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Basic nudging methods

In this module, we are going to be talking about another method that has been introduced

way back in the early 70s called nudging. I am going to provide the basic principles of

nudging and some of the associated questions relating to the design of nudging schemes.

So, what is  nudging? The model is  always use to create a forecast,  the goal of data

assimilation is to make the model to fit the observations. So, this fitting was done by

looking at the some of the square differences between the model predicted variable and

the observation to decide on the values of the optimal values of the parameters. And the

initial condition from which we started the model forward. And that is one of the themes

that underlie 40-watt data assimilation are forward sensitivity-based data assimilation.

Nudging is  an alternative  method in nudging what  you do you compute the forecast

error, which is the difference between the model predicted observation and the actual

observation. This error in the forecast is often used as the forcing, the forcing that makes

the model move towards the observation, this ability to force the model by adding a force

that depends on the forecast error is the fundamental idea behind the nudging scheme.

So, to nudge to be able to force to be able to choirs the model towards the observation.

These  words  force  nudge  choirs  essentially  captures  the  fundamental  principle  that

underlie this notion of nudging algorithms or nudging methods.
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A bit about a early history, Anthes in 1974 introduced the nudging method. He used this

for initialization of hurricane prediction model, it was published in general atmosphere

sciences in 1974. Hoke and Anthes in 1976 further explored the use of nudging schemes.

Again,  within the  context  of  hurricane  forecast,  and that  paper  was giant  paper  was

published in 1976. In monthly with the review the idea is to use the model for the model

forecast error to force the model. So, as to reduce the forecast error. So, it is a kind of a

feedback principle. So, the model makes a forecast observations are there is a forecast

error, I am using the forecast error to be able to force the model to be able to reduce the

forecast  error.  This  is  the  fundamental  principle  that  underlie  any  feedback  control

mechanism. So, it is a kind of a feedback control theory; that is, brought to focus by this

nudging scheme within the context of data assimilation methodologies. 
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So, did it to get a feel for this nudging scheme. Let us consider a state, x k a time k which

is  an  R n.  M is  a  map  from R n  to  R n  the  forecast  model  I  am assuming  to  be

deterministic with x naught does the initial condition. The observations are again non-

linear function of the state x bar be the true state of the system that is not known I only

have information about the true state through the observation. V ks are the observation

noise, h is the forward operator. Again, I would like to emphasize the notion of a true

state. And the observation noise is discussed here, it is a standard set up. So, what is the

difference between this and the cognate filtering scheme? The model is deterministic.

So,  this  has  commonality  with  4DVAR  the  early  in  the  early  70s  within  the

meteorological literature. They consider the model to be a perfect. So, under the perfect

model assumption noise is the observation. They would like to be able to use the forecast

error  to  force  the  model  which  will  in  turn  make  the  model  move  towards  the

observation. 
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So, let M bar be the true model dynamics. So, we I am going to now develop a general

theory. Let M bar be the true model dynamics. X k plus 1 bar is equal to M bar x k bar

with x naught bar as the initial condition be the true unknown deterministic system being

modeled.

If M bar is equal to M, the model is perfect. If M bar is different from M the model has

an error. So, I am now going to consider a generalization of the nudging scheme, where I

am going to think that the model may or may not be perfect. So, let M bar x be the model

error. X I am sorry M tilde x is equal to M x minus M bar x that is the model error. X

tilde 0 is equal to x of 0 minus x bar 0 is the error on initial condition. So, if I use M as

the model to be able to generate the forecast x k. X k is the forecast generated out of the

model M, M may have errors z k is the observation, coming from measurements in the

real world. So, e k is the forecast error as given in 4.
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Now, what is the nudging scheme? Consider an otherwise deterministic model x k plus 1

is equal to M of x k, please understand x k is the forecast starting from x naught on the

model M. M may have errors the initial conditions may have errors. So, the forecast x k

generated or the model equation may have errors. I would like to be able to add a forcing

term. Please remember, e k is a forecast error G is a matrix. So, G times e k is the forcing

that  is  artificially  added to  the  model.  The forcing always makes  the  solution  move

towards a particular goal. Our aim is to be able to find G such that asymptotically the

model  state  moves  towards  the  observation.  Which  represents  they  true  state  of  the

model.

So, G is called a gain matrix G is called the gain matrix. G is again an n by m matrix. G

of e k is a vector. There is an artificial forcing applied to the forecast model. The error

term e k represents a state feedback. Why? Please remember e k is equal to z k minus h

of x k. Therefore, I am using the state information to force the model. So, that is what is

called the state feedback.
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The idea of the state feedback has been around since the day since the early days of

steam engines. The gain matrix G in the early days was empirically designed, I am now

talking  about  some  of  the  early  approaches  to  design  of  nudging  scheme  the  early

approaches period from 1974 to 1990. During this period several people have applied

nudging schemes to be able to make data assimilation schemes in other words you are

trying to use the data to force. The model are the forecast error which involves data

towards the model.

