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In  module  1  the  introduced  various  aspects  of  data  mining,  data  assimilation,  and

prediction and their relations to other branches of science and engineering. This course is

a mathematically oriented course on data assimilation. So, we are going to provide all the

mathematical tools and techniques that would be needed, to be able to pursue research

and education in data assimilation areas. With that in mind in module 2 we have several

sub modules in 2.1 we are going to quickly review the concepts of finite dimensional

vector spaces. The notion of finite dimension vector spaces is fundamental to performing

any computational process. In 2.2 we are going to be talking about all the results that one

would need from matrix theory, and then we will  review concepts  from multivariate

calculus,  then as the last  part  in this  module,  we will  also review some of the basic

principles from optimization theory.
So, a strong grounding in basic  understanding and (Refer Time:  01:40) vector  space

matrix  theory,  multivariate  calculus,  and  optimization  tools  and  techniques  are

fundamental to any serious pursuit of data simulation.  So, we will start with a quick

review of fundamental principles from finite dimension vector spaces.
(Refer Slide Time: 02:02)

I am also going to use this module to set up all of our notations and basic concepts. So, R

is a set of real numbers, they are also called real scalars, C is a set of complex numbers is



called complex scalars R n R to the power n refers to set of all real vectors of size n, C of

n set of all complex vectors of size n, we are giving some examples now. X belong to R n

implies x is a vector with n components, the components are written column wise each of

the component x i is a real number, 0 is a vector, 0 vector consists of all zeros is called a

null vector. Then n is 3 here is an example of a vector 3.2 1.5 9.9. 3.2 is the x 1 to 1.5 is x

2, 9.9 is x 3. Here is an example of a complex vector in a complex vector again there are

n components each component is a complex number. So, first one is x 1 plus i y 1 the ith

1 is x i plus i y i and x n plus i y y n is the n th element to the complex vector. Here x i

and y i are real numbers, i is the unit imaginary number square root of minus 1, here is an

example of a complex vector 1 plus i 1 minus i 1 minus 2 i this is a complex vector of

size 3.
Even though we talked about complex as well as real spaces of vectors, largely in this

course we will deal with real spaces especially r to the n.
(Refer Slide Time: 03:50)

I am going to quickly review some of the concepts from operations and vectors, x y z be

vectors let a b c be vectors, I am sorry there is an error a b c belongs to R not R to the n.

So, there is an error we will we will correct that. X is a vector, y is a vector, z is a vector.

Z is a sum of x and y are difference of x and y, Z i is the i th component. So, z i is either

sum of the 2 components or the difference of the 2 components, this is called vector

addition vector subtraction y is equal to a times x a is a scalar. So, this is called scalar

multiplication of a vector, y i is equal to a times x i scalar multiplication of a vector x by

a scalar a z is equal to a x plus y in this case i th component z is equal to a times x i plus

y i this is called Saxpy scalar times the vector plus a vector. So, these are the basic

operations on vectors that we will be dealing with.



(Refer Slide Time: 05:03)

Now, I would like to introduce the notion of what is called a vector space, let v denote a

collection of real vectors of size n. So, this v to be called a linear space or a vector space

or a linear vector space,  there are several  names associated with it,  if  it  satisfies  the

following 3 condition. The first condition is v 1 is a group under addition what does it

mean? If |I took any vectors in V that sum is also in V it is closed under addition, this

operation of vector addition is also associative. So, if I am given 3 vectors x plus y plus

z,  in order  to  find please remember addition  is  a  binary  operation  I  can only add 2

numbers at a given time. So, if I given 3 vectors I have to make 2 additions, you do 1 at a

time either you add y plus z and to the sum you add x or you add x plus y to the sum you

add z, such a property is called associative property of addition.

