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Student: Let us start sir.

Good,  if  you  recall;  in  a  first  lecture,  we  said  data  mining  data  assimilation  and

prediction  are  parts  of  a  continuum  data  mining  relates  to  development  of  models.

Almost all the models that will come to be originally arose from considerations that can

be related one way or the other to the concept of data mining as we understand it today.

Once the notion of a model was well established the notion of being able to use the

model to create prediction came about. Once we are able to predict we would the interest

became improving the quality of prediction became fundamental became a problem of

fundamental importance; how do you improve the quality of prediction you need to use

the data. 

So, data assimilation is the process by which you can fit the models of the data so that

the model can be calibrated to make reasonably good prediction. So, I have created the

model. I have observed the data, I have created the assimilated model; what is next to

create prediction. So, in this course, we are going to see the various aspects of the quality

of prediction who controls the quality how; what is predictability what are the in why is

the interest in predictability studies and that is the theme of this last set of modules.

So,  first  we  would  like  to  be  able  to  split  our  discussion  of  predictability  into

deterministic  predictability  where  deterministic  refers  to  prediction  generated  by  a

deterministic  model  stochastic  predictability  relates  to  predictability  of  analysis  of

predictions arising from stochastic models.



(Refer Slide Time: 02:28)

So, as a starting point we are going to talk about what is called the error dynamics or

variational equation which we have already alluded to; when we talked about for your

methods. So, we will quickly start developing some of the basic tools that we would we

would need in in in in the analysis of deterministic predictability let x k plus 1 is equal to

M; M of x k alpha be a deterministic model x naught is the initial condition alpha are the

parameters.

Now, let us consider the model running from one state called x naught bar another state

called x naught. So, that is one prediction there is another prediction the trajectories in; is

also called orbits. So, let x k bar let the sequence x k bar the sequence x k be. So, what is

the sequence x 1 bar, x 2 bar x i bar here is x 1 x 2 x up. So, let us consider 2 orbits or 2

trajectories generated by the models starting from 2 different initial conditions.

Let epsilon k is equal to x k minus x k bar therefore, the initial difference is epsilon

naught  the  initial  differences  epsilon  naught  then  this  difference  is  epsilon  one  this

difference is epsilon i, this difference is epsilon k. So, what is epsilon k epsilon k is the

difference in the forecast of the model a time k induced by the difference epsilon naught

in the difference in the initial condition that is used to generate the 2 different forecast.

So, epsilon k is called the; so, if the epsilon naught is the error in the initial condition

epsilon  k is  the induced the  other  in  this  state  of  the  system at  time  k,  why is  this

important; in many of the 4 D VAR based methods as well as forward sensitive methods



within the context of deterministic dynamic data assimilation scheme our goal has been

to be able to estimate the initial condition the estimate of the initial condition based on

finite samples will always have errors.

Therefore,  if  you used  one set  of  observation,  I  will  get  one estimate  for  the  initial

condition,  if  you  use  another  set  of  observations  I  will  use  another  set  of  initial

conditions. So, no matter which method you use if you are trying to estimate the initial

condition from a finite set of observation the estimate will not be equal to the true value

that I would need to be able to make better forecast in the another words estimates have

always errors embedded in them. So, you can think of epsilon naught as the error in the

initial condition estimate. So, if I want to give some life to this trajectory let x bar a, let x

naught bar be the true unknown initial state.

So, this could be the true trajectory; this could be the trajectory this this is the predicted

trajectory, this could be the predicted trajectory the predicted trajectory is different that

truth  trajectory  because  the  initial  state  that  is  used  to  generate  the  prediction  was

different from the true state the initial state estimate. So, you can think of x naught as the

estimate of the initial  condition the estimate epsilon naught is  the error in the initial

condition.

So, the error in the initial condition; however, small it is it is going to be reflected in the

forecast I am interested in the error dynamics. So, the evolution of epsilons induced by

the model is called the error dynamics that is the title of the slide. So, I would like to be

able to now derive an equation for the evolution of epsilon based on the evolution of the

true state as well as the predicted state.

So, what does that we one would expect if the error in initial condition is small if the

prediction at time k the error the is closed to the truth state; that means, the error in the

prediction at time k is also small in other words small initial errors leads to small errors

in the forecastle future time then you would say the model forecast is more reliable if the

error in the initial state explodes in time then the quality of prediction given by the model

deteriorates in time.

So, what does this relate to it relates to the sensitivity of the model to the variations are

errors in the estimate of the initial condition. So, if the initial errors are magnified by the

model; that means, the model is very sensitive if the initial errors do not grow, but grow



goes down to 0; that means, the models are more stable. So, stable models can be used to

create  better  prediction,  but  not  all  models  are  stable.  So,  the  quality  of  prediction

depends on essentially to the sensitivity of the model to errors in initial condition this is

the  fundamental  theme  of  predictability  analysis  this  is  the  fundamental  theme  of

predictability analysis.

So, that is the path way we are going to be taking in this set of slides that describes

analysis of deterministic predictability. So, let x k plus 1 actual model using it is the

actual model starting from the state x naught. Now to a first order approximation I can

say the unknown true state is equal to the known prediction plus epsilon k. So, it says

gain a first order theory. So, x k is equal to this x k can be replaced by the true state plus

epsilon k alpha.

So, here what is that I am assuming alpha is the parameter you know, if I change the

alpha the solution changes. So, I am going to pretend for a time being I know alpha

precisely and I have used alpha the precise alpha if there is going to be a forecast error, it

is all due to only errors in the initial condition and not the errors in the parameters. So, I

want to separate, I do not want to assume errors in too many things again, I want to

emphasize the forecast errors can come from errors due to 3 sources, one errors in the

initial condition errors in the parameter are errors in the model, I want to be able to enjoy

analyze each one of them separately.

So, in this case what is that we are interested in assume the model is perfect deterministic

assume, I know all the parameters in the model absolutely precisely. So, if there is any

forecast error that is directly attributable to only errors in the initial condition and the

errors initial  tension where do they come from they come from estimates while  data

assimilation schemes gives you a reasonably good estimates optimal estimates in some

sense because the estimates are derived out of finite  number of samples the estimate

from the finite set of samples may only be closer to the truest, a true value still there

could be a non-zero error our aim is to be able to see how the model treats this more

often inevitable error the error coming from estimation of the unknown initial condition

based on finer samples. So, that is the kick that is the real key.

