much of it or how

big it is when compared to the whole complex plane okay, so when I say nature I can ask

topological and the other thing is how big, how big is it? So and it so happens that complex

Analysis gives you several nice theorems which answers go along way and answering these

questions okay. So let me you know so let me go ahead and look at in just a minute let me

resize the screen so that I get…

So and so let me look at the following let us ask them simple questions let us ask them simple

questions so there are 1st few obvious things that you can say, see f is an analytical function

so you know analytical functions are in fact infinitely differentiable that is what you learn in

the 1st course in complex analysis once differentiability implies infinite differentiability on an

open set and that is one of the characteristics properties of an analytic function and therefore

in  particular  they  are  certainly  continuous  and  you  know  continuity  preserve  certain

properties or example the continues image of connected set is connected, continues image of

a path connected set is path connected, the continues image of compact set is compact so you

can say  immediately  that  f  of  D is  certainly  a  connected  set  okay so  that  is  very  basic

topology it just uses the fact that the continues image of a connected set is connected. 
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So let me say the following thing of course f is continues so you know I will use some

abbreviations CTS assistance for continuous, so f is continuous so f of D is connected this is

of course very basic well then you want to know more so you know let us let us try to see lets

ask a few questions, so for example we ask a question like can f take values on a line or can f

take all values only on the curve okay, so let us ask this question, so let me again change

color, can f take values only on a curve? Of course with the curve I mean any simple curve

that can think of like a parabola or a circle or something like that. 

I mean particularly also it could very well be a straight line this is also curve okay so can f

take values on the curve, so say for example you know suppose I take, so example so let me

look at a few examples can f takes values on the real line? I mean take only values on the real

line this means you are saying that the image of f is the subset of the real line okay and you

know if f takes values only on the real line this is equivalent to saying that the imaginary part

of f is 0 okay because if f is a complex valued function, normally we write f is equal to U plus

IV where U is the real part of f and V is the imaginary part of f and you know very well from

the 1st course in complex analysis that you and we have to you know be harmonic and in fact

they will satisfy the Cauchy Riemann equations okay because f is analytic but the point is that

if you say that f takes only values on the real line it means you are saying that V is always 0

that means the imaginary part of f is 0. 

So this equivalent to saying that you know imaginary part of f is 0 okay and you know I can

also ask can f take a values on the imaginary axis okay that is the y-axis consider it as there

imaginary axis on the complex plane okay and that is equal in to saying that the real part of f



is 0 okay, so there is another case of f taking values only on a line then of course they can ask

can f takes values on a circle okay, so let me ask that also. Can f take only values on a circle

so you know if you think that the circle is centred at the point w naught and has the radius R

naught, this is equivalent to saying that the modulus of f of modulus of f minus w naught is

equal to R naught this is what it means, this is the condition that f takes values on a circle

okay. 

Now surprisingly, not surprisingly in fact there is something you should have seen if you just

recall that these are all the conditions that will ensure that the derivatives of f vanishes and

therefore f has to be constant, so if the imaginary part of f is 0 at is the same as saying the

imaginary part as a constant okay. It is a special case of the fact that the imaginary part of the

constant and if the constant is 0 this is equivalent to saying that amounts to saying that the

imaginary part of f is 0 which means it takes for the real valued and if the real part of f is 0

that is a special case of the real part being constant okay and the f taking values on a circle is

the same as saying that the function f minus w naught which is f added to minus w naught

which is a constant function okay. 

That has constant modulus that modulus is R naught okay now you have done this in the 1st

course in complex analysis probably by using Cauchy Riemann equations that you know if

the function has imaginary part constant or the real part constant or the modulus constant in

the function has to be constant okay so all these things can happen only if f is constant okay

so all these all these can happen only when f is a constant, f is a constant function okay takes

the  same  value,  so  of  course  therefore  the  question  is  we  are  not  certainly  we  are  not

interested in studying constant functions because there is nothing special about these constant

functions they constant function maps the whole plane onto a single point which is the value

of the function of that constant, we are not interested in…so we are not interested in such

constant functions, we are worried about non-constant functions okay. 