So, what does the associative property essentially tells you? The order in which you add

does not affect the results of the computation. V contains a 0 vector, what is the profit is

0 vector? If you add 0 to any vector it remains the vector does not change, x plus 0 is 0

plus x is equal to x for all x. For every vector x there is a unique y such that x plus y is

equal to y plus x is equal to 0 that is called additive inverse of x and y is called minus x

any collection of vectors that satisfies these properties closed under addition, it  is an

associative property it contains a 0 vector, and its it also an additive inverse such a set is

called a group. So, v first be a group, second one there are properties (Refer Time: 07:05)

scalar multiplication a times x, if you if x belongs to v a x also belongs to V so; that

means, any vector if you multiply by a constant it is in the same set. If a and b are 2

scalars you can multiply the vector x by b and then by a, that is equal to multiplying a



and b and then multiplying with x that is again a kind of an associated with respect to

scalar multiplication. One times x is the x. So, one is the real number 1 if you multiply

any vector by the number 1 it does not change is itself.

The third property is called distributive property, a times x plus y is equal to a times x

plus a times y for all x and y. So, first one is scalar multiplication distributes itself with

respect to addition,  the second one is scalar addition distributed itself with respect to

vector multiplication by a vector. So, a plus b times x is a x plus b x for all x. So, any

collection of vectors that satisfy these 3 properties c 1, c 2, c 3 is said to constitute what

is called a linear space a vector space or a linear vector space. For all computations there

must underlie always a finite dimensional vector space, has the bay as a base on which it

is all the computations are done.

(Refer Slide Time: 08:32)

So, this is the general definition of what a vector space, is vector space comes in various

shapes and forms. The set  of all  real  numbers is  the vector space,  it  satisfies  all  the

properties.  The set  of all  real  (Refer Time:  08:42) satisfy these properties  the vector

space set of all complex vectors satisfy all the things. The set of all n by n real matrices is

a vector space; set of all polynomials of degree n is a vector space. If we have sequence

infinite sequence such that the sum of the squares is finite, its called square summable

sequence the set of all square summable infinite sequences they also form a vector space.

The set of all continuous functions or interval a b is also in vector space. So, you can see



vector space of functions, vector space of sequences, vector space of polynomials, vector

space of matrices, vector space of complex numbers, real numbers and real vectors. So,

vector  spaces  are  abundant  every one of  these  vector  spaces  constitute  the  basis  for

computational  processes,  and  data  assimilation  is  largely  a  computational  problem

because I need to be able to estimate fit the model is a solving an inverse problem, being

a computational problem I must always be concerned with what is the vector space in

which I am performing all these computations.

(Refer Slide Time: 09:55)

I am now going to quickly review operations and vectors, some of you who have taken a

course in linear algebra may already know this I am assuming that all the people who are

going to be reading this may not have the same background and so to bring uniformity in

the reader, I am going to quickly review many of these concepts. So, let  x y z be 3

vectors a b c be 3 real numbers, I am going to introduce this bracket notation opening

bracket dot comma dot closing bracket that is going to be a binary operation on vectors.

So, that binary operation in here is called an inner product. So, parentheses inner product

y x and y defines an inner product which is defined at x transpose y, which is defined as

some of x i, y i, x i y i is also equal to y i x i, because multiplication of real numbers is

commutative. So, that is equal to y transpose x is equal to y comma x. So, this means the

inner product, I am not only defining the inner product, but I am also showing the inner

product as an intrinsic property it is symmetric so, the symmetry property.



So, the properties of inner product x dot y is greater than 0, if x is not equal to 0 it is 0

only if x is equal to 0. So, this y must be this y must be x 1 second I will tell that now

this y must be x, then the definition is correct. So, inner product of x is itself is greater

than 0 when x is not zero inner product of x is with the x is 0 only when x is 0 that is

called a positive definite property. We have already seen the symmetric property, inner

product is also additive inner product of x plus y with z is inner product of x with z inner

product of y with z the sum of the 2 it will product is said to be homogeneous what does

it mean. If I multiply 1 of the components by a constant a; inner product of a x comma y

is a times inner product of x and y, it is also same as x times inner product of a y that is

called the homogeneity property. 

If the inner product of x and z and y and z are equal for all z that x and y must be equal

that  is  again  another  fundamental  property  of  inner  product,  we  will  use  all  these

properties  in  developing  a  joint  technique  or  joint  methods  when we do four  d  var

methods. When x and y belong to C n the inner product is defined by x i y i bar y i bar is

the complex conjugate  of y. So,  the inner  product  definition  has to  be appropriately

modified when you go from real domain to the complex domain. Since we are going to

be dealing only with the real domain, these five properties of inner product are sufficient

for our purposes. 