So, if I now express; this map in the form of a Taylor series, it can be seen this is the base

value this is the perturbation. So, from here if I; from here if I. So, please also remember



x k plus 1 bar is equal to M of x k bar plus alpha therefore, this equation this equation

becomes this because this is equal to x k plus 1 bar x k plus 1 minus x k plus and bar is

epsilon k the right hand side is becoming the Jacobian of M at time k a time k means

what; at evaluated at x k times epsilon k. So, this becomes the dynamics for the evolution

of the error where D k is essentially D of x k of M, I did not want to complicate the

notation.

So, D of x k of M is simply decay. So, what does this tell you epsilon one is equal to D 0

M epsilon 0 epsilon; epsilon 2 is equal to D 1 M epsilon one which is equal to D 1 y M

times D 0 M times epsilon naught, what is this? This is the Jacobian evaluated the first

state this is the evaluation at the next state. So, it is the product of Jacobians this equation

3 in mathematics is called variational equation in meteorology literature. It is also called

the tangent linear system so tangent. So, in the in the context of in the context of a 4 D

watt we considered tangent linear system essentially with respect to understanding the

propagation  of  perturbation  here  there  we  induced,  but  we  induced  we  thought  of

inducing a perturbation initially to be able to correct the forecast errors.

Here, there is no correction there is no data there is no I am we have already done the

data simulation. So, I have a model x naught be the estimated initial state I am going to

run  the  model  from  this  estimate,  I  am  going  to  compare  the  performance  of  an

assimilated model with respect to the unknown true state and that is the analysis we are

trying to do. So, this is the first data assimilation analysis of model forecast to be able to

see how the initial errors are treated by the model.
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So, I am naturally interested in 3; 3 efforts to the dynamics of evolution of the model

errors.  So,  if  I  iterate  3,  I  get  this  expression what  is  this  expression.  If  I  picked 2

instances in time yeah, I am sorry, this is 0, this is time s and this is time k, I would like

to be able to express how the error at time s is related to the error at time k and that is the

relation. So, s could be 0 or anything else. So, this is general expression does this tells

you how the errors at 2 instances and times separated in time are related by the dynamics

D; D of k column s of M is simply the product of the Jacobian evaluated along the

trajectory from time s to time k.

This matrix has a special name it is called a propagator matrix what does it do it tries to

relate the errors between 2 different instances on time the propagator matrix is simply a

product of the Jacobians.
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Now, I  am going  to  introduce  a  numerical  measure  please  understand  yet  the  error

epsilon k. So, I have now understood how the errors propagate to a first order accuracy

through the model.

Now, but error is the vectors we would we understand certain scalar measured better than

vectors.  So,  I  am now going to  introduce  a scalar  measure that  tries  to  that  tries  to

quantify the properties of errors and that is done by a quantity called Rayleigh coefficient

the Rayleigh coefficient is simply the ratio of the square of the energy norm of the error

at time k plus 1 to that at time 0.

So, in the previous slide we related the error at time k plus 1 2 error at time s error time k

plus on epsilon k plus 1 is a vector the error time s is a vector s in general could be 0 or

anything any number less than greater than 0. So, s is greater than 0 less than or equal to

k. So, that is the essentially the range for us. So, epsilon k plus 1 is given by the product

of Jacobian from kts of M times epsilon s the energy norm I am trying to evaluate a

numerator with energy norm based on in SPD A, the bottom line SPD B.

So,  A and B, let  A and B be 2 given symmetric  positive  of a matrices  evaluate  the

numerator using the energy norm based on the matrix A evaluate the denominator using

the energy norm based on the matrix B in principle A and B could be equal, but the

treatment is some; is a simple when you do not have to consider A and B, for example,



what could be the thing in meteorology I would like to be able to say hey initially I am

interested in pressure, but at time at a later time; I may be interested in certain water city.

Initially I may be interested in temperature difference at a later time, I may be interested

in rain. So, what do A and B bring to the bring to bear on the problem I would like to be

able  to  consider  the  sensitivity  of  the  rain  in  the  future  time  and  it  depends  on  a

temperature distribution to the previous time, I could be; I am; I may be interested in

some quantity at time at a later time and its sensitivity based on another quantity.

Therefore at this stage, when I am trying to talk about quantities sensitivities, I do not

have to make them to be the same, therefore, Rayleigh coefficient what is it? It is simply

the ratio of quadratic forms what is the quadratic form. So, the numerator, r k plus 1

epsilon is essentially equal to epsilon k plus 1 transpose a epsilon k plus 1 divided by

epsilon s transpose B epsilon s i that is exactly that is exactly the relation that is involved

in here. Now please understand epsilon k plus 1 and epsilon s are related through the

model; the relation through the model is given by the product of the Jacobian along the

lines. So, how does the initial. So, what is that the you can think of it now suppose I have

an grid, I have an initial condition, I have a model, I am going to introduce a thermal

bubble in a small locale in the at the initial time in involving certain small number of grid

points.

So, there is a perturbation of temperature distribution initially how does the model reacts

to the thermal bubble at a time in the feature how does this thermal bubble introduces

other changes in the model. So, that could be one way of thinking about thinking about

this ratio. So, A and B in general are 2 symmetric positive matrices this ratio is called it

is the celebrated Rayleigh coefficient in matrix theory and that comes to our that is a very

useful measure for us to be able to consider predictability analysis. So, I would like to be

able to understand the behavior of this ratio.
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Now, let us see, what does ratio represents this ratio in general represents a measure of

the sensitivity you can you can see if the energy in some quantity at a later time related to

the energy of some other quantity at the initial time. So, this ratio captures the spirit of

the sensitivity that is involved in the predictability analysis suppose this ratio remains

less than one if this ratio is a scalar right, if there is ratio remains small for all time

beyond s; what does it mean? 

The error does not grow if the error does not grow what does it mean the predictions are

pretty done accurate, on the other hand, if this ratio grows in time; what does it mean, the

error  the  initial  errors  magnify  therefore,  analysis  of  the  properties  of  this  Rayleigh

coefficient for appropriate choices of energy norms of the numerator the denominator

essentially provides a very good clue to the quality of forecasts generated by the model

that is the that is the that is the secret of using Raleigh coefficient. 

So,  in  order  to  further  analyze  the  Rayleigh  coefficient,  let  us  concentrate  on  the

propagator matrix what is the propagator matrix it is a product of the Jacobian from time

s to time k. So, let us call that matrix a for the sake of simplicity in notation I am also

going to assume the model Jacobian is nonsingular if the model Jacobian nonsingular

means what the models well formed.