So what this will tell you immediately is that if you have a non-constant analytic function

okay it cannot take values at least on a line or something like a circle okay but then so what is

it so what this tells you is that the either you have the case that you are looking at a constant

function in which case the images a single point okay it is that single constant value that it

takes or the image cannot be a set of just the real line or it cannot be a subset of only the

imaginary axis, it can be a subset of the circle. Such things cannot happen that is what this



says okay but what is the that you have more generally, so more generally we have you know

we have very nice theorem, so here is the theorem.
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So here is the theorem and it is called the open mapping theorem and is a very fundamental

theorem, what it says is that non-constant analytic map is always an open map okay, so if f

from D to C is a non-constant analytic map then f is an open map okay it is an open map, so

let us try to understand what this means? It means that see what is an open map? An open

map is a map which for which the image of any open set is again an open set okay, so in

particular what this will tell you is that f of D is an open set because D is already a domain,

the D is the domain so D is already an open connected set, so f of D will become open okay

and it is already connected so it is the same as it being path connected so f of D is again a

domain okay so what this what, so let us try to understand what this means? 

If f of D is open so it is a domain so that is something that comes immediately okay and mind

you f is not a constant function, so it takes more than one value so f of D is non-empty of

course okay and the other important thing is the following thing. What is the condition of

open mapping? If you take U a subset of D which is an open subset then f of U would also

continue to be open okay so if U is subset of D is open then f of U is open, this is what an

open map means it maps open sets to open sets. The image of an open set under an open map

is again an open set that is the definition of what an open map is? Okay and…so let us go a

little bit more into this and you know try to see what it really means, what is the meaning of

an open set? 



An open set is a set which every point is an integer point okay that means you take any point

in the open set then there is a small disk open disk surrounding that point which is also in that

set that is what an integer point means okay, so what is f being open mean suppose f takes a

certain value w let us say takes a value w naught okay then there is a it means you are saying

w naught belongs to the image of f okay if f takes the value w naught okay that means w

naught is in the image of f because image of f just consist of the values of f okay and then but

since the image of f is open w naught is a point of an open set therefore there is a small open

disk centered at w naught which is also in the image. 

So it means that if f takes a certain value will take all values in a small disk surrounding that

value okay so this should immediately tell you that f cannot simply take values on the curve

because the moment f takes values at the point will take all values in a small disk surrounding

that  point  and  you  know no  curve  can  accommodate  a  small  disk  however  small  okay

therefore you immediately get this idea that you know the image of an analytic mapping, non-

constant analytic mapping cannot go into a curve, we saw special cases, we saw that it cannot

go on into a real axis, it cannot go into the imaginary axis, it cannot be a circle okay and go

into the circle but is more generally the reason is the image is open okay and of course curves

are closed sets okay. 

So let me write that now if w naught is equal to f of Z naught for Z naught in D that is the

same as saying that w naught is an image of f which is f of D then f of D being open implies

that there exist small open disk in f of D containing w naught and that implies that f takes all

values in a small disk centred at w naught, so this is what is very important if f takes certain

value it will take all values in a disk about that value okay this is a very important property

and this is true for of course for a non-constant analytic function okay. So this is about this is

about at the moment this is about the topological property of f of D this theorem tells you that

f of D the image of f is certainly a domain it is an open connected set. 

It is very important that it is an open set and in fact going into a higher geometric point of

view okay what  actually  happens is  this  so let  me tell  it  to  you in words,  what  actually

happens is that the mapping f from D to f of D becomes what is called ramified cover of

Riemann surfaces okay so it means that it there are set of points these are the points where the

derivatives of f vanishes okay these are called the points of the ramification and outside those

points in the complement of those points this is actually a covering map okay it is covering

map in the topological and is and also in the analytical or holomorphic sense okay so this



open mapping theorem this so important that tells you that essentially every analytic non-

constant analytic mapping is ramified cover okay fine so now what I am going to do is I am

going to go to ask a more specific question. 

