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Welcome back. So we have been looking at recurrence relations and how to solve recurrence 

relation. 

(Refer Slide Time: 00:06) 

 

So, we have seen, we know what recurrence relation is, it is a sequence of numbers while we 

have been given the initial set of value and the nth term is determined as a function of the earlier 

terms. 

(Refer Slide Time: 00:18) 



 

Recurrence relations is used extensively for various topics in math and other related subjects. 

(Refer Slide Time: 00:28) 

 

We have seen how recurrence relation can be used to model various problems particularly 

counting problems and we have been trying to see how to solve recurrence relations. 

(Refer Slide Time: 00:43) 



 

Now, here are some of the examples that we have looked into and the question that always 

comes up is how to solve recurrence relation? 

(Refer Slide Time: 00:56) 

 

So, till now, we have seen a few techniques of solving recurrence relation, the first one is guess 

the solution and they prove it using induction. 

(Refer Slide Time: 01:11) 



 

Now, if there exists a very nice case, a nice solution then possibly one can guess it and solve it 

by induction. Once you guess it correctly solving it by induction is quite a standard technique but 

how do you guess the solution? Now, again there are some techniques of guessing solution.  

(Refer Slide Time: 01:28) 

 

The first technique that we looked at was unfolding the definition, namely you keep on just 

unfolding the function, the expression possibly Tn = 2 + Tn of n – 1, you write Tn - 1 as 2 + Tn - 

2 and in that case, you get Tn = 4 + Tn - 2 and so on. You keep on doing and at some point of 

time, you will be able to substitute after some ith iteration, you will be able to get the thing into a 

proper form and we have seen how this technique works and helps us to guess for recurrences 

like this. 
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But now there are recurrences which are of this form Fn = Fn - 1 + Fn - 2 the Fibonacci number 

recurrence and guessing it is complicated because the actual formula is very complicated and the 

other kind of stuff that there is when you have things like Bn = Bn over 2 + 1 and because of the 

things like ceil, ceiling and floor and so on. It is very hard to get a clean, neat, simple formula for 

Bn and in that case, there is no guess that can exist. 
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So, we saw that in such an example, for example, this Mn = Mn over 2 + n over 2 + n where the 

first one is a floor, second one is the ceiling. We instead of getting the exact solution can get an 

upper bound and the lower bound but upper and lower bound differ by some constant factor but 



that is possibly good enough for us. Sometimes, we are happy with a constant multiplication gap 

between the upper and lower bound.  

 

Now, once you have something like this, you would like to say something like Mn is actually, 

something like n log n to formulae put it, we basically kind of compare the function M n versus n 

log n. 
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And this kind of took us to a different course or different tool of how to compare functions. So 

how to compare Mn with n log n? How to compare n to the power 4 with 2 power n? How to 

compare n factorial with n power n and so on and so forth.  
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And what we have seen is that there is this whole thing called an asymptotic notation that helps 

us to get a hold on how this function behaves. In short, f is equals to big-O of g, if f is less than 

constant times g is also told that g is equals to big Omega of f. If f is big-O of g and f is big-

omega of g that if f is upper bounded and lower bounded by some constant time multiples of g. 

Then, we say f is theta of g and we are something like the asymptotic similar notation and the 

small notation which we saw and is extensively used in the literature.  

 

So, it is very important to know be very familiar with this set of notations and also (()) (05:08) 

important to know how the various useful functions relate to each other. 
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For example, if you have two polynomials, then if you want compare them, all that matters is 

what is the coefficient of the largest degree? what is the larger degree and what is this coefficient 

and that helps us understand how (()) (05:32) largest degree is same that they are theta of each 

other. If the largest degree is same and the coefficient of largest degree is same then we have 

same of each other.  

 

Similarly, we have things like of any polynomial is small-o of any exponential or in other words, 

as n goes to infinity, any polynomial is way with smaller than any exponential function. 

Similarly, any polynomial of a log, logarithmic function is small-o of any polynomials, n power 

square root n, and whatever you want to put it. So log n power 20, log n power 30 is equals to 

small-o of square root n.  

 

We have things like 2 power n is small-o of 3 power n and we have some other expressions 

which are used for which we have some nice, cute expression which are much more handy. For 

example, n factorial is asymptotically similar to 2 square root 2 pi n, n over e by a power n and 

so on. Now that we know how to compare functions and now we have understood, we have got 

the language of how to write something like Mn is close to n log n and so on, so forth. 

(Refer Slide Time: 07:05) 

 

Question is that how do we solve such a function, the recurrence? Now, the trick for that is first 

of all, you have to guess Mn for some n. You would get a feel for it. In the last video, we saw a 



few more examples of the same kind. The idea is to get a feel for it. So here, for example, if you 

put n to be power of 2 then, you can guess that Mn equals to n times 1 + log n which basically 

means it is n log n and then instead of trying to solve it exactly, you end up solving Mn equals to 

theta of n log n.  

