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Matrices

The  last  module  2.1,  we  reviewed  the  fundamental  principles  of  vector  spaces  and

various concept associated with vector space. In this module, 2.2, I am going to provide a

quick overview of matrices.  I am sure many of you have been introduced to various

properties of matrices. I am going to collect all the properties that we would need at one

place. So, I would like to make this module as a one stop shop where you can go back

and refer to all the basic principles needed to pursue most of what we have to do in data

assimilation.

(Refer Slide Time: 00:50)

First definition and basic operations of matrices; a matrix m by n matrix is a real matrix

if it has the n row or it has m rows and n columns. There are n m elements. Each row is a

m vector. I am sorry each column is a m vector each row is the n vector if m is not equal

to n. It is called a rectangular matrix i is. So, any typical element is called a i j i is called

the row index j is called the column index when m is equal to n. 

It is called a square matrix. Square matrixes of order n are size n order and size are used

synonymously, if all the elements are 0. It is called a 0 matrix or a null matrix. We need a



number 0. We need a null vector 0. We also need a null matrix 0. So, we will use the

symbol 0, but the context will tell us whether we are talking about the number 0 or the

vector 0 or the null matrix 0, but we need all these all these all these objects More often

than not we will be dealing with square matrices.

(Refer Slide Time: 02:10)

So, A belongs to R of m by n. I would like to be able to say a word or 2 about R n by n.

Please recall, we have used the symbol R n to denote the set of all vectors. This is the set

of all vectors. This is the set of all vectors likewise R n by n is the set of all matrices. So,

there are n elements in a vector. There are m square elements in a matrix each element is

a real number. So, there are infinitely many vectors there are infinitely many matrices in

this set. So, I would like to emphasize this these sets R n. R n by n cross n; they are all

infinite sets each one is a different object a vector is an object matrix as an object and so

on.

I can refer to ith row or the jth column. So, yeah if you go back to the previous slide this

is this is called the; this is called the first column. This is called the second row. So, we

can talk about the notion of a row of a matrix. It is important to recognize row of a

matrix a column of a matrix. 

So, a matrix can be represented by represented by sequence of columns or a sequence of

rows. So, the ith row is represented by a i star the jth column is represented by a star j.

So, a star 1 is the first column a star 2. So, this must be this must be 2 here this is not n, I



am sorry; this must be 2. So, a star 1, a star 2, a star n; these are n columns. A 1 star, a 2

star a and star these are n rows. So, this is called column partitioning this is called row

partitioning. So, we can talk about partitions of a matrix.

Again  going  back  to  the  previous  slide  the  element  that  lie  along  the  diagonal  for

example, in here that is called the diagonal of the matrix. So, column row diagonal these

are called different cross sections of the matrix. So, a 1 1, a 2 2, a 3 is a vector of size n

the vector that lies along the diagonal. So, that diagonal is called. So, called principal

diagonal of a matrix all the diagonals that are parallel to the principal diagonal are called

super  diagonal  or  sub diagonal  super  diagonals  are  above the principal  diagonal  sub

diagonals are below the principal diagonal.

(Refer Slide Time: 05:17)

These  are  all  nomenclature  that  one  has  to  remember  these  are  fundamental  to  our

pursuit of mathematical treatment of data simulation.

Now, I am going to define quickly several operations and matrices, I would like to back

up a little and then explain this. Now if I have set of integers, I need to define operations

integer  addition  multiplication  subtraction.  If  you  have  real  numbers  you talk  about

addition multiplication subtraction division if you have vectors you talk about addition

scalar product outer product and so on. 



So, what does this tell you if you have a set of mathematical objects we have to talk

about your sets of consistent operation for those sets? So, for number there are operations

there  real  numbers  operations  recompensed  number  there  are  operations  vectors  that

operation polynomial there are operations.

So, with respect to matrices likewise we have to have different sets of operations, I am

going to quickly define some of the fundamental operations on matrices. So, if I define 3

matrices a b c, if I define 3 vectors x y z, if I define 3 numbers a b c; now look at this;

now I have elements from 3 different animal kingdom matrices is one class of animals

vectors is another class of animal  scalars are another class of animals I am going to

combine all of them to be able to do what I want to do. This is where the notion of a

vector space comes into play some on difference of matrices is the matrix. So, c is the

matrix which is the sum of a plus b; c is the matrix which is the difference of a minus b

these sums are called element wise sum element wise difference.

If a is a matrix, a is a little a is a scalar, I can define a to be a times a; that is called scalar

multiplication of a matrix you multiply the element each element of the matrix a by the

scalar  A.  I  also  can  combine  matrix  and  vectors  this  is  called  matrix  vector

multiplication, I can define a vector y as the product of the matrix a and a vector x and

that is defined by y i ith component of y is given by the ith the row of a times the vector.

So, in here, I am going to represent a little picture to tell. So, if this is the vector y if this

is the matrix a and this is the vector x to compute y i i take the ith row of a i multiply that

by the vector x and that is the scalar product the ith row of a is given by a i j; j running

from 1 to n. 

The elements the vector x is given by x j j running from 1 to n. So, I am multiplying the

first element with the first element second element with the second element; nth element

with nth element summing in the map. So, it is the scalar product of the ith row and the

vector x is the yth element, you continue to those for every one of them and that defines

the vector that is what is called matrix vector product.



(Refer Slide Time: 08:26)

So, I can define now matrix; matrix product, we talked about several different operation

previously look at this. Now sum of matrices difference of matrices multiplication of

matrix by a constant multiplication of a matrix by a vector, now I am going to talk about

multiplication of a matrix by a matrix multiplication of a matrix by a matrix is also a

matrix it is given by the ith element of the matrix again, we all should know if I have a

matrix c, if I have a matrix a, if I have a matrix b, this is a, this is b, if you consider the i

jth element in here, this is the ith row, this is a jth column, this is the element c i j, the c i

j is essentially the inner product of the ith times the jth column of b. 