Non singularity the Jacobian at every point along the trajectory goes to a test to the well-

formed nature of the model itself the model. 



Sometimes the model could be screwed up how do you measure what is the measure of

the screw up in the model look at the Jacobian the model actually gives you a solution

you try to evaluate the values Jacobian along the trajectory is the valid the Jacobian

remains full rank the model is well formed if the model if the if the rank of the Jacobian

along the model varies then the model is not well formed model.

So, I am assuming the model is well formed in the measure in the sense that Jacobian

along the trajectory are nonsingular. Now a square matrix;  please realize that  A is  a

square  matrix;  even  though A is  a  square  matrix,  in  general  A is  not  symmetric,  A

depends on the starting time s and the starting time k. So, if I vary any one of the timings

way A changes, but for the analysis I am keeping s fixed k fixed. So, A is fixed. So, A

transpose A and AA transpose are the 2 Grammians coming out of this model both of

them are SPD; why both of them are SPD, if each of the components of a component

matrices in this product are nonsingular the product of nonsingular if the if; if a matrix is

nonsingular,  it  is  Grammian  is  full  rank the  Grammian  is  not  only  full  rank is  also

symmetric and positive definite these are all immediate conclusions we have alluded to

several  times  earlier  especially  within  the  context  of  development  of  SVD  severe

weather decomposition.

So, let V 1 to V n be the eigenvalues this is the eigenvectors of the matrix A transpose A.

So, A transpose A v is equal to V lambda V; V transpose V transpose these i.
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Now, I am going to define a new vector u i which is equal to 1 over lambda I am using

the similar formalism as we did in the SVD the only differences earlier we defined SVD

for the context in the context of matrix h which is rectangular now I am talking SVD

within  the  context  of  the matrix  a  which  is  square  h is  a  single  matrix  the forward

operator a is a complex matrix is a product of matrices along the trajectory if I assume

each of the matrices each of the Jacobian matrices are non-single a is not silver. So, I am

just trying to reinforce the idea where a comes from. 

So, if vi’s and lambda I’s are the eigenvector eigenvalue pair for A, I can now define a

new make a vector u i; u i also is an M vector which is one over square root of lambda i

times A v i from this derivation. So, I am now going to compute AA transpose u i, if you

substitute the expression for u i and simplify it, it turns out, i get 9. So, what does 9 say

AA transpose u is equal to lambda i u i. So, what does it mean if vi’s are the eigenvectors

of A transpose A u i’s are the eigenvectors of AA transpose both the matrices share the

same set of eigenvalues in this context lamp at the the lambda i's are the eigenvalues of A

transpose A as well as AA transpose.

Both of them are matrices of the same size. So, square root of lambda i is called the

singular value that is the definition. So, singular value of a matrix is the square root of

the  eigenvalue  of  the  Grammian  that  is  the  definition  and  the  square  root  of  the

eigenvalues the Grammian are all going to be positive if the Grammian is symmetric

positive definite a Grammian is symmetric positive definite, if the component matrices

are full rank. 

So, full rank condition essentially tells you the problems are well formed and that is the

condition we have been looking at all through full length matrices all good things in life

and that is exactly the kind of theory we have developed. So, lamb square root of lambda

are called the singular values vi’s are called the right or forward singular vectors ui’s are

called left or backward singular vectors these are the general nomenclature that is well

understood within the applied mathematics linear algebraic context now from 8; sorry

from 8; sorry.



(Refer Slide Time: 26:38)

I am going backward, I would like to talk about some of the properties of equilibria from

8, I can rewrite my equation.

For the definition of u i, this way, there are n, if I collected all the relations the matrix

form it becomes the matrix version. So, 11 is the matrix version of 10. Therefore,  A

transpose A is given by this decomposition because UU transpose U; transpose U they

are all identity U is orthogonal V is orthogonal; therefore, I get this expression. So, the

columns of V are orthonormal system. So, what is that we are we are now going to do we

have been doing analysis in the general coordinate system given by the standard basis

which is e i what is a what is a standard basis e i is equal to 0 1 0 and this is the ith

location i for one to that the standard basis if I have any other basis I can do the analysis

on that basis why would you change the basis if the analysis the new basis can be made

simply it can be made simple nothing is lost.

In fact,  lot may be gained by changing the coordinate system from the standard to a

given coordinate systems now we are going to gain by changing the analysis from the

given simple coordinate system to an orthogonal system defined by V the columns of V

what are the columns of V they are the eigenvectors of the matrix A transpose A given a

space  that  we  should  always  have  in  n  a  n  basis  vectors  if  the  basis  vectors  are

orthogonal it becomes orthogonal basis if the basis vectors are not orthogonal it is basis,

but doing arithmetic in non-orthogonal basis is a little bit more involved.



So, we are simply changing from one orthogonal basis to another orthogonal basis and

that is going to throw a lot  of light on the behavior of the behavior of the Rayleigh

coefficient.
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So, what is that what is the transformation we are going to be talking about now please

understand epsilon s is the initial error at time s, V is the new basis. So, I am going to

transfer epsilon s 2 alpha. So, what is alpha? Alpha is the new vector alpha and epsilon

are referred to the same point in this space epsilon s is the coordinate of the same point in

the original basis alpha is the coordinate of the point in the new basis whose columns

whose basis vectors are columns of V and these 2 values of coordinates of the same point

the to coordinate system are related by the expression in 13.

Therefore now I am going to re express my value of the Rayleigh coefficient of time k

plus 1 with respect to the Rayleigh coefficient  of time s this  is the definition of the

Rayleigh coefficient in the standard basis which is fourteen in the transform the domain

my  Rayleigh  coefficient  takes  this  form.  So,  what  is  that  I  am going  to  do  please

remember my a is equal to D colon s of m. So, a transpose is equal to D ks s transpose of

M also remember my epsilon s is equal to is equal to V transpose alpha.  So, if you

substitute all this fourteen becomes 15 fourteen becomes 15. What is the real kicker? 

Here the real kicker the numerator and the denominator get simplified what is that A

transpose A v is equal to lambda V because V the columns of V are the eigenvectors of



that therefore, if I multiply this by V transpose A transpose A v that is equal to lambda

and that is exactly what is occurring in the numerator in the numerator therefore, this

complex  matrix  in  the  numerator  becomes  simplified  as  a  diagonal  matrix  in  the

numerator we also know V transpose V is equal to VV transpose that again come from

the orthogonal the eigenvector that is equal to i the denominator gets simplified by this.

