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The last  three  modules,  sub modules  in  fact,  we talked about  financial  vector  space

matrices,  tools  for  multivariate  calculus;  there  is  yet  another  topic  which  is  basic

fundamental to pursuing data assimilation that is called optimization. Optimization in

finite dimensional vector spaces. 

I  keep  referring  to  finite  dimensional  vector  space, because  all  the  computational

problems  in  numerical  analysis  and  all  the  applications  where  we  use  computers  to

compute the solutions,  the basic mathematical framework is finite dimensional, vector

space in practice, we can do only finite things, we cannot do infinite things therefore,

finite dimensional vector space is the appropriate background, on which the entire theory

of  computation  has  been built  around and to emphasize  that  I  keep referring  to  the

importance  of  recognizing  the  role  of  finite  dimensional  vector  space.  Now, why

optimization?

We earlier saw in module one a broad introduction to an overview of data assimilation,

the data assimilation can be thought of as curve fitting. Data assimilation can be thought

of  as  regression  analysis, data  assimilation  can  be  thought  of  as  identification. Data

assimilation  can  be  thought  of  as  estimation.  So,  let  us  take  the  point  of  view  of

estimation, whenever we want to estimate, we want to be able to estimate optimally,

what  does  it  mean? We want  to  be  able  to  get  the  best  estimate, best  optimum

optimization.  So,  optimization  theory  is  fundamental  to  pursuing  estimation  theory,

estimation theory and optimization theory are interrelated in the fact, I use principles of

optimization in estimation theory is a topic within statistics.

Optimization  theory  is  a  topic  within  multivariate  calculus.  So,  it  is  the  interaction

between  the  two that provides  the  ability  to  optimally  estimate.  So,  we  would  like

whenever we do, whatever we do, we want to have the best prediction. We want to have

the  best  estimate,  we  want  to  have, the  best  way  to  tell  what  the  temperature;  in



Bangalore would be tomorrow afternoon so on and so forth. So, we are always seeking

for the best means optimum. 

So, we need to be able to have a clearer understanding of the notion of optimality, when

something optimum and the properties of optimum can be maximum or minimum, when

you try to talk about cost functions. I would like to be able to minimize the cost, when

you tried to talk about profitability we all want to maximize profits. So, in economics the

aim is to be able to maximize profits. 

So,  in  economics  most  of  the  problems  are  posed  as  maximization  problem  in

engineering, sometimes  we  talk  about  minimization  of  the  energy  to  be  able  to

accomplish a particular task in the case of estimation, we would talk about minimizing

certain magnitude of errors. So, maximization minimization are parts of the optimization

theory. Maximization and minimization are truly interrelated with each other. So, in this

sub module, we are going to be reviewing principles of maximization and minimization.

(Refer Slide Time: 04:02)

So, a classification let us be a scalar valid function. You can see the notion of a scalar

valid function comes into play right away. Let us b c to R n; that means, f is a function

which is continuously differentiable in R n at least twice continuously differentiable, if f

is twice continuously differentiable functional. So, if it is a scalar value function  it is

called a functional. What is the relation? Minimum of x minimum of f, with respect to x



is the same as maximum of minus f that is, what it is enough; I study either maximization

or minimization, which are loss of generality. 

We will consider minimization. So, that is the general idea in the start that we need to

understand.  So,  you  do  not  have  to  do  maximization  and  minimization  separately,

because of this intrinsic relation between maximum and minimum. It is sufficient either

to do maximum or minimum, we will do minimum. 

(Refer Slide Time: 05:04)

A classification of minimization problems occurs in various shapes and forms, the first

classification is with respect to modality a minimization problem can be unimodal or

multimodal.  In  a  unimodal  minimization  problem,  the  problem has  only  one  unique

minimum.  For  example,  if  you have a  cost  function,  which is  parabolic,  which is  a

cardiac function. This is a unique minimum, but if you have some non-linear problems,

you  may  have  a  function  which  may  be  like  this;  in  this  case  there  is  a  multiple

minimum. 

So, unimodal function versus multimodal function.  Uni modality  multi  modality who

creates  this,  the cost  function  that  we use is  the one that  creates  uni  modality  multi

modality. It  is  easier  to  do,  you need moral  minimization  as opposed to multimodal

minimization.



But at the outset, we would like to be able to distinguish between the existence of two

types  of  minimization  problem.  Now,  let  us  describe  mathematically,  what  is  the

minimum. Let f be a function, the next star be a point at which the function attains the

minimum and  why do I  say  the,  how? What  is  the  property  of  the  function  of  the

minimum, if I consider the value of the function at the minimum, if I consider any point

which is in a small neighbourhood of the minimum.

So, let us draw a little picture, let this be the minimum point x star. If I consider a small

neighbourhood  around  that,  this  is  why  the  value  of  the  function  at  y  in  a  small

neighbourhood of x star is always larger than x star. So, in this case x is called the local

minimum. So, for example, in this case, this is the local minimum.

So, this is x 1 star, this is x 2 star, in this case, this is x star. So, x x 1 star is a local

minimum, x 2 star is a local minimum in the sense that if you go in any direction away

from the minimum, the value of the function is going to increase, that is the that the basis

in here, if x star is such that f of x star is less than f of y for all y, then it is called a global

minimum. 