So, ith a row and j ith row of a and jth column of b the inner product is c i j that is given

by this product, there are other ways of looking at the matrix product, one is called the

Saxpy way another is called the outer product way, I have given these definitions in these

I would like you to verify that the matrix product defined by the inner product Saxpy

outer product they all give rise to the same result and I would like to be able to give that

is  a  homework  problem  for  you  to  work  out;  I  think  it  will  be  a  an  illuminating

homework for you to verify the matrix product can be defined in one of 3 ways.

I  would like  to  now  emphasize  the  fundamental  property  of  matrix  product  matrix

product is not commutative; that means, a b is not equal to b a let us go back now if you

take 2 numbers a b, a b is equal to b a if you took 2 numbers a plus b is equal to b plus a,



if you took 2 matrices a plus b is equal to b plus a, but if you take 2 matrices a b in

general is not equal to b a. 

So, what does this mean algebra of real numbers is commutative algebra matrix algebra

is non commutative matrix product is not communicative and that is a very fundamental

restriction when you go from real algebra to matrix algebra that one has to be cognizant

off.

(Refer Slide Time: 10:48)

Now, I  am going  to  define  lots  of  other  operations  there  are  ten  of  operations  and

matrices which is very rich if I have a matrix which is m by n, I can define a matrix

called A transpose of A which is denoted by A to the power T, it is the n by m. The rows

of a or columns of A transpose and vice versa. So, if A is; this A transpose is that. So,

what are the properties of transposes transpose operation transpose is a very fundamental

and a basic operation. 

So, transpose is called a urinary operation. So, I would like to now distinguish between 2

types of operation, operation can be either a binary operation a binary operation needs 2

operands for example, to add I need 2 numbers to multiply any 2 numbers to divide I

need 2 numbers.

So, a biginary operation needs 2 operands a urinary operation on other hand needs only

one  operand  what  are  the  examples  of  urinary  operation  transpose;  transpose  of  a



negative  of A inverse of A.  So, transpose negative inverse they are all  unity  urinary

operation addition subtraction multiplication they are all binary operation. 

So, I would like you to be able to be cognizant of the fundamental difference between 2

types of operators binary operator binary operation urinary operator urinary operation

this urinary operation transpose has several properties transpose of A transpose is itself

transpose of the sum is the sum of the transposes transpose of the product is the product

of the transposes these are all basic properties I am not going to prove them many books

that I talked about at the end of module 2.1 has proofs of these in your case, if you do not

want to prove this at least you should be able to verify how do you verify these take 2

matrices A and B, take a matrix A, do these operations and verify. So, I would like you to

very strongly recommend please verify these properties is very fundamental to see why

and how they operate they work.

The next urinary operation is called the trace of a matrix trace of a matrix is defined to be

the sum of the elements of the diagonal. So, if I have a matrix a it is simply the sum of a i

i when i is equal to one i get a 1 1, a 2 2, a 3 3, a n n. So, trace is a functional is a

function from R into R you can think of it as a functional the trace has lots of important

properties trace of a is equal to trace of A transpose I am assuming a is a n by n matrix

trace of a plus b is trace a space of b trace of alpha times a is alpha time space of b trace

of a b is equal to trace of b a trace is a same. 

When you compute the product a b and b a trace of the product a b c is b c a and c b a,

you can think of it as a circular property. So, this is a, this is b, this is c. So, you can think

of a b c you can think of b c a, you can think of c a b you can you can run around the

circle starting at a starting at b are starting at c. So, this; assume the property f essentially

tells you no matter where you start the triple product have the same trace.

Then the trace of a times b times A inverse is simply a trace of b that that essentially

comes from applying the property f to g and again I am going to leave all these things as

a  homework  problem.  I  would  like  you  to  verify  in  other  words  these  are  simply

definitions I would like you to be able to verify using simple examples is absolutely

essential that we all have a good understanding of these properties 



(Refer Slide Time: 15:11)

Then the notion of a determinant of a matrix, I am trying to list all the properties that the

matrix process determinant of a matrix, we all know determinant is again is a function

that maps a to real the determinant of a matrix is a number the determinant is defined by

the product of the sum of the product of a i j with the cofactors everybody should have

known  the  definition  of  a  cofactor  co-factor  is  called  the  signed  minor.  So,  the

determinant of a matrix is of fundamental quantity I am sure most of you should have

been introduced to the notion of a determinant.

Now, I am going to introduce some of the properties of determinants if a is not singular

determinant of a is not 0, if the determinant of a is 0, then the matrix is called singular

determinant  of  a  is  equal  to  the  determinant  of  A transpose  determinant  of  A B is

determinant of A times determinant of B determinant of A inverse is 1 over determinant

of A; if a is non singular.

Again, these are the properties I am going to ask you to verify. So, what is the first thing

ultimately you know how to prove, but the first step towards proving is to verify at least

you should be confident to the fact yes this properties hold; I have already verified using

examples, but examples verification is not a proof; proof is little bit more abstract a proof

deals  with  all  the  cases  verification  deals  only  with specific  instances.  So,  that  is  a

difference between verification and proving is the ultimate goal, but to get to prove you

need to verify first. 
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So, you need to build your expertise first to verify and then to prove. Now, I am going to

enlist properties of several special matrices first of the property is called the symmetry A

matrix A is said to be symmetric if A transposes A. So, what does this mean if I have a

matrix if I have 1, 2, 3, if I have a 1 here, there must be a 1 here, if I have a 4 here that

must be a 4 here, if I have a minus 1 here, I have a minus 1 here. 

So, if I took the diagonal element the upper triangular part of the lower triangular part are

mirror images of each other and that is what A transpose a refers to if A transpose is

equal to a means the upper half and lower half are a mirror images of each other. So,

symmetric  matrices  are  special  class  of  matrices  there  is  a  restriction  the  restriction

comes from the fact the upper half must be a mirror image of the lower half a matrix

could be a diagonal matrix in case there are only diagonal elements all the non diagonal

elements are 0. So, what is an example of a diagonal matrix an example of diagonal

matrix is 1 2 3, again 0 0 0 0 0 0; that is an example of a; that is an example of a diagonal

matrix.