(Refer Slide Time: 13:11)



Now, I am going to define other operations and vectors x is a vector, y is the vector by

vector i always mean a column vector. So, y transpose is a row vector. So, x y transpose

is the product between a column vector and a row vector, the product of column vector

row vector is called an outer product of 2 vectors, the result is a matrix x 1 y 1, x 1 y 2, x

1 y n and so on you can see the elements of the matrix coming in here. So, the outer

product can be written in many ways, the first column is a multiple of the vector x by y

1, the second column is the multiple of x by y 2, the last column is a multiple of x by y n

likewise I can also consider as a multiples of rows. The first row is the multiple of the

row y with x 1 the second row is the multiple of the row y with x 2, the last row is the

multiple of the row y with the x n. So, I can think of it as a matrix or multiples of column

x or multiples of row y. All these are properties of the outer product of matrices outer

product of matrices is a fundamental operation.

(Refer Slide Time: 14:33)

The next one is called the norm of x and the notion of a distance. The norm of x is

denoted by x within that sign 2 vertical to the left 2 vertical to the right, a vector is 1

object the norm of a vector is another object, the norm is a scalar associated with every

vector there is a norm. Norm is a measure of the size of the vector, the size of the vector

is  denoted as a scalar. The norm of a vector  arises in many ways,  one is  called  the

equality norm, another is called the Manhattan norm, another is called Chebyshev norm,

another  called  Minkowski's  norm,  another  is  called  the  energy norm.  The Euclidean

norm is a standard 1 that comes from the Pythagorean theorem. The norm of x is equal to



square root of the sum of the squares of x, that can also be expressed as square root of

the inner product of x with the x the Manhattan norm or one norm is essentially sum of

the  absolute  values  of  x  i  would  like  to  be  able  to  bring  the  distinction  between

Manhattan norm and the and the Euclidean norm. So, if I have a 2 dimensional plane, if I

have a point here, if this is x 1 this is x 2, the Euclidean norm refers to this distance and

what is the value of this distance this distance is equal to x 1 square plus x 2 square to the

power half.

That comes from the length of the hypotenuse is this is x 1, this is x 2, it is a right angle

triangle with 2 sides x 1 and x 2 that is the length of the hypotenuse. So, that is the 2

norms. The one norm on the other hand is if I want to go from 0 to this point, I have to

go by x 1 then I had to go by x 2, it is sum of the distances from 0 to there let us talk

about this now. Suppose you have to go. So, let us assume this is the point o this is the

point p, if I want to go buy a taxi from point o to point p i will first go along the street to

the east and then I will go along the street to the north. So, the total distance travelled b y

a taxi cab is x 1 plus x 2, but if i had a helicopter I could fly directly from o to p, and that

is the Euclidean norm. So, that is the 2 ways of differentiating the 2 norms Chebyshev

norm  is  called  the  infinitely  norm  and  that  is  Chebyshev  is  a  famous  Russian

mathematician. 

And he defined the norm to be the maximum of the observed values of I that is under

useful definition of a norm. Minkovski another mathematician from Russia he defined

what is called a p norm, the norm of p is given by what is that you need to do you take

the absolute value at each component raise it to the power p, it is the p th. So, one or p th

root of the sum of the p th powers of the absolute values of x, I hope that is clear from

the expression. We will often talk about another useful in meteorology when we talk

about error growth and other things is called energy norm. Energy norm of a vector x

with respect A matrix A is defined to be x transpose a x to the power of half, A in this

case its a symmetric positive definite matrix.

So, norm refers to the size; size can be measured in many ways, there are at least five

different ways I have illustrated 1 can measure this size of a vector with. Once I have a

size, I have the notion of a distance. So, if x and y are 2 points, the distance between x

and y is simply the norm of the difference of the 2 vectors x is the vector y is the vector

difference of a vector is a vector I can transfer the norm of the vector. So, the distance



between 2 vectors is simply the norm of the vector associated with the difference with

the difference.