Therefore  I  have  decoupled  both  the  numerator  and  the  denominator  from  the

dependence and. So, in in in here what are the one of the various values of am assuming

I am assuming a is identity I am sorry I am computer I am concerning the energy norm, I

do not think; I do not want to go back right now sorry. So, I hope this is clear. Now the

expression for the Rayleigh coefficient is given by 15.

(Refer Slide Time: 32:10)

Now, what is the, denominated 15 what is that is the inner product of inner product of

alpha with itself the numerator is simply a quadratic form of alpha with that of a diagonal

matrices. So, what is that? So, alpha is a vector. So, alpha is any vector that is going to

represent my epsilon s. So, I am going to now consider a normalized vector. So, the norm

of alpha defined by this I am going to set to be one what does this mean if I have a vector

here I can consider the normalized part of it. So, that is essentially a normalization the

direction is more important than the magnitude itself that is the idea here. So, I am going

to consider the ratio in 15, then I confine my attention to alpha unit vectors that is a that

is a whole that is a whole point of the game.



So, in this case, the numerator becomes one; therefore, r k plus 1 alpha is essentially is

essentially the numerator which is alpha transpose lambda alpha which is again given by

lambda i  square root  of  square of  alpha i  square from here the following inequality

becomes follows directly this is the actual value since the sums since the sums of alpha i

square is 1 since the sums of alpha i square is 1. 

So, you can readily see lambda i alpha i square i is equal to 1 to n is less than or equal to

is less than or equal to maximum over i of lambda i times alpha i square i is equal to 1 to

n and that is equal to one. So, that gives raise to this this is also right minimum over i of

lambda i square times summation alpha i square i is equal to 1 to n; that is equal to 1

therefore, lambda 1 is the maximum eigenvalue lambda n is the minimum eigenvalue it

readily follows r k plus 1 alpha is less than or equal to lambda one and lambda n where

lambda one and lambda n are the maximum and minimum value of the eigenvalue. 

So, what is that we have done we have narrowed the values that the the ratio of the

energy norms of the errors can take by moving simply from the standard coordinate to

the new coordinate formed by the eigenvectors of the Grammian A transpose A assuming

a is full rank. So, this is a very nice treatment  of the analysis  of the analysis of the

Rayleigh coefficient.
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Now, what is that we are interested in we are interested in determining what is called the

average rate of growth of errors from time s to k plus 1 then k goes to infinity that is of



interest let us look at this why are we interested in the average growth of errors, you if I

commit  an  initial  error  if  the  error  grows how much error, I  can  afford  to  crap my

forecast such there forecast till meaning is still meaningful is the question. For example,

in weather forecasting we have make tremendous this  improvement  over the past 50

years, but we still do not know how to make monthly forecast or models are some of the

best known models in the last hundred years and we have the best computers we have all

kinds of observation systems we still cannot make predictions over.

So,  the predictions  that  we make in  today with all  the things  we know with all  the

technologies  available  computer  sensors  satellite  models  and everything  else  we can

probably  believe  3  to  maximum  4  day  forecast.  So,  what  is  4  day;  4  day  is  the

predictability limit. So, what does it mean today I am going to make one day forecast 2

day forecast 3 day forecast side a forecast the error one day forecast is there, but it is

smaller they error in need to do today forecast slightly larger error with the five day

forecast is more.

Why do you do not want to do the ten day forecast is not that I do not know how to make

a ten day forecast I can make the ten day forecast to, but the error by the time ten days

into the future comes into being you. So, much that it dwarfs the signal. So, there is a

signal on which the forecasts are superimposed if the magnitude of the superimposing

error is comparable to the signal then signal plus noise overwhelms the information. So,

it is a classical study in the engineering literature called signal to noise ratio.

So, in any estimation problem in any detection problem we will always like to be able to

analyze the signal to noise ratio and we would like to be able to maximize the signal to

noise ratio. So, in some sense, the Rayleigh coefficient tries to capture the spirit of the

computation of signal to noise ratio. So, so one measure one question is to how far does

it take to be able to double the initial error. 

So, what is the norm of the initial error what is the number of the error at a future time;

how long does it take for the initial error the norm of the initial error to double that is

called error doubling time; if the error doubles in 10 days of a ten days the error is even

more than double. So, can I make a forecast that the error is double than the initial one

no. So, what is the amount of error you may be able to tolerate; how long how far the

error grows how fast the error grows ok.



Now, error  rate  of growth varies  from time to time to time to time.  So, if  the error

relative growth varies from time to time to time what is one measure average rate of

growth of  growth of  errors?  So,  to  understand the  quality  of  prediction  we need to

understand the predictability limit what is the predictability limit predictability limit is

the limit beyond which errors overwhelm the signal if the errors overwhelm the signal

the prediction is useless.

Now, here comes some of the basic thing some processes are predictable perfectly the

lunar solar eclipse IBM price I can predict for tomorrow, but I do not think I can predict

the price of a maybe M stock day after tomorrow is much more volatile that lots of

factors that depend on how do you predict the price of a barrel of crude oil the barrel of

crude oil depends not only at the cost of production, but also the cost of transportation

from place A to place B, either you transport the unpurified base liquid or purified form.

But then the cost of crude oil is controlled by. So, many events in the world if there is a

war in the Middle East or if there is a problem in the Middle East we believe that the

supply maybe affected the price immediately goes up. So, there are a number of factors

that affect the price of a barrel of crude. So, the barrel of crude predictability effect is

extremely  difficult  problem.  So,  a  likewise  the  weather  prediction  we  have  gained

enough knowledge about the weather the behavior of it. So, that we can make good short

term prediction  long  term prediction  we  try  to  do,  but  we  are  not  able  to  do  long

prediction which are reliable for example, I cannot predict seasonal weather precisely i

do not let alone climate why it is not because they are not intelligent because the model

we use exhibit extreme sensitivity to the initial condition.

So, the initial condition you use to generate the forecast have even smaller errors if the

model  is  very  sensitive  to  small  errors  the  errors  blow  up  into  up.  So,  that  is  the

fundamental team behind predictability analysis. So, the interest now goes to analyzing

what is the average rate of growth of errors that is important. So, what is? So, given s is a

starting point fixed this is k; I would like to get to go to infinity. 