The unit matrix is a special kind of a diagonal matrix where all the elements along the

diagonal are 1 1 1. 

So, in this case, this is the diagonal matrix of size 3, this is also a diagonal matrices of

size 3, this is a; this is a non unit matrix, this is a unit matrix, then we can talk about

upper triangular matrix upper triangular matrices are those the diagonal and above the



diagonal are non-zero. Lower triangular matrix is are those where the diagonal and the

below the diagonal are all non-zero this is lower triangular that is upper triangular then a

matrix can be tridiagonal; a tridiagonal matrix is one where the principal diagonal is non-

zero the first super diagonal is non-zero. The first sub diagonal is not 0. Everybody else

is 0; that is called tridiagonal matrix.

A matrix  is  said  to  be  orthogonal  matrix  if  A transpose  is  equal  to  a  inverse.  So,

orthogonal matrix have this extremely nice special property that inverse is equal to the

transpose; these are extremely basic pro these are examples of basic properties of special

class of matrices.

(Refer Slide Time: 19:24)

The  special  matrices  continue  a  matrix  is  said  to  be  skew  symmetric  matrix  if  A

transpose is minus A. So, symmetric matrix is A transpose a skew symmetric matrices a

transposes  minus a.  So,  in  a  skew symmetric  matrix  a  i;  a  i  i  in  a  skew symmetric

matrices a i i is equal is equal to a I am sorry here it must be i j a i j must be equal to

minus a j i and a i i i is equal to 0 if i is equal to j.

So, the diagonal elements of a symmetric matrix, skew symmetric matrix is 0. So, what

is an example of a skew symmetric matrix 0 0 0 1 minus 1 2 minus 2 3 minus 3 that is an

example of a skew symmetric matrix the diagonal elements are 0 there is a reflection, but

the sign change. So, a i j is minus a j i given any matrix a i can separate the matrix into 2

parts one is called the symmetric part of the a another is called the skew symmetric part



of a the symmetric part is one half of a and a a plus A transpose the skew symmetric part

is one half of a minus A transpose. 

Therefore, you can easily verify a is equal to a s plus symmetric part plus non symmetric

part this is called the additive decomposition of a every general matrix can be expressed

as a sum of a symmetric  matrix  consists  of a symmetric  part  and a skew symmetric

matrix consisting a skew symmetric part.

Given any matrix A; the product A transpose; the product A transpose A; these are 2

matrices; one can generate out of matrix A. In other words; given a matrix A compute A

transpose. So, I have a and A transpose, I can multiply A and A transpose like this or A

transpose A; A like that it turns out A; A transpose and A transpose A, both of them are

symmetric and they have a special name they are called Grammian matrices gram is the

one who first introduced this. So, these are called grammian of a Grammian of a are

always symmetric for whatever a is.

(Refer Slide Time: 21:49)

The next one is called the concept of rank of a matrix the rank of a matrix is essentially

the number of linearly independent rows or columns. It can be shown the column rank is

equal to the row rank. So, you can think of number of independent rows of a matrix

called a row rank the number of yeah the number of independent rows of a matrix is

called the row rank because the rows are vectors, if I have a bunch of vectors. 



I  can  talk  about  the  linear  independence  of  a  set  of  vectors  the  number  of  linearly

independent vectors is called the rank. So, I can think of a row rank of a column likewise

column rank of A the row of A is equal to column rank of A and the common value is

called the rank of A. So, A is m by n matrix the rank of A is less than or equal to the

minimum of m and n rank of A is  rank is  equal  to  A transpose of is  the rank of A

transpose rank of A sum is less than the sum of the ranks rank of a product is minimum

of the rank of A and rank of B.

We have earlier seen outer product of 2 vectors is the matrix, if a matrix arises outer

product of 2 vectors that matrix is always as a rank one if a matrix is non singular the

rank of A is n. So, if A is n by n matrix; if it is non singular the determinant is not equal

to 0, it is also the fact that the matrix is also n. So, you characterize the set of all non

singular matrices to be those; the non-zero determinant or full rank. So, this is called the

full rank; the full rank condition is same as non singularity is the same as determinant of

a to be not equal to 0.

(Refer Slide Time: 24:15)

I am going to review the concept of inverse of a matrix inverse of A inverse of a matrix

inverse of a matrix is denoted by A inverse and how do I define A inverse the same way

in number theory. We say A times 1 over A is 1. We call 1 over A as the reciprocal in

matrix theory. We call it A times A inverse is equal to I; we call it inverse. 



So, inverse and reciprocal are pretty synonymous the role of number one in numbers is

same as the role of number the matrix i in matrices, they are called unit elements if you

multiply any number by 1 is same. If you multiply any matrix by identity is also one. So,

what is one for numbers is identity matrix for matrices. So, I would like you to be able to

know the property of an inverse matrix and through the inverse a times A inverse is i

inverse of the urinary operation inverse of A inverse is a and that should not be surprising

because reciprocal of a reciprocal is a given number.

So, I have a, I have 1 over a, that is equal to A. So, the reciprocal of reciprocal is a same

number. So, inverse of inverse is A inverse of the product is the product of the inverses

taken in the reverse order assuming the matrices are non singular these are fundamental

property which will be used repeatedly in data assimilation inverse of A transpose is the

transpose of the inverse and is a combined. So, inverse is one urinary operation transpose

is another urinary operation; I am talking about the conjunction between conjunction of 2

urinary operations. 

So, transpose is the inverse is the inverse of the transpose and that is denoted by A to the

power minus T. So, A to the power of minus T means is A transpose inverse.  I can

perform any operation first  any other operation second I can transpose an inverse or

inverse and transpose both are same they are commutative.

(Refer Slide Time: 26:42)



Once you have the concept of inverse, I am going to introduce you to several different

formulas relating to inverses these are called Sherman Morrison formula, these are called

inverse under perturbation. So, if I have an identity matrix; the inverse of an identity

matrix is equal to itself that is a general property, we all know one the reciprocal of one

is one; there is a protocol of identity  matrix  is identity  matrix,  but if  I  add an outer

product matrix to an identity matrix, it is no more an identity matrix, I know the inverse

of identity matrix is its is identity. 