So, the model response to external forcing depends on the intrinsic relaxation times of

the model. So, what is the basic idea? G e k is the forcing to the model. If you apply a

force to a dynamic model, how long does it take for the model to respond to the initial

force? That is that depends on what is called the relaxation times. The intrinsic relaxation

times in engineering, we also call it time constants. So, the design of G in the early days

was essentially based on the time scale considerations. What is the intrinsic time scale of

the processes involved? How long does it take for the model to respond to the external

force?  So,  the  value  of  the  matrix  G  was  essentially  heuristically  decided,  and

considerations was essentially based on the time scales of the processes involved in in in

the model solution.

So, the nudging scheme in 5 has a strong similarity to the design of observers. The theory

of the design of observers in in in control theory. The theory observers was developed



earlier in by Luenberger in 1964. It is not very clear whether Anthes and his group knew

about  this  work  on  Luenbergers.  Luenbergers  work  on  observers,  but  the  observing

observer-based  design  as  well  as  the  nudging  schemes  had  a  very  strong  similarity

structurally. So now, you can see Kalman filters came from control theory the notion of

observers was already in existence in the early 60’s in control theory, and maybe it was

invented independently by anthes. But I would like to emphasize a very strong similarity

between the nudging scheme as used in geophysical literature as well as the observer

designs in in control theory.
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So,  you  can  see  there  is  a  great  influence  of  control  theory  in  the  design  of  data

assimilation algorithms. So now, I am going to talk about the post 1990 era. What is the

question? How to object so, before mainly people were heuristically designing values of

the gain matrix G to be able to force the model towards the model state towards the

observation so as to reduce the error. The only consideration they used was based on

relaxation time. And that is all, but in many cases, it worked very well. But as the theory

of 4DVAR was well developed, as the theory of optimal methodology was very well

understood, the notion of being able to estimate the optimal state and the and the theory

behind  the  strong  constraint  formulation  we  constrained  formulation  was  well

understood. Around the turn of 1990 the emphasis shifted towards trying to objectively

design the gain matrix.  That  essentially  dictates  the amount  of forcing that  that  was

applied to the model equations.



So, 2 approaches emerged within this quest for optimal approach to the design of the

gain matrix. One is the 4DVAR like methods. One is the 4DVAR like methods. Another

is the 2 stage Kalman filter like methods. The 4DVAR methods sprang up in the early

1990 to 1994. The 2 stage Kalman like method arrows around was announced around

2003. These methods developed algorithms for optimal estimation for G. So, what did

they do? Well,  G is the known and they wanted to be able to optimally estimate the

appropriate value of G. So, they brought the full force of least square based estimation

theory within the framework of 4DVAR are within this within the framework of 2 stage

Kalman like methods. 

In 20 even though these theories were known in 2011, it was pointed out there are certain

the claims of optimality that are obtained by these researchers were found to be a little

defective. It turns out the optimal estimation of G is more subtle and involved then it

appears in the surface, when you read the papers on 4D like 4DVAR like methods as well

as 2 stage Kalman like methods. We are going to talk about both the methods as well as

some of the problems associated with the methods, and ways to go around some of these

challenges. 
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So, 4DVAR based methods. Stauffer and seaman Stauffer and Bao, Zou, Navon and Le

Dimet were some of the earliest people who were working in trying to find the optimal

value of G. So, referring to the equation 4 referring to the equation 4 let me go back.



Equation 4 at the bottom of slide 4 is the forecast error of the non-linear model. So,

4DVAR based methods were introduced by at least 3 sets of authors Stauffer and seaman

Stauffer and Bao, Zou, Navon and Le Dimet in the early 90's. Referring to 4 which refers

to the expression for the forecast error.

Let e 1 e 2 to e n be the set of forecast errors created by the model forecast are based on

the model forecast. So, in other words, you can see like the 4DVAR like scheme here.

So, while the original nudging scheme, involves essentially adding a forcing to the model

and let the model evolve these people coming from the 4DVAR methodology. Their aim

is to be able to design the optimal G. So, they are doing an offline experiment. What is

the goal of this offline experiment? Let us pretend that there are n observations. If there

are n observation then there are n forecast errors. If there are n forecast errors, then I can

compute the least square cost function J 2 of G which is given by e k R k inverse the

transpose, I am sorry the inner product of e k with R k inverse e k.

What  is  this?  This is  the weight  of  sum of  squared errors.  Please understand this  is

exactly the cost function that is used to minimize to find the optimal initial conditions

and parameters in 4DVAR as well as forward sensitive based method. You can see the

approach because 4DVAR is something they know very well. And they were they were

part of the development of the 4DVAR techniques. So, they would like to look at this

scheme, as though it were a 4DVAR scheme to be able to estimate G. Another difference

is that in the classical 4DVAR they use this kinds of objective function to decide the

optimal initial condition. In the nudging I am not going to worry about where they the

model starts. Initially the model may have forecast errors, but as time goes on adding G e

k forcing to the model will try to correct the model forecast errors, while the model is an

evolution. So, that is the basic idea.