So, in this example; x star is a global minimum, this is global, here this point x 2 is a

global  minimum,  x  1  is  also  a  minimum,  x  1  is  a  local  minimum,  x  2  is  a  global

minimum.  There  are  multiple  minimum,  uni  minimum.  Multiple  minimum;  your

function is a unique minimum, is called unimodal function, otherwise called multimodal

function. The function x times x square minus 1 is multi modal, the function x square is

unimodal.

I would very strongly encourage to be able to plot these functions and see where the

modality  occurs,  that  where the minimum occurs  where the maximum occurs.  So,  if

there  are  going  to  be  multimodal  that  it  will  be  multiple  minimum  and  multiple

maximum to multi modality is always a headache. Optimization problems are manmade.

So, when you are trying to create a particular problem do not create too much of trouble

for yourself. 

Choose the cost function such that it is endowed with unique global minimum, if you can

arrange  the  problem  such  that  it  is  endowed  with  a  unique  global  minimum,  your

headache will be lot less, but if you formulate the problem, such that it happens to have

multiple minimum, you are to scratch your head finding. 



A global minimum will be a much more difficult problem of course, this is easily said

that,  than done for a given cost function,  some problems may be endowed with one

minimum, some problem may be endowed with multiple minimum, if the problem is

endowed with my (Refer Time: 08:59) we have a duty to find all minimum to be able to

pinned down, who is the global minimum, what is the best minimum.

(Refer Slide Time: 09:09)

So,  unimodal  verses  multi  more,  the  next  classification  is  constrained  verses

unconstrained,  again  those  of  us  who have  done  a  little  bit  of  meteorology  or  data

simulation should be able to appreciate minimize f of x that is an unconstrained problem.

I have no constraint on x, but I would like to be able to insert a constraint. Now, let us c

be a subset of R n defined by a set of equations are inequalities for example, let us c 1 be

the set of all x such that x 1 plus x 2 is equal to 1, let c 2 be set of all x in R 2, x 1 is

greater than 0, x 2 is greater than 0, x 1 plus x 2 is less than or equal to 1. 

So, let us understand those constraint. Now, the first constraint c 1 is given by this line,

maybe I will use the arrow the will. So, in this problem x 1 plus x 2 is 1. So, what does it

mean, even though there are very many points in the 2 dimensional plane. I am interested

only in those points that lie on this line; the line is the constraint, this second one. On the

other hand x 1 must be greater than 0, x 2 must be greater than 0, x 1 plus x 2 is less than

or equal to 1 and that essentially tells you the region in inside the triangle.



So, these are the constraint, could be along a line, along a curve. It could be a sub region.

So,  what  is  an  unconstrained  minimization  problem? An unconstrained minimization

problem is started like this; given f of x minimize x with respect to all point in x square.

In our square there is no constraint, you can go anywhere wherever it leads to, that is

called unconstrained minimization problem. 

Minimize f  of  x  not  over  all  x,  but  over  x belonging to  c  1;  that  means,  I am not

interested in every x, but I am interested only those x that lie along the line say, that is a

constrained minimization problem, this  is a special  form of constrained minimization

problem, because the constrained set, which is, line is given by the equality constraint.

So, this is an equality relation x 1 plus x 2 is equal to 1 is an equality relation, x 1 plus x

2 is equal to 1, there are infinitely many point that satisfy that equality. So, also on, I am

interested in minimizing f of x not over the entire x, but along that particular line c 2.

I would like to be able to minimize f of x constrained minimization problem. This is

called equality constraints, because excess have x 1 is greater than equal to 0, x 2 is

greater  than equal  0, x 1 plus x 2 is  less than or  equal  to  1,  that  is  called  equality

constraints, most  of  the  problem  in  meteorology  are  either  constraint, are  other

unconstraint or constraint with equality constraints. 

In operations research they are often deal with constraint optimization with inequality,

constraint of these three problem, constrained optimization inequality constraint is the

most difficult one, but these problems are now very thoroughly understood, this body of

literature  represents  one  of  the  most  thoroughly  understood  disciplines  within

optimization theory. 

The theory of linear and non-linear programming deal with minimization, under equal

inequality  constraints, you  may  have  heard  of  linear  programming.  What is  linear

programming? Linear programming  deal  with  they  deal  with  minimization  and  our

inequality  constraint  in  this  course, we will  deal  only with unconstraint  and equality

constraint minimization problem. Why we try to formulate the problem in such a way?



(Refer Slide Time: 13:05)

So, equality constrained is easier than inequality constrained further classification. So,

we talked about unimodal verses multi modal, constrained verses unconstrained. Now, I

am going to talk about uni verses multi objective functions, there is only one objective,

there are multiple  objectives. Let f, if  the f is R n to R n is the only function to be

minimized then it is known as uni objective, when f is a vector valued function, if a m

components  where  we  want  to  minimize  some  component, maximize  some  other

component, it is called multi objective minimization optimization. 

Let me give an example, let us take an example of an automobile design, is one of the

hard problems. I want to maximize the fuel efficiency, I want to minimize the price, the

cost, I want to maximize the safety and comfort are you with me. So, an automobile

design, if it tell him I want you to give me a car with the maximum efficiency, he will

give you, but is of no safety, no comfort. 