So, the question is this; if I perturb the identity matrix by an outer product matrix, we

have already seen outer  product matrix  as a  rank one the inverse is  the sum can be

expressed by this formula. This formula is called Sherman Morrison Woodbury formula.

So, c is the vector d is the vector c d transpose is an outer plan is an outer product matrix.

So, this is called a rank one perturbation of I of n. So, if I perturb the matrix and compute

the inverse I do not have to the compute the inverse from ground up I can simply update

the  inverse  of  I  with  this  correction  and  that  formula  carries  over  and  these  are

generalization I can be replace by a c and d remains the same now a remains the same a

is non singular in this case also a is non singular in this case I am assuming a and b are

non singular. I want you to be able to look at this. 

Now c and d are vectors c and d are matrices. So, this is the most general form of this

inverse operation this is the simple form of inverse operation it is this version that we

will  use  repeatedly  in  Kalman  filtering  techniques.  So,  Sherman  Meris  Morrison

Woodbury  formula  d  is  one  of  the  most  fundamental  relation  that  is  used  in  data

assimilation especially in the derivation of Kalman filters; I am sorry Kalman filters.

So, what does it tell; here if you know a matrix a is non singular, if you add a correction

to  that  I  can  compute  the  inverse  of  the  correction  by  simply  a  correction  term the

inverse of the original matrix. So, that is a very beautiful formula these formulas have

been known since 1930s and mathematicians have done these things just for the fun of it

and these formulas find great use in many of the derivations especially the ones relating

to Kalman filters.
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I have now given a proof of the Sherman Morrison Woodbury formula look at this. Now

D is the generalized version of the Sherman Morrison Woodbury formula; I have given

the proof of this, I am not going to go over the proof because it is given in extremely

simple case. So, I am going to leave the proof as the reading assignment i would like you

to be able to read the proof as an assignment.

(Refer Slide Time: 30:23)

The proof is a reading assignment. I have given in extreme details.
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All the derivation are given. So, now, you can see I have derived the formula using these

3 pages of derivations.

(Refer Slide Time: 30:33)

So, this is one of the fundamental ways in which we can express the Sherman Morrison

Woodbury formula. So, this proves the formula D in slide twelve by replacing B inverse

by minus B by letting B is equal to 1, I can get the formula B C and A, now you can look

at this. Now by this single one; single by proving this one single formula, I am able to

look at this now by proving by proving D using this, this and this I come here then I



specialized by choosing several different parameters I derive C, I derive B, I derive A.

So, D is a generalization of A, B and C in that particular case, I am not going to go

through the proof the proof is extremely simple in elementary and I would like you to try

your hands on the proof.

(Refer Slide Time: 31:48)

So, that gives you the general aspect of what is called Sherman Morrison Woodbury

formula  the  next  one  is  the  notion  of  generalized  inverse,  we  already  talked  about

inverses of matrices which are non singular mathematicians have been indulging in the

concept of hey; how do I define inverses of matrices which are not square. So, let us talk

about the basic ideas here. 

Now I would like you to be able to. So, matrices square matrix rectangular matrices

square matrix can be a singular non singular in the case of non singular matrix, I can

define A inverse for singular matrix, I cannot define it for rectangular matrices, also we

cannot apply this definition of a non singular matrix. 

So,  mathematicians  have  always  been  challenging  themselves;  how do  I  extend  the

notion of inverse of a non singular matrix to a general case of rectangular matrix to a

general case of singular matrix and that is what is called generalized inverse generalized

inverse is the generalization of the concept of inverse to matrices that are not necessarily

square matrix.



The notion of a generalized matrix is very fundamental. So, if A is a matrix of size n by

m by n;  A plus  denotes  the  generalized  inverse  of  AA inverse  denotes  the  ordinary

inverse. So, I would like you to look at the symbolism AA inverse and A plus; this is the

ordinary inverse this is generalized A plus is the generalized inverse Moore Penrose were

the first one to define the notion of a generalized inverse. They said any matrix A plus

that  satisfies the properties A B C and D with respect to A is called the generalized

inverse. In other words, AA plus A must be AA plus AA plus must be A plus A plus A

transposes A plus A; that means, A plus A asymmetric AA plus transpose must be equal

to AA plus A plus is must be symmetric.

So, any matrix that satisfies these 4 properties can be regarded as the generalized inverse

of A, it turns out if m is equal to n, A is non singular all these reduces to the definition of

A inverse we already k. Now, therefore, this notion of a generalized inverse includes the

ordinary inverse as a special case as a special case; in the case of rectangular matrices

when a is a full rank what does it mean it is equal the rank of a is equal to the minimum

of m and n in that case we can give specific formulas for the generalized inverse. 

So, when m is greater than n the rank of a is said to be full rank if it is of rank n in that

case A inverse is given by generalized inverse of a is given by this in the other case when

m is less than n generalize inverse is given by this; we will talk about the occurrence and

properties of generalized inverse when we talk about inverse problem in module 3.

Then I have already mentioned this, but it is worth repeating when m is equal to n and A

is non singular non singular a plus b becomes A inverse in that case A plus AA plus

becomes the identity matrix. So, this is a very beautiful mathematically consistent way of

extending  the  notion  of  extending  the  notion  of  inverse  of  non singular  matrices  to

rectangular  matrices,  it  can  also  be  extended  to  singular  matrices  in  much  similar

fashion,  but  for  cases  the  singular  matrices,  we  do  not  have  explicit  formulas,  but

rectangular matrices with full rank, I have very specific formulas for generalized inverse

again these are the basis by using which we will deal with lease squares theory the these

generalized inverses occur very naturally in the theory of least squares sorry the theory

of least squares. 