So, from a fixed starting point if I want to be able to make asymptotically large values of

time if I want to be able to make forecasts for such large values of time over the time

what is the average rate of growth of errors as into the model to that end I am going to

define a new matrix. So, what is this matrix you remember D k s M which we will have



also called a I am going between a and this whenever we need to. So, this is simply A

transpose A there is a Grammian; s is fixed s is fixed it depends on M I am going to let k

go to infinity. So, I am interested in the long term value of the Grammian A transpose A;

I am also interested in the in the 2 k minus one 2 times k minus one the root of this

matrix.

Please understand please understand given a matrix A, I can consider a square given

matrix A, I can consider a to the power of one half given a matrix A, I can consider A to

1; 1 over alpha for some alpha. So, this is matrix I am considering one over 2 times k

minus s; what is k minus s k minus s is the time difference between the starting point and

the final time k goes to infinity. So, k minus s goes to infinity. So, this this matrix plays a

fundamental role the eigenvalues of this limiting matrix are called Lyapunov vectors and

the corresponding eigenvalues of this limiting matrix are called Lyapunov of numbers we

are going to talk about these two, but before we go there I would like you to be able to

appreciate the definition of this matrix.

So,  what  is  this  it  is  a  product  of  the  I  am sorry if  the  product  of  A transpose AA

transpose a is the Grammian A transpose A depends on s and k and keeping s and M the

model fixed I am letting k goes to infinity I am interested in the in the in the 2 times k

minus s the root of this product matrix and that is the matrix that limit matrix that limit

matrix  has  an  eigenvalue  eigenvectors  the  eigenvalues  are  called  Lyapunov  vectors

eigenvalues  are  called  Lyapunov  numbers  Lyapunov  is  the  famous  Russian

mathematician  who  propounded  the  theory  of  stability  in  the  early  decades  of  20th

century and so in his honor, it is called Lyapunov vectors Lyapunov numbers.



(Refer Slide Time: 44:30)

The natural logarithms of the Lyapunov numbers are called Lyapunov of indices. So, let

us look at this number. So, this is called Lyapunov of indices Lyapunov of indices. So,

what is a Lyapunov of index? it is the let us look at this. Now let us look at this ratio

what is this ratio? It is a norm of the error at time. So, if I have time s if I have time k I

have epsilon s I have epsilon k plus 1 the norm of the norm of the ratio of the. So, this is

equal to D k times s of M of epsilon s.

So, the norm of the error the epsilon k plus 1 divided by epsilon s. So, what does it tell

you by running epsilon as through the model I am able to change the initial error? So,

then the norm of the raise ratio is a number and this number depends on the time interval

k minus s I am going to normalize this  by one over k minus s; s is fixed k goes to

infinity. So, this ratio is the; you can you can think of it as the average. So, this average

value lambda is called the Lyapunov index and this Lyapunov index essentially tells you

the average rate of growth of the errors that makes sense; I want to think about it now

think about it now. So, epsilon k plus on by epsilon s what does it mean that is the rate of

growth of error during the time from s to k, I am trying to divided it by 1 over k minus s.
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So, that is the average rate of growth of errors. So, what is the meaning of this Lyapunov

index I am going to introduce it by illustrating it on a scalar dynamics? In fact, the entire

theory  of  dynamical  chaos  in  deterministic  system is  centered  around this  notion  of

Lyapunov indices average rate of growth of errors sensitivity to initial conditions. So,

what is the idea if a system exhibits a set of the extreme sensitive to the initial condition

that system cannot be used to generate prediction for long intervals of time?

If the system exhibits less sensitivity to initial condition such systems can be used to

create long term forecasts it turns out most of the models of interest in climate studies

most of the models of interest in oceanography atmospheric sciences exhibit do exhibit

extreme sensitivity to initial condition that is the reason why we still are not being able to

make ten day forecast a monthly forecast seasonal forecast we still have not captured all

aspects of the model sensitivity. So, the current models exhibit extreme sensitivity that is

the reason why we are able to do what we are able to do.

So, to understand this let us work a simple example, let x dot is equal to f of x be a

dynamical system a x if x naught bar is a given initial condition that is the unknown that

the true value of the state. So, this is x naught bar. So, from here I can compute the

solution x of t I have x naught this is x naught bar I can compute x of t.  So, barred

quantities are true unbarred quantities are coming from estimated values, I have an initial

difference which is epsilon naught I am doing the entire  theory, but some place in a



simple one dimensional models.  So, the dynamics of the error growth the variational

equation for this case becomes where our t is equal to Jacobian of f times y f t this y

plays the role.

So, instead of instead of epsilon I am sorry instead of epsilon I am going to consider this

as y naught. So, let y naught be the initial difference that y of t be the difference at time t

epsilon we use in the contacts with a discrete time y of t I am going to use it in the case

of continuous time. So, y of t is related to a the rate of growth of y of t is given by this

equation this equation is a linear dynamical system the linear dynamics varies along the

trajectory again. So, this is the Jacobian if you discretize this in the interval 0 to t there

are young subintervals let the sub intervals of time tau. So, n tau b k, this is 0 this is t I

am going to divided into intervals where the subintervals are time r of length tau and t is

equal to n tau.

So, now I am now going to assume that this equation which is given by 21 is such that

during a given interval of time my D t of f remains constant; that means, the interval of

time tau is.  So,  small  that  my Jacobian does not change too much within that  small

interval of time therefore, I am now going to assume the dtf in a small interval going

from k tau to k plus 1 tau a remains constant and that constant value is L k. So, what is

the L k;  L k is  the constant  value  of  the Jacobian of  the  system during the time of

evolution from k to k plus 1 or k tau 2 to k plus 1 tau if tau is small, this is a reasonably

very good assumption to make therefore, y dot.
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Therefore y dot dt of fyt by combining 22. So, 22 when substituted and 21 becomes an

equation like this; sorry, becomes an equation of this time that is a linear equation. This

equation depends on k you can see L k depends on this interval, I can solve this equation

very readily there is a y k plus 1 is equal to e to the power of L k tau y k. So, if a time k

this is time k plus 1 if y k is the initial condition, I would like to be able to compute the

solution at y k plus 1 the matrix L k remains the same. 