So we are trying to look at the image of a domain under analytic function, so let us look at the

cases where 1st at the case where you know the function is analytic on the whole plane so

these are the entire functions, so what is an entire function? An entire function is a complex

valued function which is analytic on the whole plane okay then the question is what is the

what is the image of sets of functions? So that is a very deep theorem namely it is the so-

called little Picard theorem which says that the image is either the whole complex plane or it

is the punctured plane, it is the punctured plane namely it is the complex plane minus single

point that means an entire function okay we will take all values except for omitting at most

one value okay and this is called the Little Picard theorem okay. 
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So let  me state  that  so here is  the  Little  Picard theorem,  sometimes people  also use the

adjective Small Picard theorem, so what is this? If f from C to C is analytic that is so let me

write it here f is entire then either f of C is equal to C or f of C is equal to minus w naught for

some w naught  C so  this  is  a  little  Picard  theorem,  so  you  know it  is  the  it  is  a  very

tremendous theorem it says that you take an entire function, you take the image, the image is

huge I mean the image is literally everything at the worst if the image omits it can omit only

one value okay and the case where the image omits a single value is of course the simplest

example is that of the exponential function, you know if you take the function Z going to E

power Z that is an entire function okay and the image will not it will be the whole punctured. 



It  will  be  the  punctured  plane  it  will  be  the  complex  plane  minus  the  origin  because

exponential function will never take the value 0 because 0 does not have a logarithm okay so

if you take any non-zero complex number you can find the logarithm and exponential of that

logarithm give you back that complex number of course you will get many logarithms okay

but you can find at least one for a nonzero complex number, so it means that the exponential

function will take all values except 0 okay and that is the…so in that case it is an example

that illustrates Picard theorem if you take f of Z equal to E power Z then the image of f is

actually C minus 0 which is a punctured plane. 

Normally if you take the whole complex plane and remove single point that is called the

punctured plane okay with puncher at that point because that point is being removed and of

course there is also the case when function an entire function can take all values, the simplest

case is that of a polynomial, so if you take a polynomial if you take f of Z equal to P of Z

where P of Z is a polynomial then it will take all values because I can always solve for P of Z

equal to w naught for any w naught and that is because of the fundamental theorem of algebra

namely  that  the  complex  numbers  of  algebra  (())(25:27)  closed  so  I  can  always  solve  a

polynomial equation in one variable okay so a polynomial is also an entire function and it is it

gives  the  case  the  1st case  namely  the  image  of  the  whole  complex  plane  is  the  whole

complex plane okay fine so this is the little Picard theorem. 

Now somehow what I want to do is I want to really to prove this okay it is a deep theorem

normally this theorem is only stated in the 1st course in complex analysis but since this is

advanced was in complex analysis I think it is fitting to look at a proof of this. Now well you

know interestingly it is very interesting that the proof of this that I am going to present is

actually gotten by deriving this as a corollary were much more deeper theorem, it is called the

big Picard theorem and the funny thing is that the big Picard theorem is a theorem which

deals which again asked the same kind of questions, it answers the same kind of questions

namely what is the image of a domain under an analytic map okay but the point is that the

domain you are looking at is a disk around an essential singularity of an analytic function. 

So you know so let me state that so here is so let me use something else this will be deduced

from the from the big or great Picard theorem and that is let so here is the statement of the

theorem, let Z naught be an isolated essential singularity of an analytic function f okay then f

of…so let me write this 0 less than mod Z minus Z naught less than Epsilon is equal to C or

C minus single value for every Epsilon greater than 0 in the domain of analyticity of f okay



so I have just stated a part of the theorem there is still more to it, so I want you to look at this.

What I want you to appreciate is I wanted to appreciate the following things to reduce the

little Picard theorem which is theorem about a function is analytic  on the whole plane if

function is mind you if a function is analytic on the whole plane it has no singularities okay. 

It has no singular points okay so the little Picard theorem is a theorem about a function which

has  no singular  points  okay and it  says that  the image of the whole plane  under  such a

function is either the whole plane or a punctured plane okay but we are deducing it from a

theorem about the image of function with a singularity, so that is the funny thing so it is like

even to answer question about an entire function you are forced to study singularities this is

the point I want you to understand okay. 