I want to give you a car which is best to comfort, but it is very few miles per gallon, the

real  automobile  engine  design, is  there  are  multiple  objective  that  do  not, that  are

consistent with each other and automobile engineers have come up with strategies to be

able to solve this multi objective optimization problems. Fortunately, in meteorology we

are always dealing with one uni objective.

So, operation to such people dealing with multi objective optimization and the top of

inequality constraint, wow that is some of the toughest minimization problem one can



deal with the conceptually the optimization problem that often occurs within the context

of meteorology oceanography. Dynamic data assimilation are the easiest of the problems,

but we say is difficult, it is not become conceptually difficult is, because of the size of

the problem in meteorology, the curse of dimensionality they are interested in solving

large  problem,  but  simple  problems in  operations  is  on the  other  hand they may be

solving  small  problems,  but  are  much  more  complex  then  compare  to  problems  in

meteorology.

So, that is a different, difference, I would like to be able to bring about. So, if you meet

with them, automobile design engineer talk to him or her as to what kind of problem,

how do they optimized. So, that we can learn from the kind of methodology they use. So,

multi objective, you can think of all the things. 

Now, uni modal, multimodal constraint equality inequality and then you need to multi

objective, if you stack all of them together, you get a broad overview of this discipline

called optimization theory and that is what people in operation research. There are two

groups one develops the fundamental theory, others talk about applications of this theory

to various problems of in does of engineering and industrial interest.

(Refer Slide Time: 16:15)

The next one is the notion of convexity and optimization are intertwined and I would like

to  bring  about  the  beauty  of  the  role  of  convexity,  the  notion  of  convexity  in  an

optimization.



So, it takes a little bit of a definition. So, let s be a subset of R n, I call yes a convex set if

for every pair of point x and y in s. If I join them by a line, the line segment joining any

two x and y completely lies in acts for example, in the case of a circle, if I pick a point in

the case of a circle, if I pick a point here, if I pick point here, if I strictly the entire line

within this, if I get this the entire line within this, but if I pick a point here, if I pick a

point here, part of the line is outside the same. 

So, this is not convex these are convex sets, the notion of convexity essentially includes

every point is such that line segment, joining them in include. So, you can think of that.

Yes, sphere is a particular, a circle is a perfect example of convex set. A convex object, I

have to define, what is called convex functions, but before I talk about convex functions,

I am now talking about convex set.

(Refer Slide Time: 17:44)

When is a set convection that is the definition of a convex set, when do I say a function

is convex, I will tell you pictorially, I am sorry, the picture is not perfect, but you get the

idea, I have a function f of x. You take a point x f of x, y f f f of y, you draw f of x and f

of y, join them by a line that is a chord, in this case the entire function lies below the

chord.

So, what is an example of that, if you have x square, if you took two points any two

points on a parabola, if you draw the parabola, the parabola is always lies below the



chord, any function that has this property in general called convex function. x square has

a unique minimum. 

So, convex functions in general have unique minimum, that is whether also notion of a

convex that it comes in, we are interested in quadratic functions; all the cost functions

that  are  interested  in  data  assimilation  are  all  quadratic  functions.  Why  quadratic

functions  has caused quadratic  functions  appropriately  formulated  is  convex function

have a unique minimum, I  do not have to pull  my hair  trouble myself  to be able to

perform minimization. So, that is where the notion of the convexity comes in. So, yes it

is a let s be a convex set. Let x and y be point in s your function from s to r.

So, the underlying set, over which the function is defined, is a convex set are you all in

place. So, there is an underlying set, which is convex, there is a function defined over

that, if I take any two points in the convex set and evaluate the value the function and

draw a chord, the function lies below the chord, what an example x square. 

So, you have function f from s to RS, it to be a convex function, if f of alpha x plus 1

minus alpha x is less than or equal to alpha times f of x plus 1 minus alpha times f of y

for all alpha 0 to 1. Now, look at this now when alpha is 0 this becomes f of y when

alpha is 1 it becomes f of x for every point in between the function is below the chord.

So, that is the definition, the function is lies below the chord. So, if f of x is convex

minus f of x is called concave.

So, for you, how would I have imagine a convex function f of x is a typical example of a

convex function. x transpose x x transpose, x is a typical example of a convex function, x

square  is  a  typical  example  of  a  convex  function,  concave  functions,  for  maximum

convex function for minimum maximum and minimum our dual of each other concave

functions and convex functions are dual of each other. 

So, within the context of minimization we are in generally interested in convex function

convex sets. So, x square is convex x cube is not convex. What is the plot of x cube that

is x cube. So, if I took a point here, if I take a point here, some part is less, some part is

above. So, x cube is not convex x square is convex. So, that is a model by which you can

go with your notion of convexity convex function. So, we have defined convex set, we

have defined convex functions.



(Refer Slide Time: 21:30)

So, there are many different ways of characterizing convexity, let me quickly run through

them in  the  previous  definition  of  convexity, I  did,  I  simply  assume that  there  is  a

function. I did not assume any differentiability or anything or f is a function, I defined it

to be a convex.

(Refer Slide Time: 22:55)

Now, suppose I know a little bit more, you say in addition f is c 1. a c 1 function is said

to be convex, if for any 2 x and y f of y is greater than or equal to this the curve lies

above the tangent a that is an equivalent definition, if on the other hand, if f is in c 2



twice difference continuous functions the that f is convex, if and only if the Hessian is

positive definite positive. 