(Refer Slide Time: 18:43)

What are the general properties of norm? You can define norm any way you want no one

is going to be able to come, and dictate that this should be the only way to be able to

design norm. So, if you want to define your own norm I am going to tell you what are the

basic properties a norm must possess. So, given a vector x N of x is a norm, if it satisfies

the  following  3  condition.  N  of  x  must  be  positive  definite  N  of  x  must  be  go

homogeneous in other words the norm of a scalar multiple of a x is simply a times the

norm of x that is called the homogeneous. The third property the norm is that the sum of

the norm of the sum of the 2 vectors is less than or equal to norm of x plus norm of y that

is called the triangle inequality. So, the norm should be positive definite, and norm must

be homogeneous, a norm satisfy the triangle inequality, I would like to point out that

every norm that we define the 5 norms, we define all of them satisfy these properties in

addition to this 5 you can define your own norm, you can any norm that you want to use

must satisfy these 3 conditions.

Now, a special note Euclidean norm is very special, because Euclidean norm is the only

norm, that can be derived from inner product of the 5 norms only Euclidean norm is

associated the inner product and nothing else then I am I have a home work here verify

that the norm square thus of the sum plus norm square of the difference is 2 times the



square of the norm of x plus square the norm y. So, this must be norm of y 1 second this

must  be  norm  of  y.  So,  that  is  that  rule  is  a  very  basic  rule,  that  is  called  the

parallelogram law, any the norm based on the Euclidean definition always satisfies this

Parallelogram law.

(Refer Slide Time: 20:57)

Then the notion of what is called a unit sphere comes into play, the unisphere in 2 norm

is given here. Please remember 2 norm is called the Euclidean norm. The unit sphere is

in 1 norm takes this shape one norm is the is the Manhattan norm, this is the convention

of geometric norm this is the infinity norm the unit sphere in the infinity.

So, what is the unit sphere? Unit sphere is a set is a locus of points which are at unit

distance from the origin. So, if you take a circle of radius 1 centered at the origin, if the

circle is defined as a locus of all points at constant distance of one from the origin. So, if

we  pick  the  norm to  be  Euclidean  norm that  is  the  circle.  The  circle  becomes  this

trapezoid, when you change the norm. The trapezoid becomes a square if we change the

norm. The unit circle becomes an ellipsoid if I change the norm. So, when you pick

matrix A to be 5 0 0 1 that is the symmetric positive definite matrix, if you consider the

square of this norm you get the an equation to an ellipse which is given by here, x 1

square by a square plus x 2 square by b square is equal to 1 is an equation to an ellipse.

So, you can readily see the equation 2 then ellipse is depicted here. So, what is why am I

doing this? I want you to understand that the geometrical figures naturally marks the



shapes  changes  if  you change the  definition  of  a  norm. Again  I  want  to  insist  here

mathematics is a man made science, you have total freedom to do whatever you want the

only condition is you must be consistent. So, for a norm to be consistent you have to

satisfy those 3 rules. So, consistent with those 3 rules, we have seen several different

norms and this is one way to geometrically explain the intrinsic differences between the

properties of these norms.

(Refer Slide Time: 22:58)

Then you have the notion of what is called the unit vector. Unit vector in the direction x

is simply x divided by the norm of a x we all know that very well, then there are a couple

of fundamental inequalities what is called Schwarz inequality what does it say. If I have

an inner  product  between x and y, the value  of the inner  product  by definition  is  x

transpose y and that is equal to the norm of x norm of y times the cosine of the angle

between the 2, that is a cosine of theta. Cosine of theta is always less than less than or

equal to 1 therefore, this product is always less than or equal to product of the norm of x

and norm of y. So, this inequality namely inner product of x and y is less than or equal to

the product of the norms of x and y that inequality is called Cauchy Schwarz inequality. 