See normally we would not like to dirty our hands with singularities, why study singularities

when  there  are  functions  without  singularities  but  the  point  is  you  know  sometimes

mathematics and theory teaches us that even to study good things we have to study bad things

okay so if you want to prove the little Picard theorem which is a theorem about good things I

mean  the  function  is  analytic  entire  you  have  to  still  study  functions  which  are  having

singularities and so here is the big Picard theorem and obviously you know the adjective

great or big should tell you that this big Picard theorem has to be a Big Brother of the little

Picard theorem and therefore you know the little  Picard theorem can be reduce from the

support of the Big Brother and what is this big Picard theorem, what does it say? 

See you are looking at an analytic function okay and you were looking at a singularity of an

analytic function okay now so I come later to what a singularity is? Okay because that is

motivation for me to recall these things okay so you look at a function f which at a point has

isolated singularity, isolated means there is a whole his surrounding that point where there are

no other singularities okay and a deleted disk surrounding that point is given in this form as I

have written here in the on my board zero strictly less than mod Z minus Z naught strictly

less than Epsilon is actually the disk centred at Z naught the radius Epsilon is an open disk

but I have thrown out Z naught that is the reason for putting 0 strictly less than I am not

allowing Z equal to Z naught that means it is a punctured disk. 

It is a punctured disk centred at Z naught and the punctured is exactly at Z naught I have

thrown out Z naught okay and on this disk the I am assuming that this disk is full of points

where function is analytic okay and that will be through at least for small values of Epsilon

greater than 0 because the point Z naught is an isolated singularity okay and look at what the



theorem says, it says you take the image of this when I write f of something okay it means f

of this set which is the punctured disk that is the whole complex plane or it is a complex

plane minus a single point and this is true for Epsilon sufficiently small and therefore it will

be true for even larger Epsilon so long as this deleted disk is in the domain of analyticity of f

because larger disk, larger deleted disk will contain smaller deleted disk and therefore their

images will contain images of smaller deleted disk okay so. 

So you see this is again you see the result of the conclusions of the theorem both the big

Picard theorem and the little Picard theorem they are the same I mean the conclusion always

says that the image under analytic  function of a certain domain okay is  either  the whole

complex plane or it is the complex plane minus a point okay and in case of little Picard

theorem you are looking at the domain is the whole complex plane but in the case of great

Picard  theorem the  domain  is  a  very  small  neighbourhood  deleted  neighbourhood  of  an

essential singularity of an analytic function and what is really amazing is in fact there is more

to this Picard theorem what it says is you see so I want you all to observe is the following

thing it is a very deep results. 

It  says  take  a  very  small  neighbourhood  of  the  essential  singularity  okay  deleted

neighbourhood that means of course you do not take the neighbourhood that you take should

be a domain weather function is analytic so it cannot include the singularity, so when I say

take a neighbourhood of essential singularity of course I mean delete that essential singularity

so  you  are  taking  a  deleted  neighbourhood  of  the  essential  singularity  and  mind  you  a

neighbourhood as small as I want, you see this Epsilon can be extremely small okay and the

theorem is amazing it  says you take no matter how smaller neighbourhood you take,  the

image  of  that  neighbourhood  is  still  the  whole  plane  no  matter  how  small  your

neighbourhood is. 

The image of the very small neighbourhood no matter how small is still the whole plane it

still takes all those values so what this tells you is you know it tells you that it tells you how

the values of analytic functions change in a neighbourhood of an essential singularity, in our

neighbourhood of an essential  singularity this  analytic  function is taking all  values at the

worst it can omit one value okay and of course you know the example for this is just as in the

case of the little Picard theorem where you where the example of an entire function omitting

a value is exponentially E power Z a which omits the value 0, here you can take E power 1 by

Z okay you can take the function E power 1 by Z and this E power 1 by Z and E power 1 by



Z at Z equal to 0 has an essential singularity and if you take any small deleted neighbourhood

of 0 however small and you take the image under E power 1 by Z you will get the whole

plane except the origin because exponential function will never take the value 0. 