In fact, it can be called positive semi definite. It just are strictly positive, definite do this

is a distinction place. So, any f f in c 1 f in c 2. for a c 2 function, if the hessian is

positive semi definite, it is convex, if it is strictly positive definite it is called convex, all

of you might be for example, let us take a straight line. is it is convex. Second derivative

is 0, are you with me please.

So, this is convex, but this is strictly convex, this is strictly convex, a straight line is

simultaneously, is a convex and concave, because is the, is a separation between convex

function and convex (Refer Time: 23:21) straight lines. So, you have examples of convex

functions.

(Refer Slide Time: 23:26)

So,  what  is  the,  why are  we interested  in  a  convexity, you always talked about  uni

modality and convexity are close cousins of each other uni modality refers to functions

with unique minimum global minimum unimodal problems are easier. So, uni modality

and convexity are intimately associated with each other. 

So, let us talk about this, now let f be s con. Let us be a convex set sorry, let f be a

convex set f be a function from s to r. So, what does it mean f is a real valid function

defined over a convex set, then f has a unique minimum that is a theorem. I am not going



to prove this. Theorem is the theorem in convex analysis, if f is on the other hand is in c

2, then at the minimum the first derivative is 0, second derivative is strictly positive,

definite at the minimum first derivative is 0 and second derivative simply positive, it

means what that point is a very many minimum. 

So, what is the typical example of a convex function, f is eq f is equal to x transpose ax

minus b transpose x is a typical function that is in c 2, when a is symmetric and positive

definite. Now, you can see all the tools that we have developed in optimization theory in

matrix analysis, all comes into a hue now beautifully.

(Refer Slide Time: 25:56)

So, this is quadratic form this is a liner function, this is a general quadratic form. So, if

you look at all the functions that 3 dvar, 4 dvar. All talk about, they are all functions of

this type, they are typically convex, they are also typically in c 2, they have a as the

Hessian is  symmetric  and  positive  definite.  So,  by  definition  by  design, all  these

functions are uni model, convex functions everything is beautiful. 

So, the role of convexity, in inducing uni modality is one of the fundamental beauty of

the underlying mathematics,  that one needs to have an appreciation to be able to see

why? When we develop problems, when we develop objective functions we always think

of objective functions as quadratic forms or quadratic  objective functions and that  is

where the importance of convexity uni modality comes into play. 



So,  with  that  as  a  background  now, I  am going  to  run  through  conditions,  for  the

existence of minimum, please understand algorithms tend to compute the point where the

function attains the minimum, but before you start your computation somebody has to

guarantee that there is one that exists there is unique.

So, unless I know something, exists I cannot go and find it. So, mathematics helps the

first level of mathematics helps you to prove existence and uniqueness of minima, once

you establish the existence uniqueness of minima then you develop algorithms to be able

to seek it. So, characterizing the properties of minima and maxima and then algorithms

to see the minima and maxima as fast as possible, as efficiently as possible. These are

two complementary aspects of the optimization area. 

So, conditioned for the constraint min condition for the constraint minimum, again most

of us know from basic calculus, but in calculus we talk about univariate function. Here, I

am talking about the corresponding results for the multivariate function. A multivariate

function means is defined over a vector, the valorous at the value scalar, f is in c 2 twice

differentiable, twice continuously differentiable, a necessary condition for the minimum

to exist is that at the minimum the gradient must vanish a sufficient condition for the

minimum is that at the minimum, the second derivative must be positive definite; that

means,  the  Hessian  is  a  symmetric  positive  definite  matrix  Hessian  is  in  general

symmetric, it  need not be positive definite. Every positive symmetry need not imply

positive definiteness.

But when you consider positive matrices, you need to consider only symmetric matrices

that comes essentially from the theory of quadratic forms. So, that is where the whole

thing comes into play that is why Hessian is very important the tool from multivariate

calculus that characterizes the second derivative. 

So, what do I mean by saying the, this Hessian is positive definite. I do not the minimum

the function, looks like a bowl, a punch bowl. So, the minimum is a valley. So, how do I

characterize the valley at the minimum point in the valley? The function is convex, the

function  looks  like  a  parabola.  So,  parabola  x  square  a  parabola  is  model  for  such

minimization process, which is related to the quadratic function.



(Refer Slide Time: 28:45)

Now, I  am  going  to  talk  about  once  we  have  talked  about  the  conditions,  for  the

minimum. I am now going to talk about equality constraint problems. This is simply an

algorithmic process.  I  am going to illustrate  by an example;  let  us suppose this  is  a

problem we generally do in univariate calculus, I am sure every one of us would have

done, I would, I am given a rope of length l feet. I am going to, I am as to enclose an area

with this, let a be the length b be the width 2 a plus 2 b is equal to l. 

So, I am given a rope of fixed length. What is the idea, here I am going to have to use the

rope to enclose an area, the area a is ab a is the side b a and b are two sides of the

rectangle.  So, what is the idea, when a when 2 a plus 2 b is fixed, as l how do you

maximize, the area a times b. Suppose, somebody says a, I am going to give you a rope,

the area that you can enclose by that rope is going to be yours free.

So, humans are built in greedy. So, you want to be able to say hey, with this rope I want

to be able to enclose the maximum area that you have to, that  I can.  So, that is the

problem now. 