Its  one  of  the  most  fundamental  inequalities,  again  I  would  like  you to  work  as  an

exercise, verify that this Cauchy Schwarz inequality becomes an equality only when the

vectors x and y are parallel to each other is a very simple exercise and I would like you

to  ah  prove  it  yourself  to  be  able  to  understand  the  power  of  the  Cauchy  Schwarz



inequality a def a an extension of the Cauchy Schwarz inequality is called Minkovarsky

inequality if p and q are 2 integers with the property, 1 over p plus 1 over q is 1, then

Cauchy Schwarz inequality can be extended to the inner product of x and y is equal to x

transpose y is less than or equal to the p norm of x and a q norm of y. When p is equal to

q is equal to half, 1 over half plus 1 over half is 1 p is 2 q is 2 i get the 2 norm. So, the

Minkowski inequality reduces to Cauchy Schwarz inequality when i pick the 2 norm. So,

you  can  see  the  generalization  between  2  norm,  p  norm,  q  norm Cauchy  Schwarz

Minkowski all these related properties of vectors.

(Refer Slide Time: 25:09)

So, now that we have known that there is one norm, there is 2 norms, there is infinity

norm all these norm they are related, I am not going to prove them, but you can readily

see what does it mean. If I have a vector x, if its if the norm of a particular vector x is

finite in 1 norm, it has to find it in every norm that is what it essentially says. The length

of the vector in 2 norm is less than or equal to the length of the vector in 1 norm, which

is eq the less than or equal to square root of n times with the length of vector in 2 norm

likewise all other inequalities, I do not want to repeat it, you can read it for yourself. This

essentially tells you that all these norms are intrinsically interrelated. So, what does this

mean? This means that you as an analyst has total freedom, you do not have to confine

your analysis either to 1 norm or 2 norm or infinity norm of the energy norm, you can do

the analysis by picking any norm that is convenient to you. If you can prove one result in



1 norm, you can extend it  to any other norm using these inequalities.  So, that is the

fundamental aspect of this uh relation between various norms.

(Refer Slide Time: 26:26)

Now, I am going to introduce the other concept which is called a functional, let V be a

vector space. Any function; that means, that maps V into R, R is a set of real number, f is

a function that takes a vector x as input. So, let me give you a little picture here. So, I

have a box which is f, I give an x the x belongs to R of n, it spits out a value f of x and f

of x is a real number. So, what does it mean? It takes vectors and converts them to real

numbers. Any function that converts a vector into real number that is called a functional,

function is different from functional it is a very technical term. So, I would like you to be

aware  of  the  intrinsic  differences  between.  A functional  is  a  function,  but  not  all

functions  are functionals.  So,  functionals  are  special  cases of functions;  f  is  called a

linear function. So, once I have a functional, a functional can be a linear functional or a

non-linear functional a functional is said to be a linear functional the emphases a linear

functional, if f of x 1 plus x 2 is f of x 1 plus f of x 2; that means, it satisfied additive

property, it also satisfy what is called the homogeneity property f of a x is equal to a

times  f  of  x.  So,  any  functional  that  satisfies  these  2  properties  is  called  a  linear

functional.

Now, I am going to give you examples of linear and non-linear functional and norm is a

non-linear functional. Given a vector x and norm is a number. So, norm converts a vector



into numbers is a functional  is a non-linear functional.  For any fixed vector a f of a

mapping R n to R; that means,  f  of a of x is a times x for a f of x that is a linear

functional, another example of a non-linear functional given a matrix a, I can talk now

about 1 half of x transpose a x that is an example of a non-linear functional. So, functions

functionals leave functional non-linear functional functionals defined over vector space.

So,  vector  space  is  the  basis.  So,  you can  think  of  a  functional  to  be  as  follows  a

functional is here is a vector space V, here the real liner R, a functional takes a vector and

maps it on real number. So, that is how you can look at your functional mapping a vector

to a real number.