So, the solutions are 2 intervals of are 2 endpoints are related by this equation 24, if I

trade this from y naught to Y N I get this relation you can readily see by iterating 24 and

using the definition of L k being constantly that in the domain Y N is equal to e to the

power of summation j is equal to 0 to n minus 1 the L j times tau y naught.

Now, from the definition of the Lyapunov index; the Lyapunov of index are time t, I am

assuming might for catalyzing is capital T. So, when my forecast horizon is capital T

from the definition of 20. Now it should be tau pointing to 0. So, this would be sorry as

tau goes to 0 not t. So, t is fixed tau goes to 0 as tau goes to 0 n goes to infinity n tau

represent the total time capital T. So, n tau is always capital T please understand n tau is

capital n tau is capital T. So, as tau goes to 0 n goes to infinity, but the product is fixed t;

the product is fixed t.

Now, I am taking the logarithm of Y N divided by y naught what is Y N absolute value of

Y N is the error at time capital n y naught is the error at time 0 I am taking the ratio it is a



logarithm of the ratio of the magnitude of the error at time n to time zero. So, y is there

the errors now I am interested in the errors that affect the prediction now if I substitute

25  the  expression  for  Y N in  here  and  simplify  what  does  it  become  it  essentially

becomes the average of Lj that is L bar t a that is a beautiful expression that comes from

a simple. So, lambda t which is the function of t; t is finite is becomes l bar t what is l bar

t is the average value of the Jacobian along the trajectory that is beautiful that is that is

beautiful.

So, lambda t refers the main growth of errors during the interval 0 to t now what do I

want to get the Lyapunov index, let t go to infinity that is the definition of Lyapunov

index.
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So, what is the Lyapunov of index is the limit of capital is the limit of lambda t with a

capital  T going to infinity and that gives raise to that gives raise to the definition of

average rate of growth of errors in unbounded intervals. So, what does that tell you if

lambda is defined that way you can now see that y t at any time is equal to e to the power

of lambda t times y naught clearly the error grows when lambda is greater than 0. So,

what  does it  mean one can analyze the quality  of prediction by analyzing lambda if

lambda is greater than 0; what does it mean average rate of growth of greater than 0 the

average rate of growth is greater than 0 error grows.



So, in systems where lambda is greater than 0 that is initially predict predictability limit

in systems where lambda is less than 0 there is no predictability limit I can predict for the

whole feature. So, that is import of this analysis and. So, I want you to go back and

understand the theory reasonably well.  So, we presented a general theory; we are all

trying to  illustrate  the general  theory based on a very simple scalar  continuous time

dynamics,  we  have  introduced  the  notion  of  average  growth of  errors.  So,  it  is  the

average rate of growth of errors over asymptotically long intervals of time that helps to

indicate the quality of prediction generated by the model. So, lambda depends on the

model.
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So, lambda is going to be able to give us the guideline how to believe and how long I can

believe the forecast generate by the model.

So, how do we define the predictability limit the predictability limit tp is given by tp is

equal to 1 over lambda. So, if lambda is positive my prediction can hold water only up to

the forecast horizon tp which is equal one over lambda. So, what is one over lambda if y

of t is equal to e to the power of lambda t y naught if t is equal to t p y naught if tp is

equal to now lambda y of t is equal to e times lambda is y y naught; that means, the ratio

of the magnitude of the initially a ratio the magnitude of the error a at time t to the initial

error this is the order of e a that is a particular unit.



This limit for atmospheric models used to be one or days about 3 4 decades ago now has

gone to of the order of five to seven days; it is this improvement from one to 2 days to

five to seven days is the achievement by the meteorological community by bringing in

the signs of data of assimilation and analysis of analysis of predictions created into the

model.  So,  you can see  the role  of  data  assimilation  the  role  of  errors  in  the initial

condition the role of trying to measure the ratio of the errors at 2 different times and

understanding  the  rate  at  which  the  errors  grow  these  are  some  of  the  beautiful

mechanisms used in which one can create estimations of how good a forecasters that is

the that is the ultimate key.

So,  creating  forecast  is  one  thing  trying  to  attest  the  goodness  of  the  forecast  or

something else we have learnt how to create forecast by. So, many different methods of

data assimilation the analysis of data assimilation is not complete until we understand the

predictability limit how long the predictability how long the prediction can hold water

that is the idea. So, that is for time greater than tp; tp th particular for time greater than tp

the error in the initial  condition will overwhelm the signal corresponding to the base

forecast  clearly  lambda  is  a  function  of  x  naught.  So,  and  the  given  value  of  the

parameter lambda varies as the function of the initial condition also the parameters.
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Now, I am going to talk about how to compute lambda for real systems. So, we have

seen  the  importance  of  Lyapunov  index.  Now  I  am  going  to  talk  about  the



renormalization strategy by which one can implement an algorithm on any model to be

able to compute the Lyapunov index. Once a quantity is of great interest we need to be

able to compute it. So, let us let us look at an algorithm now let epsilon naught be the

initial value of a perturbation based on the initial condition x naught bar. So, the initial

condition is fixed given model is fixed alpha is fixed.

So, please understand my model is x k plus 1 is equal to M of x k alpha. So, M is fixed

alpha is fixed I have initial condition that is also fixed. So, if I am interested in the ratio

epsilon  s  to  epsilon  naught  sorry  epsilon  naught  epsilon  s  to  epsilon  naught,  I  can

essentially express this a product like this. So, what is that epsilon s divided by epsilon s

minus one times epsilon s minus one divided by epsilon s minus 2 likewise the epsilon

one divided epsilon naught all the cross terms will leaving behind this equal to epsilon s

divided  by  epsilon  naught  therefore,  this  ratio  is  equal  to  the  product  of  the  ratios

between 2 successive times. So, what is that we are interested in we are interested in 0 e

s I am interested in trying to multi the product, I am sorry, now I am interested in the

ratios 2 successive times the product there off the product there off gives you the product

from epsilon s 2 epsilon 0.

So, you can readily see this product is given by this ratio. So, then from our definition

what is lambda the Lyapunov index; Lyapunov index is the average of the log of the

average of the log of; so, I have to take the log of both sides if the log of both sides log of

the product is the sum of the logs. So, log of an a b is equal to log of a plus log of b. So,

if I took the logarithm on both sides of 30; I get an expression. So, the ratio of the log of

both sides as epsilon naught goes to 0. 