So, maximize it, a is equal to a b, when two times a plus b is l. So, now, you can see is a

constraint problem is a variable b is a variable a and b are not independent, if a and b are

independent  variable, when is  this  maximum infinity  a  is  infinity  b is  infinity, but a

cannot be infinity b cannot be infinity, because a plus b is l by 2 or 2 times, a plus b is l.

So, I have to solve a problem with the fixed length rope. 



So, that is the constraint. So, this is the equality constraint. So, I have to maximize under

equality constraint, what is a simple way, I am sure every one of us, if you cannot have

garden, here b as degree until you have solved this problem, once in your life I am sure

every one of us have solved.

So, what is that, we do, we first eliminate b from this constraint, you can simply say b is

equal to l by 2 minus a. So, if you substitute be in the a becomes this. Now, a becomes, a

quadratic function in a, you compute the derivative of capital  A, with respect a little, a

this  is  the  derivative  you  compute  the  second  derivative. It is  negative, the  second

derivative positive means minimum second derivative, negative means maximum. So,

the a obtained by solving da by da is 0. So, when l by 2 is equal to 2 a or a is equal to l

by 4.

(Refer Slide Time: 32:04)

So, the first derivative is 0 means l by 2 is equal to 2, that implies the a is equal to l by 4,

then a is equal to l by 4 b is also a l by 4. So, at which time the area's maximum the ,

maximum area is l square by 16.

So, this is the method for solving minimization problem under constraint. So, what is that

you do use the constraint eliminate one of the variables. You convert that two variable

problem  into  uni  variable  problem. Apply the  principles  of  calculus, you  solve  the

problem method of elimination, that  is  the illustration  for solving equality  constraint



problem, this is easy for small number of variables, but in meteorology you have tens of

thousands of variables you cannot do this, but again it is essentially an example.

(Refer Slide Time: 32:49)

So, what  is  the general  method for solving equality  constraint  problem, the classical

Lagrangian multiplier. So, I am going to quickly, run over the framework for classical a

Lagrangian multiplier so, equality constraint minimization problem lagrangier multiple

multiplier method.

Let g be a vector valued function I want to be able to minimize f of x under the constraint

that g of x is equal to b. What is b b is a m vector g x is a function, is a vector valued

function. So, g refers to g m g 1 g 2 g m b refers to b 1 b 2 b m. So, what does this

constraint refers to g i of x is equal to b  i for I running from 1 to n. So, each of this is

going to constrain. 

So, I would like to be able to minimize, this under equality constraint f of x is the non-

linear function g is a non-linear equality constraint in the previous problem, whatever the

equality constraint a plus b is equal to l by 2 that is a linear function a is a variable b is a

variable. They occurred in the first variable, first degree here, g of x g 1 of x g 2 x. I do

not know, what it is? It could be any function. So, in general is a non-linear function. So,

define a Lagrangian, which is a sum of f of x b minus g of x that is the constraint, you

lambda is a vector lambda transpose b minus g of x is a scalar add that scalar to f of x.

So, that becomes a new Lagrangian function. 



Now, x is a vector belonging to R m lambda is the vector belonging to R m, because g is

a m vector b is the m vector lambda must be a m vector.

So, I have now defined a function, where this is n long, this is m long. So, the total

number of variables is n plus m and expanding the space or which  I need to do the

minimization. This is the technique that lagrange are designed a number of years ago.

What did he say? He said the following, what is the theorem, the theorem is as follows,

the minimal of x, then g of x is equal to b, the constrained minimum of f of x is equal to

the unconstrained minimal of x. 

He converted the problem of constrained minimization to an unconstrained minimization

we know how to solve. Constrained minimization are difficult. So, what is the method

you  convert  a  constrained  minimization  problem  into  unconstrained  minimization

problem,  but  what  if  the  prize  we  are  going  to  pay.  The  constrained  minimization

problem  is  a  n  dimensional  problem,  because  x  is  m  vector,  but  the  resulting

unconstrained minimization problem is a m plus n variable is a larger space.

So, by expanding the space over which I am going to minimize, I can convert a hard

problem into an easier problem (Refer Time: 36:00). So, that is the fundamental idea.

Lambda is called the undetermined Lagrangian multiplier. So, what is that an constraint

minimization problem. How do I solve this? You compute the gradient of l with respect

to x equated to 0, gradient of l with respect to lambda, the second one must be lambda, I

am sorry, this must be lambda. 

So, you compute the gradient with this x grading with this (Refer Time: 36:28) lambda

equate them to 0. The gradient computation, I have already talked about, when I talked

about multivariate calculus how to compute gradient of various types of functions. Now,

you can see why we do all of you with me that is right.

So, this gives you a set, these two give you a set of necessary condition, a necessary

condition for the minimum is that at the minimum, the gradient of f of x. So, what does

this essentially say, if b is equal to g of x. So, if this constraint is satisfied, this is trivially

true. So, if the constraint is (Refer Time:37:02) satisfied, what does the first one say the

first  one, essentially  tells  you  gradient  of  x  with  respect  f  is  simply  summation  of

lambda, I gradient with respect to x of g i i is equal to 1 to m. 