So you know it is an amazing, it is an amazing result, it is an amazing result and in fact there

is a stronger version of the Picard theorem which says that not only does the image of any

small neighbourhood however small of an essential singularity under under analytic function

is a whole plane or plane minus (())(36:05) it says it takes the every complex value that it

takes it takes infinitely many times, so there is in fact so that we write that down just to tell

you how powerful the theorem is so let me write that.
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For  every Epsilon greater  than 0 such that  0 less than mod Z minus Z naught  less  than

Epsilon is in the domain of analyticity of f. f assumes each complex value with at most one

exception w naught infinitely many times, so in fact this, this infinitely many a times part of

it which tells you the more it tells you with lot of force what is happening so the 1st part of the

great  Picard  theorem says  that  you take  an  essential  singularity  and take  a  very  smaller

deleted neighbourhood about that, take a very small disk surrounding the essential singularity

and  take  its  image  under  the  analytic  function  of  course  you  do  not  take…the  analytic

function is not defined at the singularity okay so you do not take the value at the singularity

there is no such thing. 

So you are actually taking the image of a deleted neighbourhood but the point is no matter

how small a deleted neighbourhood is, your image will be the whole complex plane or it may



be complex plane minus a single point that is the 1st part of the theorem and in fact what this

part of the theorem says that you know you take any value, any of the values in the complex

plane except possibly for that one value w naught which it will not take okay, take any other

of the values that it  takes that value itself if you take the pre image of that value in that

neighbourhood,  the pre-majors and infinite  set  okay that  means there are infinitely many

points even in that small neighbourhood that are infinitely many points at which the function

takes place that prescribed that value that you are pointing at and this happens for every value

that it takes. 

So what it does it is very funny it looks as if you take the small neighbourhood around the

essential  singularity, the function not only match that very small  neighbourhood onto the

whole plane or whole plane minus a point but it maps it infinitely many times okay it is like it

maps it thousands and thousands of time okay and that is an amazing thing okay it is not that

for every complex value there is one value here which goes to that, the fact is you take any

complex value other than the exceptional value w naught then there is infinitely many points

in this  very small  disk however small  where that  value is  taken by f  okay so that  small

neighbourhood it is really amazing to think of it, think of a very small infinitesimally small

neighbourhood which is being again and again you know it maps thousands of times I mean

probably unaccountably many number of times on to the whole plane or the whole place

minus a point that is how the function behaves in a neighbourhood of an essential singularity

and this is the key to…

This theorem on singularity is the key to proving or reducing as a corollary the little Picard

theorem, so we will try to in the forthcoming lectures will try to give a proof of this theorem

and so I will tell you roughly I will give you an idea of where we are going to go, so you

know  1st of  all  I  want  to  recall  something  about  singularities,  you  would  have  studied

singularities  but  I  would like to recall  them and some basic  theorems about singularities

especially the Riemann’s theorem on removable singularities and then I want to reduce from

that what is called the weak version of the big Picard theorem which is called the Casorati–

Weierstrass theorem and Casorati–Weierstrass theorem is slightly weaker what it says is that

while the big Picard theorem says that a function assumes analytical function assumes all

values except with possibly one exception in every neighbourhood of an essential singularity. 

What the Casorati–Weierstrass theorem says is that it  will come arbitrarily close to every

value okay so Casorati–Weierstrass theorem is a slightly weaker version of the great Picard



theorem and that can be more or less reduced using the Riemann theorem on removable

Singularities which I will prove okay so I have to recall something about singularities but

then as we move towards the proof of big Picard theorem what you have to do is that we will

have to study not one function but we will have to study a space of functions and we have to

study functions with singularities and the kind of functions you going to study are functions

with singularities as (())(42:05) and these are called Meromorphic functions. 

So what I am going to do I am going to study topology of a space of Meromorphic functions

and prove some fundamental ills like Montel’s theorems and these are the keys to unlocking

the proof of the big Picard theorem okay so what I am going to do in the next few lectures his

1st recall  singularities  then  tell  you  something  about  Riemann  removable  Singularities

theorem through the Casorati–Weierstrass theorem and then go onto Meromorphic functions

studying Meromorphic functions and then trying to study families of Meromorphic functions

topologically whether that spaces compact and things like that okay, so that is the that is the

direction in which we will be proceeding so at least the 1st part of these lectures… our aim is

to  prove  the  great  Picard  theorem and  you  will  see  on  the  we will  prove  several  other

important theorems okay. 