So, these occur in the theory of least squares and we have seen in the morning lecture

that  yesterday’s lecture Gauss invented the LI theory of least  squares;  Gauss did not



know at that time the notion of generalized inverse, but in 1930s; they had introduced

this  notion  of  generalized  inverse  and it  turns  out  that  generalized  inverse  and least

squares theory least squares theory are intimately associated with each other. So, it is

absolutely  necessary  that  we  have  a  nodding  understanding  of  the  Moore  Penrose

inversions properties.

(Refer Slide Time: 37:09)

Thus for we have seen several  properties of operations  on matrices special  matrices.

Now matrix  can be also thought  of as linear  transformations  of one vector  space to

another vector space. So, let A be a matrix of size m by n a, then as an operator maps the

space R n to R m where y is equal to a times x here is the map here is an illustration this

is R n, this  is R m; A is the matrix  which is m by n. So, if you take a n vector on

multiplied by m by n matrix; I get a m vector. So, it transforms n vectors to m vectors

and  that  transformation  is  induced  by the  matrix  A.  So,  we call  a  an  operator  or  a

transformation the word operator and transformation are used synonymously.

We call an operator to be or a transformation to be a linear transformation or a linear

operator from R n to R m, if it satisfies 2 properties A times x plus y is A x plus A y; A

times A of x is A times A of x; if it satisfies these 2 properties the first property is called

additively second property is called homogeneity. These 2 properties if a given matrix

satisfies, then it is called a linear transformation. 



So, transformation linear transformation if there is a linear transformation; there should

also be a non-linear transformation. So, transformations in general are of 2 types linear

non-linear ee; it is a general property every linear transformation can be represented by a

matrix that is a theorem in operator theory I am not going to going to that, but it is good

to know.

So, given a transformation a there are 2 subspaces; there are 2 spaces associated with it

one is called the range space another is called the null space there. So, given the range

space consists of all those vectors y in R m where each y is obtained as a product of a

and x for all x belonging to R of m. So, looking at this picture A is known; I pick x every

one of them in R n and then I take every vector through A to this vector. 

So, set of all collections y. So, obtained is called the range of A the null space of A; on

the other hand is also called a Karnal of a these are different names is the set of all

vectors which are annihilated by A. So, A times x 0, x belongs to R n is a set of A x is

equal to 0 that is called the null space; it is also called a Karnal. So, the Karnal of A is the

set of all vectors which are annihilated by the matrix A.

So, I would like to be able to emphasize that given a linear transformation a there are

essentially 2 subspaces associated with it one is called the range space another is called

the null space. So, the range space is a subspace of R n; the null space is a subspace of R

n. So, if I work to talk about the null space is a subspace of R n range space is a subspace

of R m. So, this is the range of A; this is the null space of a null space of A. So, you can

see I am associating 2 spaces with a every given linear transformation.



(Refer Slide Time: 41:35)

Now, I am going to talk about examples of a certain operations let Q be a matrix the

matrix a is called orthogonal if Q transpose is equal to Q inverse Q maps R into R n is

called an orthogonal operator where is a linear  transformation as an operation op up

operator; sorry I want to go back yeah is an orthogonal operator. So, Q is given by cosine

theta sine theta sine minus sine theta cosine theta is a simple example of an orthogonal

operator.  These  matrices  also  is  also  called  orthogonal  matrix  orthogonal  operator

represented by an orthogonal matrix this matrix represents a rotation. So, what does it

mean if you have a vector x if you multiply the vectors by Q.

So, if this is x if you have the vector y; y is equal to Q times x the length of x and length

of Q are the same. So, this is called a rotation operator rotation operators are generally

denoted by orthogonal matrices are orthogonal matrices represent rotation operators. So,

if you multiply a vector in R 2 by Q you rotate the vector by an angle theta the theta is

called the theta by which you rotate is called the cos is the theta that comes in Q cosine

theta sine theta minus sine theta cosine theta are the 4 elements of the 2 by 2 matrix.

So, let y be equal to Q of x Q is called an orthogonal matrix then the norm of the square

of y you already know the norm of x square of that is x transpose x likewise if you have

square of the norm of y this is going to be equal to y transpose y, but y is equal to Q of x

therefore, y transpose is equal to Q of x transpose the transpose of the product is the

product the transposes taken the reverse order this is x transpose Q transpose. 



Therefore, if I took the square of the norm of the vector y which is Q x transpose times Q

x this is x transpose Q transpose Q of x, but by property of the orthogonal matrix Q; Q

transpose is Q transpose Q is I; therefore, x transpose x that is the norm of x itself. So, if

y is equal to Q of x and Q is orthogonal even though y is different from x they share the

same length. So, orthogonal transformation preserves the length of the vector x. So, the

length  of the vector  x is  invariant  under the orthogonal  transformation  and that  is  a

fundamental property of the orthogonal matrices.
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Now, I am going to quickly refer to coordinate transformations again the property of

matrices linear transformation. Let us consider R of n; R of n is a basic R of n; sorry, yes,

R of n is a space every space has a basis the standard basis for R of n is e 1, e 2, e n,

these are called unit vectors given a space there are multiple basis for a given space for

example, if you have R 2 e 1 e 2 is one's basis, I can also consider this is e 1 this is e 2. 

So, e 1 is equal to 1, 0, e 2 is equal to 0 1, I could consider this is this is g 1 this is g 2

what is g 1, g 1 is 1; what is g 2; g 2 is equal to minus 1; one that is the basis; this is the

basis. So, given a space I can have multiple basis each basis has the same set of elements

of vectors. So, if I am considering a space R n; I can consider a standard basis I can

consider a new basis the standard basis are listed as e 1 to e n; the new basis are listed as

g 1 to g n.



If I have a set of n vectors, I can create a matrix e e 1 to e n; if I have a set of vectors g i

can construct a matrix g, g 1 to n. So, e is a matrix consisting of standard basis vectors g

is a matrix consists of the new basis vectors both of them are basis both of them span a or

the same equal to R of m. So, it behoves to ask a question how do these 2 basis e and g

are related to each other we are going to show that these 2 bases are related by a linear

transformation  and how do you show that  every element  to  the new basis  g  can be

expresses the linear combination of the elements on the old basis because every vector

the new basis is a vector n R n; R n has unit basis the standard basis. So, I can express g

as the linear combination of the standard basis.