So, each g has a gradient lambda. I is, are the constants, this is the linear combinations of

the gradients of the components of g f of x is the gradient of f. So, at the minimum what

does Lagrangian theory say, is one of the most beautiful results in applied mathematics.

It says a necessary condition for the minimum is that, at the minimum, the gradient of f

of x must be a linear combination, that gradient to the constraint functions.

In an unconstraint minimization, what must they gradient value delta f must be equal to

0,  that  is  unconstraint  in  a  constraint,  the  gradient  must  be  equal  to  the  linear

combination of the constraint functions, the coefficient of the linear combinations are the

lambdas.  So,  by  solving  these  two  equations  simultaneously,  you  not  only  find  the

minimum  x  star,  but  also  find  the  value  of  lambda,  which  are  used  in  this  linear

combination. 

So, you kill two birds in one stroke, you kill two birds in one stroke. So, either you solve

by minimization  or  constraint  minimization  by  elimination  as  we did  in  this  simple

example, which is feasible only for small dimensional problem, if the problem is a large

dimensional,  the only recourse to solving equality constraint minimization problem is

Lagrangian  multiplier  method.  Lagrangian  multiplier  method,  the  Taylor  series

expansion  these  are  very  fundamental  tools  in  doing  many  things  that  we  do  in

optimization theory.

(Refer Slide Time: 38:54)



We can also talk about a set of sufficient conditions. I am not going to go over the details

of this, but I want to, I want you to recognize the following, I am going to talk about the

need for sufficient tradition in an unconstrained set up. In an unconstrained set up, what

is that, we have talked about the gradient of f must be 0, the Hessian of with respect to x

must be s p d, this is the unconstraint characterization of is that I am sorry, this is the let

me I made a mistake, I have to erase this part, if the Hessian must be a s p d.

So, in the previous slide, we only talked about the necessary condition. First derivative, I

have not talked about the second derivative condition, R is replaced it. There is a first

derivative condition and second derivative condition, first derivative is necessary second

derivative sufficient  both were constrained,  both were unconstraint.  So,  the sufficient

condition for equality constraint problem is that the Hessian of l. So, that should not be

surprising that is the reason, I went into this, in the case of unconsidered problem. The

Hessian must be symmetric positive definite, what is the analog of that, if you consider

the Hessian of l with respect to x, which is given by this, that must be positive definite in

an appropriate set of space.

So, with the necessary condition and sufficient condition we have shown the conditions

for  existence  and uniqueness  of  minima  then  there  is  equality  constraint  that  is the

fundamental talent of this. I am not proving the derivation of sufficient condition as  I

have not proved several of the claims, I want you to remember all the theory, that we

have covered in matrix theory is the half course, in linear algebra all the topic, we are

covered in finite open vector space is one third of a course. All the topic I am covering in

optimization literature. 

Optimization literature is about one third of a course in optimization theory. So, these are

parts of several courses pulled together, in a huge to be able to develop an appreciation,

for the underlying mathematical background needed in doing what we do.



(Refer Slide Time: 41:23)

Now, I am going to illustrate by a simple example, let n be 2, let f be given by this that is

a non-linear function. You can readily, see I want to be minimize, this I am considering

inequality,  constraint  problem.  I  am  considering  a  Lagrangian  multi  multiplier

Lagrangian  function.  I  compute  the  first  order  necessary  condition.  So,  first  order

necessary condition gives rise to these two equations, I solve these two equations and I

get this optimal solution to be this. 

So, that is the optimal solution, I am going to leave the method of solving, this to get,

this as a homework problem. You can readily see, I also compute the Hessian and I show

the  Hessian and  an  appropriate  definition  is  also  positive  definite  and  hence  I

demonstrate  that  x 1 is equal to 4 and x 2 is equal to minus half  is  the constrained

minimization problem for this. It is a very typical home work, problem that is, that one

has to do why I would like you to emphasize the following.

The function is a quadratic function look at that now, first degree, second degree,  the

constraint is a linear function. So, objective function is quadratic the constraint is linear,

simplest possible case, you have to, have an, here you have to be able to do this, to be

able to do anything else in life in this area. So, this is a very nice example that illustrates

the  power of  the  Lagrangian  multiplier  by  expanding.  So,  in  here  there  is  only  one

lambda, because there is m, is 1 the n is 2 m is 1. So, I find both the lambda x 1 x 2. We

solve the problem and that is a constraint minimum.



(Refer Slide Time: 43:13)

Now,  I am going to talk about  an another  class of function, which is  called penalty

functions, which is again I have, I have very well used in, it is very much in vogue, in

data  assimilation  literature,  in  data  assimilation  literature,  Lagrangian  multiplier

technique is called strong constraint formulation.

So, let me go back and. So, they do that to tell you that Lagrangian multiplier technique

within the context of data assimilation, is called strong constraint problem, because I am,

I want to be able to solve the satisfy, the constraint at any and every cost because, the

constraint is sacred  I cannot afford to, not to satisfy a constraint. So, the constraint is

very strong, there is no way out of it, but in some cases I have constraint, but I do not

want to enforce the constraint strictly, but you should be vary constraint, you cannot, you

can deviate for the constraint, but not too much. So, that is what is called week constraint

formulation. This week  constraint  formulation  is  done  by  a  class  of  method  called

penalty function method.