(Refer Slide Time: 29:10)

Now, I am going to quickly talk about the notion of orthogonality  and conjugacy of

vectors, why do I need conjugacy? Later when we are going to do optimization we are

going to be talking about  conjugate gradient  method.  So, I  would like to  be able  to

introduce the notion of conjugacy pretty early enough. So, let x and y be 2 vectors, we

denote their vector this one I am sorry yeah good this symbol has to be perpendicular

like this, I think my computer did not have that is. So, we say x perpendicular y is equal

to 0 to imply the inner product implies and implied by the inner product of x and y is 0

the inner product to x and y is 0, I say the vector is orthogonal, orthogonal vectors are

denoted  by this  symbolism x perpendicular  sign and y. So,  2  vectors  are  said to  be

orthogonal if the angle between them is 90. So, if this is x, if this is y, x this is y angle is

90  degrees.  So,  we  say  x  and  y  orthogonal.  Now  in  extension  of  the  notion  of



orthogonality is called a conjugate c 2 vectors are said to be a conjugate if x transpose a

y is 0, now I can extend the notion of a conjugate c to a set of vectors, let x be a set of k

vectors each of them in R, n s said to be mutually orthogonal if I pick any 2 vectors x i x

j it is 0 if i is equal to j it is not zero. So, we call it mutually orthogonal; that means, if I

took any pair of vectors there are orthogonal.

So, what is an example of any pair of vectors there is orthogonal you already know this

example, 1 0 0, 0 1 0 and 0 0 1 we generally call this vector e 1 we call this vector e 2,

we call this vector e 3. You already know e 1 is perpendicular to e 2, e 2 is perpendicular

to e 3 and e 3 is also perpendicular to e 1. So, e 1, e 2, e 3 are unit vectors, they are

mutually perpendicular to each other that is the notion of mutually orthogonality. Then s

said to be orthonormal if eric if I took if I| pick to 2 distinct vectors, the product is 0 the

inner product is 0 if I pick the same vector and compute the inner product with itself,

then the value is 1 in which case it is called orthonormal, orthonormal means the vectors

are normalized they are also orthogonal. So, what do I mean by saying the norm of x i

come on now uh in the product of x i is equal to 1, that simply is equal to the square of

the norm of x is 1 say that is what that what this means that is what this means that is

what; that means, that means vectors have unit length every 2 vectors are orthogonal.

Now, if I look at my vector e 1, a this is of unit length, this is of unit length, this is a unit

length. So, I have examples of 3 unit vectors which are mutually orthogonal. So, this

these  3  vectors  they  are  not.  So,  they  are  not  only  mutually  orthogonal,  but  also

orthonormal. I hoped you see the difference between normality and simple orthogonality.

The same set of vectors are said to be A conjugate if x i A trans x i transpose a x j, equal

to 0 if i is not equal to 0 the energy norm of x with respect to the matrix A square of it if i

is equal to j. So, this is an extension of the notion of mutual orthogonality. So, these 3

concepts are orthogonal orthonormal a conjugacy of a collection of vectors is one of the

fundamental properties of vectors that we would be very much interested in our analysis.



(Refer Slide Time: 33:18)

Now, I  am going  to  introduce  a  very  simple  notion  what  is  called  whats  the  linear

combinations of vectors, we will also have a lot of occasions to talk about this concept.

Let x be a set of k vectors, each of the vectors are going to be in R n. So, each of the

vector. So, I have k number of vectors each of them in R n. So, I wanted to distinguish 2

things  the  size  of  the  vector  is  the  n,  but  k  of  them.  x  i  the  i  th  vector  has  the  n

components the n components of i th vectors is i 1, i 2, i n. the first index refers to the

index i of the vector x the second indices refer to the components of the vector. let a 1, a

2, a k or the be the real scalars let us define y to be the sum a scalar times the vector plus

a scalar times the vector plus scalar times a vector; y is simply sum of the multiples of

each of the vectors. So, y is called a linear combination of the vectors x in I have.



(Refer Slide Time: 34:29)

So,  this  is  this  is  called  the  linear  combination  thats  very  fundamentally  linear

combination y is the a 1 x 1 plus a 2 x 2 plus a k x k.