So, I would like my epsilon not to be as small as possible I want my end to go to infinity

what is the n the number of discrete intervals of time and that is the limit of the average

of the logarithm of the amplification along the trajectory that that is the basic idea. So, I

would  like  to  be  able  to  compute  this  if  I  can  compute  that  you want  is  the  cover

algorithm I am that and to be able to express 31 the key is in expressing the ratio of the

errors a ratio of the norms of errors a time s to 0 as the product of ratios at consecutive

times. So, this is the product of ratios in the consecutive times the product of the ratio is

consecutive times the numerator denominator cancels leaving behind epsilon s epsilon

naught. So, that is a very clever way of writing the ratio of the norms a time s 2 time 0.



So, this is this is one of the ways of computing there. So, how do we how do we do that.

So, here is an algorithm now, let epsilon; epsilon naught.
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Let epsilon; I am sorry; that is right, let epsilon naught be the initial error then run the

model one sip interval try and compute the error epsilon 1 compute the ratio the norm of

epsilon one by norm of epsilon 0.

Then run the model from epsilon one to epsilon 2 then multiply this by norm of epsilon 2

times epsilon one continue if I continued; I get epsilon s divided by epsilon s minus one

that is equal to norm of epsilon s divided by norm of epsilon 0 . So, by running the model

once I am at a time by running the by computing the ratios by taking the product of those

ratios  taking of  the  logarithm of  the  ratio  I  can  in  a  way estimate  lambda.  So,  this

provides an easy algorithm to be able to be able to evaluate lambda. So, this is what is

called renormalization strategy.

Now, I am going to give you well known information about certain facts about Lyapunov

indices for forced I have not defined what a chaotic system. Now let me talk about the

definition of a chaotic system when do I say a dynamic system is chaotic if given a

dynamical system if you compute the Lyapunov index if the Lyapunov index is positive

in some part of the domain then it is called chaotic why it is chaotic in a chaotic system

error grows on an average right.



If there the error grows an average rate then the predictability becomes very very very

very difficult. So, what is the measure of the; that predictability is Lyapunov index. So,

Lyapunov index is being positive is one of the signatures of the chaotic system and also

lambda greater than 0 is an indication of the fact that the system is extremely sensitive

initial condition because the initial condition errors grow at a rate lambda. So, Lyapunov

index sensitive is initial condition being chaotic all these things are related concepts.

So, given a force chaotic system the first Lyapunov index is positive which is responsible

for sensitivity the initial sensitivity a responsible for the sensitive initial condition. Now I

only talked about a i Lyapunov index, you may ask what is the what is the first Lyapunov

index again that requires a little bit of an explanation you remember we talked about the

matrix let us go back in the definition of Lyapunov indices we talked about this matrix in

nineteen lambda M is a matrix a matrix have M different eigenvalues. So, I am now if I

talked about the analysis of the first eigenvalue that leads to first Lyapunov index second

eigenvalues leads to the second Lyapunov of index.

So, if I system; if the order of the system is 3 in general it  should have 3 Lyapunov

indices I only talked about the maximum value of the Lyapunov index or the Lyapunov

index  corresponding  to  the  first  eigenvalue.  So,  in  n  dimensional  system has  the  n

eigenvalues n dimensions can have n in Lyapunov indices. So, if there are n Lyapunov

indices you can talk about the first second third and so on; I am now going to talk about

some of the well known facts about Lyapunov indices for different types of systems.

So, for a dissipative system the sum of all the Lyapunov index must be negative that is a

fact this can be proven it is proven on many good books on introduction to chaos theory

for this for this class of system one of the intermediary Lyapunov indices is also 0, I am

got a illustrated further these are some of the well known facts I am trying to summarize

explaining each of this will take at least one or 2 lectures, but here I am trying to collect

many of the many the results the growth rate of the la. 

So, what is lambda 1 tells you. So, if I have a 3 dimensional system I have 3 Lyapunov

indices lambda 1 tells you the great growth rate of arose along one line lambda one plus

lambda 2 refers  to  the  growth rate  of  surface  areas  lambda one plus  lambda 2 plus

lambda 3 refers to growth rate of specific volumes; that is where different Lyapunov

indices come into play.



So, likewise the sum of the first k Lyapunov of indices tells you the great of growth of k

dimensional volumes. So, these are all very many simple facts.
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So, now I am going to talk about some of the specific values for specific systems many

of us are introduced the notion of Lyapunov 1963 model; it is Lyapunov in 1963 for the

first time introduced r accidentally found the presence of chaotic system. So, for it is

there  is  this  1963  model  of  Lyapunov  is  one  of  the  most  thoroughly  analyzed  and

understood systems of differential equation.

It  consists  of  3  ordinary  differential  equation  coupled  with  non-linearity  it  is  also  a

dissipative system because it is dissipative it is in general does not go to infinity it is the

other orbits remains bounded the first Lyapunov index for this is 0.09; therefore, e to the

power of 0.9; 0.9 is equal to 2.4596. So, what does it mean any line segment any error

along the line or any; yeah any error along the line will magnify at the rate 2.4596 that is

the average rate of growth of errors, but the total Lyapunov indices for this is minus 11

0.9; that means, the 3 dimensional volumes decrease at this rate decrease at this rate the

life.

So, what is the idea here the volumes decrease the attractor wave the where the where the

where the orbits of the system exists; you cannot predict where the orbits will be at what

time because it is intrinsically chaotic because lambda one is positive. So, that is the

overall characteristics of what is called the Lorenz system and examples of values of the



first Lyapunov index if the first r Lyapunov indices are positive, then lambda prime p is

equal to sum of all the Lyapunov indices which are positive 2 states, there are incident

definitely close diverges the rate lambda bar e to the power of lambda bar p times t. 

So, this is again the average rate of growth this is an extension of y t being equal to e to

the power of lambda t times y of t. So, in this case it is y t times e to the power of lambda

p times t times y naught where lambda p is I am sorry lambda bar p sorry where the

lambda bar p is equal to the sum of the first r some of the first r Lyapunov of indices

which are positive. So, the sum of the positive Lyapunov indices refers to the average

and great of growth in this case the predictability limit is given by one over lambda at to

the one over lambda bar p.