See people in geosciences, they are very clever people. If they call penalty function they

will  say oh yeah, it  is already existent  in  operation  the literature.  So,  they give it  a

different name by whatever name you call, the rose smells the same. So, the same idea

comes in different areas by different names, it is very easy to get lost. That is why I am

trying  to  develop  this  bridge  between  the  terminologies  that  are  used  in  different

disciplines,  strong  constraint  Lagrangian  weak  constraint.  Penalty  weak  constraint



means, what. I want to respect, but not to the (Refer Time: 45:11) verbal verb inverted

the law, it is like speed limit. You say somebody says the speed limit is 60 miles. If you

go 60.1, are they going to give you a ticket? No, if you go 70, definitely they will give

you a ticket.  So, when does the police catches somebody? When there is when the

speed limit in this highway 60 miles or 60 kilometers well plus or minus 5 percent.

If you go too slow they will come and ask you why are you going too slow? If you go

too fast they will say hey I will give you a ticket you are. So, you are allowed to break

the rule, but within certain limits. So, speed limit is an example of a weak constraint

example of a weak constraint. So, f is a function. So, let us look at this now again f is a

function g is another function, I want to be able to minimize f,  I want to be able to

minimize under equality constraint. So, I am trying to solve equality constraint problems

that is where, that is interesting. So, instead of a Lagrangian multiplier of fun Lagrangian

function now, I am going to talk about a penalty function what is the penalty function,

this is fof x plus alpha times g transpose g x.

So, this is the alpha is called the penalty parameter alpha is a fixed. Large number alpha

is  a  fixed.  Large  number,  because  I  have  a  2,  here  I  think,  I  must  add a  2,  here  2

otherwise it is not necessary have it, you need to have a 2, if I have a 2 here, we should

have a to belong. So, what is g transpose g x, it is simply g i square sum of g i square

alpha is called the penalty constant or a penalty parameter alpha is chosen, alpha is not a

free variable, there is only one free variable which is x. 

What is the difference between this and lagrange multiplier? In the Lagrangian multiplier

lambda as a free variable, x is a free variable. Here, it looks as though alpha plays the

role of lambda, it looks as though alpha plays the role of lambda, but the difference is

alpha is fixed. It is not a free, but x is free. So, I had two free variables, here one free

variable and another para another free parameter, but I have to choose and fix it this is

the difference place now that is right.

So, alpha is called a penalty parameter. Generally, penalty parameters are supposed to be

large.  So,  the  gradient.  So,  what  is  this?  You  solve  this  constrained  minimization,

unconstrained  minimization  problem.  By  solving  this  unconstrained  minimization

problem p alpha, what is the gradient of p alpha? It is gradient of this plus that. Now, you

remember, when we talked to a multivariate calculus h transpose h g transpose g, the



gradient of this is Jacobian transpose times g. In order to be able to do that you must

have known the knowledge from multivariate calculus that we did in the last lecture.

That is why we had tried to make it as complete as possible, where d is the Jacobian. So,

x star the optimal solution is obtained by solving the gradient is 0. 

This  optimal  solution  x  will  always  depend  on alpha.  So,  the  optimal  solution  is  a

function of the penalty parameter. All of you (Refer Time: 48:29) place. So, give it a

problem, I can solve the problem in a strong constraint fashion, given a problem I can

solve the problem in a weak constraint problem, that things of the following question,

how are these solutions are related? It can be shown, I am going to show in a minute, if I

took x star alpha and let alpha go to infinity, it reduces to x star alpha of the Lagrangian

multiplier technique.

In other words, the weak constrained solution converges to the strong constraint solution,

when the penalty parameter grows and bounded alpha goes to infinity you see in other

words a the problem is the same problem, you solve it, do different ways, you followed

by two different ways. So, which solution do I take, I want to be able to talk about the

difference or relation between the two solutions and that is the final relation, the weak

solution converges to a strong solution as the penalty parameter goes to infinity. So, what

does this tell you? If you believe strong constraint problation is difficult, weak constraint

problem you can solve it and you can simply change alpha or plug alpha to a large value

then you will know you got a solution, which is as close as possible to a strong solution.

So, what is the alpha in terms of speed limit in some police department? They are very

strict if you, they will not allow more than 2 miles, above speed limit in some police

department they will allow 5 percent, above the speed limit that is the value of alpha in

different departments and why do they do a strict,  a speed limit? They want to make

money if I give you a ticket; the city gets money for out of you. 

So, what is one cheap way for cities to be able to get good money from public put speed

limit, if you put speed limit that will people, who will test it and if you catch them when

they test the speed limit, you can find them, you get money, are you with me please. So,

alpha is the parameter by which you allow you vary the allowance above speed limit.



(Refer Slide Time: 50:59)

So, that is where the role of the parameter alpha comes to being. So, it can be shown that

the solution, the weak solution tends to a strong solution as alpha becomes large I. So,

there are other properties I am sure you can follow this, but that js the crux the main

result of this page is, this result. The convergence and is the fundamental result.

(Refer Slide Time: 51:24)

I am going to illustrate the weak solution and a strong solution again by example. So, I

got an f of x, I got an f of x, I got a g of x. It is a chronic problem, with the linear

constraint, you can easily see this problem. Let us look at this problem. Now, this is x 1,



this is x 2, f of x is the parabola. You can see a bowl sitting on that, but I am interested

that line. So, I now have to define the parabola over this line, all of you with me please

this. So, instead of the parabola being located at the origin now, I have to think of a

parabola defined over the line, where will the parabola be a minimum, a little reflection

tells you it must be a half; are you with me.