 

And you do it by induction by first proving an upper bound of Mn is less than or equal to 

constant time n log n and then proving a lower bound Mn is greater than some constant times n 

log n. Now, we have seen the last video, there can be quite a number of different expressions and 

at least even guessing this term is not necessarily easiest thing in the world. So what I am going 

to give you today is what is known as a Master theorem, it is a theorem that kind of talks a lot of 

various taking care of lots of differences. 
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So, Master theorem is that if I have a term which is of the form Tn equals to a times Tn over b + 

f n where fn is some function of n, say n square, n q, n log n, 2 power n and something like that 

and if a is strict is greater than or equal to 1 and B is strictly greater than 1 then, first case, if f n 

is big-O of n power c where c is something less than log, log a base b where a and b are these 

two numbers then, Tn is actually theta of n power log a base b.  

 

The second case is that if fn is n power c times log n power k and c is exactly equal to log b base 

a. So log a base b, then Tn equals to n power c log n power k + 1. Okay? And the third case is 



that if c is bigger than log b, log a base b and fn is omega of n power c then, Tn is theta of fn. So 

these are 3 cases, I am not going to prove you those three cases but again these are the three 

cases, I would ask you to go and prove it for yourselves. They are not hard.  

 

Once I step this theorem, you have to just follow the induction technique to solve it. So I will 

give it as an exercise solve, I am sorry, not solve whereas prove the be master theorem. It will be 

useful for you to get a feel of this problem. This is a very generic theorem for solving. So instead 

of solving it, I will see how one can apply Master theorem to some of the recurrences that 

arrives.  

 

The master theorem is a bit complicated to figure out what is going on because of this log a base 

b and so on and so forth. But we will see how can one can attack them. 
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So, say here in the first case, so let me just write down here and so it was Tn = a Tn over b + fn 

where a was greater than equal to 1 and b is strictly greater than 1 and what it says is that f n is 

ordered n power c and c is less than log a base b then, Tn is equal to theta of n log a base b. Look 

at this example, Tn equals to 8 times n over 2 + 1000 n square. Now, here 8 is equals to a, 2 

equals to b, clearly satisfies this expression.  

 



It has the same maths, the same thing as this one where this number is of course fn that we are 

talking about and what is the log a base b? Log a base b is log 8 base 2 which is 3 and fn is 1000 

n square which is of course less than n cube, Right? So correct? So actually sorry, I mean this is 

less than n square, I mean order of n square and 2 is strictly less than 3. So in fact, guess one fits 

perfectly and in that case, we can say that Tn equals to theta of n power log b, log a base b which 

is 3.  
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So, by applying this in a master theorem, we can easily get that Tn equals to theta of n cube. This 

also - It is a theorem, you do not really have to prove anything, once you have a proof of the 

theorem. But it also helps us to kind of - kind of guess what the value of Tn is. In this case, it 

helps us to understand that is n cube. The second one is of course, the case when c equals to log 

b base a as log a base b and fn equals to n power c log n power k. 

 

Now, note that here, what is c in our expression? Tn equals to 2 times Tn over 2 + 10 n, c equals 

to log 2 base 2 which is 1 and clearly fn which is 10 n right? This is order of n, I mean it has 

nothing that there is no factor of law. So by doing so, I have satisfied this case two and hence 

what will T of a and b? So T of n will be theta of n power c so which is n and there is no log here 

and that the fold, I will get one more extra log here. So I get Tn equals to theta n log n. Okay? 
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So, again you can quickly see that we do get Tn equals to theta n log n. Similarly, for the case 

three, if when I have this expression, Tn equals to n over 2 + 10 n square. Now here fn equals to 

10 n square. So and what is c first of all? c is of course, sorry, what is log a base b? log a base b 

is 2 by log 2 base 2 which is 1 and 10 n square which is clearly bigger than - which is n square 

which is and this, this is c.  

 

So c equals to 2 and 2 is clearly bigger than 1 and therefore, what I get is that Tn from by 

applying this Master theorem, I get Tn equals to theta of the fn which is n square, Right? So by 

just applying this, we get Tn equals to theta n square. So here is a theorem which helps us to get 

solutions to some class of recurrences very easily and very simply. But, there are some set of 

recurrences for which this Master theorem will not work.  
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For example, If I have Tn equals to n times Tn over 2 + n will not work because this a needs to 

be a constant where this is a n or if I have Tn equals to half of  Tn over 2 + n is not work because 

this is a and it needs to be greater than or equal to 1 or this expression, you can say, you can 

convince yourself that this expression is not something that satisfied in any of the three cases or 

also the other one that we did which Tn equals to n + Tn over 5 + T 7n over 10. 

 

This is something also does not work because it does not fit in this one. So, in other words, there 

are recurrences for which at Master theorem will not work and in those cases, we have to go 

back to our old method and there are recurrences for which this master theorem will work and in 

which case we have a nice easy example.  

 

But, there are problems for which we all our technique fails, at least the techniques that we have 

seen till now namely what happens if I have this Fibonacci sequence and how to approach 

something like a Fibonacci sequence is what we will be doing in the next week’s video. We will 

be focusing - We will be doing something, extremely important which is known as the 

generating functions. Thank you.  