Now, you can see if there are more than one Lyapunov index that is positive lambda bar

p is larger if lambda p lambda bar p is larger one over lambda p bar is smaller therefore,

if  a  system exhibits  larger  number  of  positive  Lyapunov  indices  in  such system the

predictability limit  is much smaller if a system does not have any positive Lyapunov

index then then I can make predictions for a long periods of time predictions for the long

periods of time. So, that is the ultimate essence of the theory of Lyapunov index.
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Now, I am going to give you these are exercised problems, but I am going to cote you

some  of  the  values  of  the  Lyapunov  indices  or  some  of  the  very  well-known

mathematical models for the logistic model that the parameterization 4 the Lyapunov



index  is  0.96931  that  is  positive.  So,  logistic  models  are  chaotic  because  they  are

extremely sensitive initial condition; there is a model called Henon model; the Henon

model has the first Lyapunov index is a 2 dimesnional; I am sorry, yeah, for the Henon

model, I have the lambda one is point for 2; lambda 2 is minus 0.162 for the Lorenz is

already talked about first one is 0.9; second one is 0, last one is this. So, these are some

of the examples of simple systems there is a difference between the properties of the

same logical logistic model is the discrete time model that tries to capture some of the

principles of population dynamics.

Henon model is a mathematically oriented model it may not correspond to any particular

physical  system Lorenz  is  model  how did he obtained the 3 differential  equation  he

obtained it from starting with some vorticity equation oh i and in this case not a vorticity

equation I am sorry it is it is the it is the it is the heat transfer problem and from that he

applied the spectral methods and he from that derived the 3 sets of equation whose ligand

wall whose Lyapunov indices are positive 0 and negative. So, Lorenz model theoretically

for the first one to be able to exhibit the notion of Lyapunov index.
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And the role of Lyapunov index and predictability studies here are some other properties

of Lyapunov indices, I am going to now create a comparisitive a comparison steady state

behavior attractor Lyapunov index dimension of the attractor these are summaries are

very well known result a steady state for a dimensions can be in equilibrium point what



is an equilibrium point there is an attractor to which all the solutions come and settle

down those steady state are called equilibrium point equilibrium point; the attractor is a

point the Lyapunov indices are all negative.

So, therefore, the dimension of the attractor 0 for a periodic orbit it is a cycle; there is

one Lyapunov index is 0 rest of them are negative the dimension of the attractor is one; I

know, I  have  not  talked  about  the  dimension  attractor  much more  elaborately, but  I

believe; I wanted to provide you a quick summary of the notion of predictability and

some of the models for which the predictability can be answered.

So, what does it mean if a system exhibits an equilibrium predictability is complete if a

system exhibits periodic orbit their predictability is complete;  I do not have to worry

about predictability I can predict for all for all times if the system exhibits that steady

state with respect 2 periodic orbits the attractor is set to form yeah the yeah terrace in

which case 2 eigenvalues are 0. 

There is the eigenvalues are negative the dimension of the attractor is 2 for a chaotic

system the attractor is called fractal. I have not introduce even the notion of fractal object

fractal  object  is  a complicated object  in the case of a fractal  object  in the case of a

chaotic attractor such as the Lorenz attractor the at least one Lyapunov index is positive

the rest of them could be 0 or negative and the sum of all the overall Lyapunov indices

totally together could be less than 0 that; that indicates the system is totally dissipate

dissipative and the dimension of the attractor is non-integer; that means, if they have

what is called fractal dimensions.

So,  the  notion  of  fractal  attractive  fractal  dimension  chaotic  behavior  they  are  all

interrelated with each other.
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With that we conclude our discussion of deterministic predictability I would like you to

pursue these this exercise what is the exercise consider the simple logistic model this is a

very good exercise consider alpha consider this is not alpha a the same parameter a as in

here consider the range of parameter from one to 4 x naught is now is equal to 0 to 1.

So, I would like you to pick an x naught pick an alpha compute lambda. So, plot this is a

very good computing exercise Lyapunov index versus x naught for a  given value of

alpha sorry for a given value of for a given value of alpha. So, alpha is equal to 1 draw

this curve alpha is equal to 2; draw this curve alpha is equal to 3 4 draw this curve you

will see you will verify when alpha is 1 and 2 and 3 the system does not exhibit any

sensitivity  initial  condition,  but when alpha is equal to 4 the system tends to exhibit

extreme sensitivity initial  condition and that is the model we talked about with this I

have;  I  conclude  our  discussion  on predictability  of  deterministic  system as  a  quick

summary predictability  analysis  is of great interest  after  we assimilated data into the

model once you assimilate data in to the model I am going; I have the capability to make

prediction.

The question is how far for how long the prediction will hold water; the answer to the

question of how long the prediction will hold water depends on the intrinsic property of

the model itself it relates to the sensitivity of the model solution with respect to the initial

condition this sensitivity is essentially relate to the forward sensitivity we have already



defined. So, forward sensitivity analysis and analysis the Lyapunov index are intimately

associated in each other even though I am not exploring that discussion in this in this in

this  in  this  set  of  lectures  one  way  to  be  able  to  summarize  the  initial  condition

sensitivity is through a parameter called Lyapunov of index.

Lyapunov of index could be positive 0 or negative for dissipative system the sum of all

the Lyapunov index is must be less than 0; at least one Lyapunov index is 0, if one of the

Lyapunov indices the greatest Lyapunov index is positive such systems are supposed to

exhibit extreme sensitivity it turns out many many of the model that are currently being

used in geophysical sciences to predict different types of geophysical phenomena have

exhibited extreme sensitivity to initial condition that is the reason why we are not able to

make long term predictions despite 50 plus years of progress in model building as well as

data collection and data analysis and with all the glances we are able to increase the

predictable limit to about five six no more than seven days these days.

So,  what  does  it  mean  the  prediction  problem continues  it  continues  to  dominate  it

continues to be a problem of great challenge and 1 of the goals of this study models data;

data assimilation all relates to improving the predictability limit. So, what is the ultimate

goal of doing all these things I would like to be able to make long range prediction very

reliable long range prediction until such time we achieve the ability to make long range

prediction our job is not done and there is no telling how long it may take though it all

depends on it all depends on very many different aspects of very many different aspects

of models data; data assimilation sensitive to the model initial conditions so on and so

forth.

So,  I  have  provided  a  simply  a  rudimentary  ideas;  I  simply  scratched  the  surface

unpredictability is a very deep discipline I would encourage you hope this will encourage

you to be able to look at some of the interesting books related to productivity analysis as

well as chaos theory, but as a starting point this exercise analyzing logistic model by

choosing various alphas and choosing various x naughts; I am trying to compute will be

a very good opening game in your understanding the theory of predictability.

Thank you.