If I did this for every g, g 1, g 2, g n, this is the general expression for g I; I can now

collate  all  of  them.  So,  if  I  consider  g  1,  g  2,  g  n,  in  the  form of  a  matrix  please

understand each g is a vector. So, first vector second vector nth vector; this is the matrix

this  is  the matrix  g,  this  is  the matrix  e,  the matrix  e and g are  related  through the

elements ts; it can be easily verified that this relation is very fundamental this relation

induces simultaneously. 

So, this is for one g i; if I consider all the g i's together this is the resulting relation. So,

now, you can see g is related to e; g is related to e; through this matrix t. So, you can

think of this as t is a transformation that relates the basis g 1 that relates the new basis

with the old basis.
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So, we can yeah; we can denoted as the new basis equal to the old basis times. So, the

new basis equal to the old basis times T and t is the transformation and it can be shown

that transformation is not singular.

So,  what  is  the  role  of  a  linear  transformation  role  of  one  of  the  roles  of  linear

transformation is that it transfers one set of basis of a given vector space to another set of

basis  and  they  are  related  linearly  through  the  linear  transformation  T to  the  linear

transformation T. So, this essential tells you the coordinates of the new basis and the

coordinates of the old basis are related and.
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And  that  brings  us  to  a  special  class  of  transformation  called  the  similarity

transformation.  So, I am now going to be talking about space R n; I am going to be

concerned with the standard basis b 1 instead of calling it e; I am simply going to call it

B 1. So, let x and y in R and B the standard basis elements in the standard basis R of n, A

is a map from R n to R n we can think of this as the linear operator y is equal to A of x.

So, now let us think of it; now I have R n in 1 basis; I have R n in another basis; I have R

n in another basis. So, the basis for this is B 1; the basis for this is B 2 and we know that

there is a transformation linear transformation t that can map the basis B 1 to B 2, we

have already seen B 1 was e, B 2 was g; remember that that been the last slide. So, T is

the linear transformation from basis B 1 to the new basis B 2 let x star. So, if I consider a.

So, both R ns are the same space even though I have drawn it differently if there is a



vector x, here I have the same vector x here this vector has a representation in B 1 this

representation this x has a representation in B 2; if the basis are related, I can also relate

the representations of x in these 2 basis.

So, let x star be a representation of the vector x in B 1 let y star B, the representation of

the vector y in the new basis. So, if I have Ts x is equal to T times T of x star y is equal to

T of y star; let y is equal to a of x; I hope you understand that lots of animals in here.

So, x and y are 2 vectors in R n the standard basis A is a linear operator that transforms y

to x t is the linear transformation from the basis B 1 to the new basis B 2. So, I have a

linear operator; I have a basic transformation; I have then the representations of vectors

from x to y the new basis, if I put them all together x is equal to T of x star y is equal to T

of y star; let y is equal to a of x that essentially tells you y is equal to t of y star which is

equal to a of x, but x is equal to T of x star, but y is equal to t of y star. So, if I substitute

y is equal to t of y star we get the relation y star is equal to t inverse AT x star. So, you

can readily see the relation between y; y star and x star as follows.

So, we have not changed anything we are simply concerned with 2 vectors x and y we

are simply representing x and y in 2 different basis of R n and. So, A is an operator, T is

the transformation; all  these things relate to the fund reach to the fundamental result

which is given by the star. So, I have a new matrix the new matrix is t inverse AT it is

related to AT inverse AT is the representation of a in the new basis B 2. 

So,  this  transformation  of  the  matrix  A to  T  inverse;  AT is  called  the  similarity

transformation  it  again  plays  a  fundamental  role  in  linear  algebra.  So,  similarity

transformation is a special class of linear transformation when you represent 2 vectors in

a given vector space and these 2 vectors are related by an operator a if I change the basis

for the same space from B 1 to B 2; then there is a transformation vector t comes into

play. So, t a together help us to be able to define the linear transformation. So, this repra;

this is called representation of matrices in different basis a is a representation in one basis

t inverse AT is a representation of the same matrix or same operator in another basis;

these 2 are related by the fact that care calls the at a transformations.
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The next transformation is called congruent transformation let  A be a matrix,  B be a

matrix, I am requiring B to be non singular, A is any matrix a transformation from A to B

transpose; AB is called a congruence transformation, please remember the differences.

Now A to T inverse AT that is similarity transformation A to B transpose AB that is called

the  congruence  transformation  congruence  transformation.  So,  these  are  2

transformations of matrices that occur very naturally in linear algebra. The reason we are

talking about congruent transformation and similarity transformation because these are

special cases of linear transformation.
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Now, I am going to define at other concept called the adjoint operator; any of you who

have done 4  D-VAR; you will  know 4 D-VAR is  called  also called  adjoint  method

adjoint  is  a property of operators that  comes essentially  from matrix theory operator

theory. So, I am going to quickly define the properties of adjoint operators which are

fundamental to understanding data assimilation method called 4 D-VAR.

Let a be a matrix that denotes the linear operator R n. So, a matrix; matrix can be called

as an entity as a matrix and define the operations on that a also a matrix can also be

thought of as an operator effect on vectors on R n. So, the same object plays 2 different

roles either a matrix  or as an operator  a matrix  is representation of an operator now

define a new linear operator a star and the definition goes like this given 2 vectors. So,

let us talk about this. Now I am having R n to start with; I am having an operator A and R

n. 

So, what does a and R n means it takes vectors in R n and maps to vectors in R n. So, let

us speak 2 vectors x and y belonging to R n. I have been given a matrix A, if I have x and

y and a, I can compute the matrix vector product a x that is a vector I, y is a vector, I can

compute the inner product. So, this is the inner product of a x and y the inner product of

a x and y is related to inner product of x with a star y. So, what does it mean? A x is a

transformation of A star y is a transformation of y the matrix  A star that forces this

equality is called the adjoint of A; it is called the adjoint of A. So, that is the definition of

the property adjoint.