What is the standard example of any linear combination if I have a set of vectors x 1 x 2

x k if i compute the average x bar 1 over k times summation i equal to 1 to k x i a what is

that thats called the centroid in geometry we consider center of gravity the center of

gravity is the centroid centroid is simply a linear combination of vectors. So, i this is an

example of the notion of the linear combination that often occurs in in statistics in many

computations. So, the notion of linear combination is fundamental once I have the notion

of a linear combination I am now going to talk about the notion of whats called linear

independence and linear  dependence again this  is another fundamental  property from

vectors a of spaces that 1 needs to be very toughly let x be k vectors the set of vectors the

set of vectors in s are linearly dependent if there exists a linear combination y defined by

a 1 x 1 a 2 x 2 a 3 x 3 in a k x k whose sum is zero, but the condition is that not all a are

zeros.

When not all a of zeroes means even when I can i can annihilate them by I can annihilate

them by picking by picking some of them to be not zero as an example if I have a vector

1 0 zero if I have a vector 3 0 zero you can readily see this is the vector let us say x 1 this

is the vector x 2 x 1 can I can say minus 3 times x 1 plus x 2 is equal to 0 do you see that



place. So, these 2 vectors are not linearly independent they are linearly dependent. So,

the notion of a linear dependence is very clear.

So,  when  do  i  say  something  is  linearly  independent  the  opposite  of  dependencies

independence your set of vectors are s said to be linearly independent if it is not linearly

dependent. So, you define what dependent say s and then say independence is something

that is not dependent. So, the notion of linear dependence is is fundamental if an observer

absolutely uh you have very replace a very basic role when we deal with rank of matrices

when we talk about solutions of linear systems and. So, on 
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 the next concept is the notion of whats called span of a set of vectors. So, let us assume I

am given a set x of k vectors in r n n is the dimension of the space k is the number of

vectors i had picked I am going to define a concept called span span of a vector what is

that it is a set of all that vectors y it is a set of all vectors y such that this y is the linear

combination of the set of all vectors in s. So, x i is are all inverse a i’s are constants. So, y

is the linear combination of vectors in s and each of the a i’s are real numbers x i is are in

r n. So, think of it now i I have i have been given a fixed set of I have been given a fixed

set of numbers I have been given a fixed set of vectors which are x 1 to x k. So, these xs

are fixed I have a choice in a is each of the a is are real. So, for each coefficient there are

infinitely many choices there are k such coefficients.  So,  there are k way infinity  of

combinations that what, but that is possible the set of all linear combination if you put



them  all  together  we  call  the  span  effect.  So,  thats  called  the  set  of  all  linear

combinations of direction

I will give you in a quick example now let e 1 be the vector 1 0 let e 2 be the vector 0 1

span of e 1 e 2 let us consider the span of e 1 e two. So, this is the x axis x 1 axis this is

the y axis. So, e 1 goes like this e 1 goes like this e 2 goes like this every vector in this

space the x can be replaced as x 1 times e 1 plus x 2 times e 2 we all know that right hey

any vector x here is equal to x 1 x two. So, what does this mean x 1 times e 1 plus x 2

times e two. So, any vector x is the linear combination of e 1 and e 2 therefore, the 2

dimensional space r 2 is the span of e 1 and e 2 i hope thats very clear to you now. So,

the 2 unit vectors span the whole space. So, thats the power of the notion of span. So,

clearly a span is a vector space and its a subset of r n we say the span of s is a subspace

generated by the set of vectors s. So, in summary what is the concept here using the

concept of linear combination and by picking a set of k vectors I am able to define a

subspace generated by a subset of vectors a sub subset of k vectors a subset of k vec k

vectors in here. So, thats the notion of a span of a set of vectors
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The next concept is called the notion of a basis and dimension you can really see I am

not proving any of these concepts I am trying to introduce all these concepts because you

must be aware of these concepts. So, you should have a good access to a good book on

linear algebra to be able to further explore these concepts, but i want to bring all these



concepts to the forefront to emphasize this these concepts play an intrinsic role in the

development  of  algorithms  for  data  assimulation  data  assimulation  as  a  discipline

belongs to computational science it is a branch of applied mathematics it has very deep

roots in many of the different sub disciplines in mathematics I am trying to expose such

ah ah basis 1 would need to be able to do that assimilation thoroughly.