So, the constraint solutions have (Refer Time: 52:19) is unconstraint solution is 0. So,

that is what we have. We have shown, we have formulated this problem, as a penalty

function problem p alpha alpha by 2. We have computed the optimal solution by penalty,

the optimal solution by penalty is given by this. 

Now, when alpha goes to 0 1 over alpha, goes to, when alpha goes to infinity 1 over

alpha goes to 0 therefore, 1 over 2 plus alpha inverse over 2 plus alpha inverse tends to 1

over half, 1 over half everybody with me please therefore, you will be able to see and if

you solve the same problem. We have already solved half, have is the strong solution the

weak solution converges, a strong solution as the penalty parameter grows and now.

(Refer Slide Time: 53:17)

It is a beautiful illustration of the relation between the 2, strong versus the constraint

formulation again there are two choices, mathematicians have provided us. So, which

one? We are going to choose in our analysis  that is the question, minimize f of x with

respect to g of x is equal to b. So, what is the one standard condition that constraint



condition that comes in meteorology. Barotropic is that, must be barotropic, there are

constraints geostrophic constraints. 

So, then you, when you recover the u v velocity it cannot be anything, it must can satisfy

geostrophy. So,  geostrophy is  a  constraint  that  comes  from physics  u and v  are  the

velocities  that  you may  recover  from other  means. There are  covered  values  of  the

velocity, if they  do not can satisfy the geostrophic constrain, the retrieved value of the

velocities have no use. So, what is that you would like to be able to say, I recover the

velocity with a constraint, the recovered velocity must satisfy geostrophic constraint. Do

you want exact geostrophy or you want approximate geostrophy?

If  you want  exact  geostrophy strong constraint, if  you want  approximate  geostrophy

weak constrain  and  in  meteorology  all  the  equations  are  approximation  from navier

stokes, from primitive equation or it may. So, when you are model, is an approximation.

There is no point in requiring something to be stronger, are you with me; please. So,

everything  has  to  be  consistent  therefore,  weak constraint  formulation  is  a  beautiful

formulation, where you allow for variations from the equilibrium or conditions, but only

by a very small percentage. So, it fits and. So, this mathematical concept of strong versus

weak jives value with our concept of geostrophy, is that atmosphere which is perfectly

geostrophic, no.

Is  that  atmosphere  is  always  benetropic  no  is  always  benetronic, no  in  some  cases

benetropic in some cases, benetronic there are different situations. So, we would like to

make different approximations. So, depending on the nature of the approximations, we

can  impose  different  kind  of  constraints  to  be  able  to  handle  problems  that  is.  So,

mathematics provides you the facility to be able to handle different parts of analysis and

different  kinds  of  assumptions. You want  to make and  that  is where the fit  between

physics and mathematics comes into beautiful hue and that is what I would like you to

appreciate when we do this.

So, Lagrangian multiplier method is a strong constraint formulation which process exact

equality  constraint  penalty  function  method  is  called  a  weak  constraint  formulation,

which only process approximate, equality depending on the values of alpha, the solution

is most closer to the constraint. When alpha goes to infinity, when the, when alpha goes



to infinity concerned is exactly satisfied, we will use both the formulations in most of

data assimilation problems.

(Refer Slide Time: 56:34)

With this we come to a set of exercise problems. Again I want you to go over these

exercises, these are very simple exercise problems, I also would like to recommend that

you do these exercises, both the pencil, paper also on a computer. One particular medium

of  my choice,  my favorite  choice  is  MATLAB for  example,  when you say plot  the

function, it should be f of x, I am sorry not the f of alpha. This should be f of x not f of

alpha.

I would like you to plot this function where the quick way to plot this function MATLAB

in two lines, you can do. So, I would like to recommend use of either MATLAB or

mathematica, if you have good facility in programming, in either and mathematica or

MATLAB, you can do these exercises, pencil, paper and you can verify them by doing it,

a computer and that will  make your understanding rather complete.  So, I have given

exercises covering most of the topics that we have covered in this arena.



(Refer Slide Time: 57:46)

Some of the standard textbooks on optimization, these are my favourite textbooks. I have

copies of these things in my library, my personal library, luenberger the optimization

vector  space 1969 is  a classic  book, luenberger  introduction  to  linear  and non-linear

programming in 1973 is another classic book on constraint minimization nation. So, for

linear and non-linear programming problem, published in 1996 is again another classic. 

So, any one of these, all these books are very similar, you can read these books based on

the notes to further expand on the proves and deeper understanding and I hope with this

you come to realize how? What are the, What is the extent of the mathematical ability,

that one needs to have to be able to pursue and do good work in data simulation, this

involves conception finite dimension, vector space concepts from matrices concepts from

multivariate calculus and concepts from basic optimization theory. 

There is another part which  I am not included in this discussion is probability theory,

when you go to  stochastic  aspects  of  estimation,  you need to  understand reasonably

good, you need to have a good background in probability theory and basic statistics.

We will try to fill in some of these things, as we go by, through the lectures. So, with this

we will conclude our overview, of mathematical preliminaries for doing data analysis.

Thank you. 