This adjoint a is not unknown to us if you look at the standard definition inner product if

you consider a inner product of a x and y by definition inner product of a x and y is a x

transpose y, but a x transpose y is x transpose A transpose y x transpose A transpose y is

x transpose times A transpose y; I can associate like this; this can be express as the inner

product of 2 vectors and that can be expressed as x is equal to a star y therefore,  in

general the adjoint of a matrix is the transpose the transpose is the adjoint. So, that is the

fundamental thing that comes from this analysis.

So,  for  finite  dimensional  vector  spaces  if  you  are  considering  matrices  of  finite

dimensions  the  transpose  operation  is  related  to  adjoint.  So,  transpose  is  a  urinary

operation,  we have already defined a simple operation adjoint is a another concept it

turns out adjoint can be represented as transposes in this particular case of matrices, but



adjoint  in general  is  a much more deeper  fundamental  concept  in operator  theory in

operator theory.

So, adjoint of a matrix transpose of a matrix these are urinary operations on operators are

matrices adjoint of an adjoint is the original matrix. So, adjoint of an adjoint is AA times

A, adjoint is AA times adjoint of A adjoint of a sum is the sum of the adjoints; adjoint of

a products is the product of the adjoint taken in the reverse order. If A inverse exist

adjoint of A inverse is the inverse of the adjoint; these are very fundamental properties of

adjoint with respect to other operations. 

So,  how adjoint  behaves with respect to  adjoint  how adjoint  behaves to  the 2 scalar

multiplication how adjoint behaves with respect to matrix addition matrix product and

inverse. So, the interaction of 2 different operations is the topic of discussion in here the

notion of an adjoint operator and its close relation to transpose.
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Now, we come to one of the fundamental concepts in linear algebra why do we do all

these things ultimately we would like to be able to solve the equations. So, given an

equation A x is equal to b under what condition A x is equal to b as a solution. So, we are

interested in analyzing the existence of solutions of linear systems let A be a m by n

matrix when m is equal to n a special case. 



So, we are going to start with general matrices. So, A x is equal to b, A is known, b is

known, I want to solve the inverse problem; I want to find an x before you compute an x,

you have to verify the solution you have to assure yourself the solution exists. In this

case, A x is equal to b has a solution only when b lies in the range of a you remember

range of a we have already defined range of a is a set of all vectors that a maps from the

domain to the co-domain.

We also have talked about null space of A, if we can talk about null space of A, I can talk

about the null space of A transpose. So, null space of A transpose, a set of all y belonging

to R n such that A transpose y is 0 is 0. So, if b belongs to the range of A and y belongs to

the null of A, then b transpose y is A x transpose y is x transpose A y is equal to 0 either

is a property that follows from the fact that y belongs to the null space of A. 

So, what does this tell you x belong b belongs to b belongs to the range of A y belongs to

null of a this is the inner product of 2 vectors one from the range another from the null

space the inner product of 2 vectors 0 means orthogonality. So, this essentially tells you

the range of a and the null of a are mutually orthogonal.

Please remember this is a fundamental property given a matrix A of size m by n, we have

associated 2 spaces the range space the null space this essentially tells you the intrinsic

property of the behaviour of vectors one from the null  space another from the range

space they are mutually orthogonal now coming back to the existence question there is a

famous result by Fredholm Alter is called Fredholm’s alternative Fredholm’s alternate;

essentially says the following given a matrix A which is m by n, then exactly 1 of the 2

statement is true; either A x is equal to b as a solution or A transpose y equal to 0 has a

solution such that b transpose y are y transpose b is not equal to 0.

So, these are the only 2 possibilities that can happen for a general case of matrices which

are rectangular when m is equal to n; A belongs to R n by n b belongs to R n then the non

homogeneous system of equation A x is equal to b has a solution only when a is non

singular and x is A inverse b that again follows from the alternative A of the Fredholm

alternative; the homogeneous system A x is equal to 0 has a non trivial solution only way

is singular. So, these are the 2 basic fundamental facts. So, what does this say? If I want

to be able to solve A x is equal to b, I have a unique solution x is equal to A inverse b



when a is non singular the determinant of A is not equal to 0, in this A b or else what

happens the homogeneous system in this case b is equal to 0 x is a non trivial case.

In this case, A x is equal to 0 has a non trivial solution only when a singular. So, in this

case the determinant  of  a  is  singular;  these are  the 2 fundamental  differences.  So,  a

homogeneous system has a non trivial  solution,  when the matrix a is singular, a non

homogeneous system has an non trivial solution when the matrix is non singular and

these 2 are consequences of the fundamental property call Fredholm’s alternative and

these 2 together provides condition for the existence of solutions of linear system. 

I am not going to prove the uniqueness you can always if the matrix is non singular; A x

is equal to b not only the solution exist we can also show the solution is unique once you

know the solution exist and is unique we can then try to develop computations to be able

to actually develop the solution to show something exist is one thing to be able to derive

or build or computed is something else, but to be able to compute; I must have been

assured that the solution exist.
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The next set of ideas from matrix theory are called bilinear and quadratic forms let A be a

matrix of size m by n; sorry, let A be a matrix of size m by n, I am given 2 vectors x is in

R m y in R m, I can define a functional defined by a which is f; f A x of y x transpose A x

that is called a bilinear form; bilinear is a linear in x, it is also a linear in y. So, because it

is linear in 2 variables at a given time it is called bilinear.



When as, but when a becomes instead of rectangular matrix by a square matrix n by n; I

can define QA of A as A transpose A x for x in R n and this is called a quadratic form

associated with the A. So, this is a bilinear form is a first degree in x and y here quadratic

form is of second degree in x bilinear forms are linear in each of the variable quadratic

forms are quadratic in the components of x. 