So, I am now going to do the next concept called basis and dimension let let us consider

the vector space v let b be a subset of the vector space. So, b is a subset of the vector

space I am not going to be talking about a particular property of vector sub subset if

every vector. So, what is the basic idea here this is the vector space v b is a small subset

of it if every vector x in v can be obtained as a linear combination of those in b; that

means, every vector in v can be expressed as a linear combination of vectors in b that b

plays a very basic role b is very important because everybody in v depends on b such a

subset is called a generator for v the notion of a generator.

For example the 2 unit  vectors e 1 and e 2 generate  the whole 2 dimensional  space

because every vector in a 2 dimensional space is a linear combination of the 2 vectors e 1

and e 2 if the set of vectors in b are linearly independent then b is said to be the basis we

already know the notion of linear independence. So, b is the basis or span of s e i is the

unit vector with 1 as 1 the i th element and 0 else where. So, thats called the i th unit

element b n the set of all unit vectors i 1 to n this must be i i is equal to 1 to n this is the

capital i must be little i the set of all unit vectors is the basis for b of n therefore, you can

readily see the n dimensional space is essentially created by a linear combinations of of

of of vectors in the basis the number of elements in b is called the dimension or the span

of b. So, the the dimension relates to the number of generators. So, what does it mean

what is the minimal number of element that you need to be able to create the whole space

if i had n unit vectors I can define the hole in dimensional space if i had 2 unit vectors I

can define the whole 2 dimensional space. So, the notion of big notion of dimension and

you  can  certainly  see  all  these  things  are  intimately  related  to  the  notion  of  linear

combination linear dependence linear independence and these are fundamental concepts

relating to vector spaces 
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Now, I am going to conclude with a set of problems which i would like you to work and

and and and extend your understanding to be able to work some of these problems you

may need to consult some of the other books that uh describe all these methodology lot

more uh in in in clear detail, but i would like to I have hit on major concepts 1 must be

aware of to be able to pursue things to follow. So, verify the parallelogram law verify the

triangle  inequality  for  the  2  norm  1  norm  and  infinity  norm  they  are  very  good

mathematical exercises prove that the inner product is equal to the product of the norms

you for if x and y are parallel vectors this essentially comes from the cauchy schwarzs

inequality using matlab plot the contours of f of x when a when x transpose a x in other

words f of x is x transpose a x. So, this is the quadratic function i would like you to plot

the contours of this using a matlab 

Matlab is 1 such example you dont have to use matlab you can use mathematica or any

other  software  system that  you  are  comfortable  with,  but  matlab  has  very  powerful

graphics and that makes the job of ploting all almost trivial verified that if the x 1 x 2 x 3

are 3 linearly in independent vectors that x 1 plus x 2 x 2 plus x 3 x 3 plus x 1 are also

linearly independent let x be a vector 1 2 three; that means, I am now giving a very

specific vector with comp components 1 2 and 3 i would like you to verify the relations

between the 1 norm 2 norm infinity norm given in slide twelve of module 2 point 1 the

module is essentially 2 point 1 in this in this particular model i dont have to even say in



this particular module, but the model number is 2 point 1 thats thats thats what i would

like to able to emphasize in here. So, this is 2 point 1 
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With that i think we come to the end of the coverage i told you you have to go into other

books for further reading I am giving you 3 references 1 is a book by golub and van loan

thats 1 of my favourite I have a copy of that I have the second 1 is matrix analysis and

applied linear algebra the third 1 is horn and johnson matrix analysis the third 1 is little

bit more advanced second 1 is quite elementary third as first 1 is rather intermediary I

have all the 3 copies of these books these are extremely useful anybody who wants to do

fundamental work in data assimulation must have at least 1 of these 3 my preference is 2

the book by meyer published by siam is an excellent book with primary emphasis on not

only on matrix theory, but also on computational aspects of matrix theory.

With this we conclude our overview of the basic principles of vector spaces. So, what are

the  basic  things  we  covered  vectors  norms  distances  concept  of  linear  dependence

concept of linear independence orthogonality conjugacy basis dimension these are the

nuts and bolts of linear algebra that you would need to master to be able to proceed

further.

Thank you.