So, here is an example of a quadratic form let n be equal to 2 x be a vector x 1, x 2, let A

be a matrix given by this, QA of X is equal to a 1 1 x 1 square plus a 1 2 plus a 2 1 x 1 x

2 plus a 2 2 x 2 square you can see the first term is quadratic in x 1 this is the quadratic in

the product x 1, x 2, this is the quadratic in x twos. So, this is an example of what is

called a quadratic form bilinear form quadratic forms are special cases of bilinear forms. 
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What is the property of quadratic form? Let QA be a scalar in this particular case, we

already know we already know QA is a quadratic form, QA is given by X transpose A x.

QA is a scalar X transpose A x means what X transpose A x x is A x is a row vector, A is

a matrix, then I have a column vector. So, x is a column vector, A is a matrix; this is a

row vector. So, this is 1 by n; this is n by n; this is n by 1. So, the whole thing is 1 by 1;

one by one is a scalar you all know that basically a quadratic function is a scalar the

transpose of a scalar is itself. 

So, I can the scalar is its own transpose, but transverse is the product is the product of the

transpose has taken in the reverse order we have already seen the product of the urinary



operation  transpose.  So,  this  is  equal  to  x  transpose  A transpose  x.  So,  this  is  the

quadratic function in Q of A transpose f x. So, what is that we have shown a quadratic

form of A is same as quality form of A transpose that is a fundamental property.

So, if these 2 are equal, I can then write QA is equal to 1 half of the sum of QA and Q A

transpose because these 2 are equal. So, this is equal to one half of the sum of this and

that this is equal to x transpose a this is equal to x transpose A transpose A, I can do a

little bit of an algebra in here x transpose is the left  common variable  x is the right

common variable  I  can take the  right  common left  common I can arrange the inner

matrix  as  a  plus  a  transverse  by  2  you  will  quickly  recall,  then  we  talked  about

decomposition of matrix and symmetric and skew symmetric part this is the symmetric

part. So, Q of A of x is the same as x transpose A of s times x. So, this is called the

quadratic form related to the symmetric part of x.

So, if you are interested in quadratic forms we can without loss of generality assume the

matrix A is always symmetric, if it is not, I can convert the matrix A to its symmetric

part, I have not changed anything because symmetric part of matrix is always symmetric

a s  is  equal  to  a  s  transpose and this  property is  routinely used in  data  assimilation

techniques, again these are all fundamental properties that come from matrix theory. 

So, quadratic  form the quadratic  form with respect  to a vector each term consists  of

second degree term as we saw in the previous example x 1 square x 1, x 2, x 2 square;

this  quadratic  form  has  a  special  property  the  special  property  being  the  fact  that

quadratic form of A is the same as quadratic form of the symmetric part of A because of

this from no one without loss of generality when we are going to assuming quadratic

forms we will only take symmetric matrices.
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Once you have the notion of a quadratic form, I can then find split the idea of quadratic

forms one is called positive definite quadratic form. So, this is a fundamental concept;

again, let A be a matrix, A is said to be positive definite is a definition; if x transpose A x

is greater than 0 for all x not equal to 0 is equal to 0 only when x is equal to 0. So, this is

the  definition  of  a  quadratic  form.  So,  what  does  it  mean  in  general  the  quadratic

function of a matrix need not be positive, but if A is positive definite in the quadratic

function always is positive?

So, this is the further definition of positive definite functions or pos positive definite

quadratic forms I hope that definition is very clear. So, I want do to go back. So, we

simply define the quadratic form to be the we define the quadric forms to be given by

this product in here there is no condition on the sign of this except this is a scalar now

what is that we are saying this one is not only a scalar, but also it takes a positive value

for  all  x;  x  can  have  positive  negative  elements  he  also  can  have  positive  negative

elements, but if you consider the product x transpose a x its always positive when x is

not equal to 0; it is 0 only if when x is equal to 0.

This  positive  definite  quadratic  forms  have  different  ways  of  can  be  explained  in

different  ways;  there  are  equivalent  definitions  for  quadratic  forms one  definition  of

quadratic  form is  what we defined, but this  definition is not very useful to apply;  if

somebody gives a verdict form, if I want to apply this definition; I have to test it for



infinitely many xs it is not possible. So, this is a very nice definition, but computation

will not useful. 

So, there are equivalent definitions which are computationally meaningful. So, tests have

been developed to decide under what condition a matrix is positive definite one of the

conditions is if the Eigenvalues of a are all positive then it is positive definite if all the

principal minors; if principal minors of all orders of a are positive the matrix is positive

definite a principal minor is the determinant of a sub matrix a matrix has several different

principals of minors. So, if all the principal minors of a given matrix are all positive that

been the determinants of all possible sub matrices in a given matrix are positive they

matrix is positive definite.

So, these 2 definitions give you an algorithmic way to test for positive definiteness this is

simply  a  fundamental  definition  this  first  definition  is  not  very  useful  in  terms  of

computation  the  second  view  is  derived  from  the  first  view,  but  it  is  very  useful

computationally to get an understanding of the constraint on the elements of A to be a

positive definite matrix. Let us consider a symmetric matrix a b, b c please understand

with respect to with respect to matrices in the context of positive definiteness we need to

consider only symmetric matrices. So, we can consider symmetric matrices like this. So,

if you consider QA of x for this matrix; this is this takes this form; I can rewrite this by

simply completing the squares like this a simple algebra I will show you like this; this is

called the method of completing the square.

So, by method of completing the squares we can express the expression for a quadratic

form like  this;  now I  would  like  to  examine  this  expression  what  are  the  condition

necessary in order to make this positive as required in the in the in the condition one a

square of any number is always positive. So, this term is always positive. So, in order

that this term is positive I have a positive x 2 square is always positive. So, in order that

this term is positive; I have to ensure that this term is positive. 

So, we can state that we can state that a is positive definite in this case, if a is positive is

c is positive if a c is greater than b square if a c is greater than b square this is positive a

is positive this is positive, I could have rewritten this by completing the square with the

other way that will give you c is positive. 



So, a matrix of this type is said to be positive definite if a is positive c is positive a c is

greater than b square. So, this is an example with this condition of a positive definite

matrix of a positive definite matrix. So, you can see not every matrix is positive definite

positive definite brings constraints and the elements of the real values of the values of the

matrices.