In the 4DVAR we wanted to be able to start from the initial optimal initial condition so

that  starting  from  the  initial  condition,  the  new  forecast  generator  will  match  the

observation as much as possible. Here that is not the goal. Initial  condition could be

anything. Our aim is to be able to simply move the model towards the observation as the

model starts operating. So, they were able to understand that I may not want, I may not

be able to correct some of the initial forecast errors, but in time the feature errors may go

to 0. R may become very small, that is the idea. So, you can see in the 4DVAR the J 2



function was a function of if you if you recall we call it function of J x naught that is in

4DVAR.

In here we calling it J of G in nudging. So, the independent variable with respect to

which  4DVAR was  with  respect  to  which  the  minimization  was  done  is  the  initial

condition. The independent variable with respect to which the minimization is going to

be done in the optimal design of nudging matrices is G. The elements the metric them

self G that is essentially. The difference, but rest of it are very similar. So, mathematics is

not too different from what 4DVAR involves.
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Again, they wanted to bring in the notion of background. Why this notion of background

is  useful?  Because  in  the  pre-90  era  they  have  been  very  successful  in  trying  to

demonstrate the usefulness of nudging scheme based on some empirical values of G. So,

that is the knowledge they knew what reasonably well in many circumstances. So, they

do not want to throw that knowledge out of the window; say, they would like to be able

to use some of the prior knowledge where nudging had worked. So, they would like to be

able to give the benefit of doubt.

So,  they  said  let  G  hat  be  the  prior  estimate  of  G  obtained  through  empirical

consideration relating to the relaxation times of the model. So, quite a lot of time scale

analysis of the models have been done. So, they know which time scales respond to what

type of forcing. And that knowledge they didn’t want to go as a waste. So, they assume



well we will also want to take advantage of some they earlier estimates. So, let G hat be

a  prior  information.  So,  you  can  see  now they  are  combining  a  prior  and  the  new

information coming from the forecast errors, they would like to be able to combine the 2

types of objective functions. So, the prior term gives raise to what is called a penalty

term, a penalty term is as follows. J penalty of G is G minus G hat bit a times beta over 2

it is A square of the Frobenius norm. You may recall from our example from our module

on matrices the Frobenius norm square I am sorry, I will simply say the Frobenius norm. 

So, the Frobenius norm by definition is equal to sum of a i j square sum is over I and J. It

is something like the Euclidean norm. I simply take the sum of all squares of all the

elements the object if it is a vector. That is one sort of objects if it is matrices that is

another sets of objects. So, it is simply sums of squares and the square root of that. So,

that is called the Frobenius norm. So, the penalty term regards is relates to the difference

between the 2. So, what does it mean? I would like so, what is the penalty term tells you?

I am interested in designing an optimal G, I know they have been using G bar, but G bar

I am sorry, G hat the G hat was obtained from heuristic consideration. I am trying to

design G optimally. I am trying to design G optimally based on the forecast sums of

forecast errors. At the same time, I do not want my G to be far removed from G bar,

because G bar already worked.

So, it is a so, I want to find an optimal G. That is a compromise between minimizing the

sums of forecast errors. At the same time going not too far away from G bar I am sorry G

hat. So, we have defined the Frobenius norm in here. So, the constant b is called the

penalty parameter. If the constant beta is large, since I am going to minimize the product

has to be small. So, if beta is large G will be much closer to G hat. If beta is small, I am

trying to relax the distance between G and G hat. So, by look by essentially picking the

value of beta, one can have a variety of different range of G with respect to G hat. In

other words, I have G hat here. Do I want my G to be in a sphere of radius dictated by

the value of beta?

So, if beta is small. It will be you have more freedom for G. If beta is very large, because

if beta is large and the norm is large, it will it will it will not come to minimum. So, if

beta is large the only way to minimize it is to force G towards G hat. So, that G minus G

hat will be much smaller. So, that is the idea of the penalty term. So, you have 2 terms

now. One I do not want my new estimate to be too far away from the old estimate that



they have used based on heuristic consideration. I do not I am, and I am doing myself

some freedom by being able to choose the penalty term. 

(Refer Slide Time: 24:31)

 

At the same time, I have the forecast error term sums of square errors. Therefore, I am

not going to consider up a new criterion which is Q 1 G which is going to be a sum of J 2

plus J p.

Why I call it J 2? Because it is it isn’t 2 norm. J p, p for penalty term. So, compute the

matrix G that minimizes Q 1 G, where the nudge dynamics is going to be used as a

strong constraint. Please understand, that that the nudge dynamics is the one that is going

to  be  ultimately  used in  the  forecast.  So,  then  I  cannot  decide  G are  minimize  this

independently I have to find an optimal G within the context of the dynamic models.

Therefore, it is formulated as a strong constraint problem. So, we have we have now

essentially  formulated  the  problem.  So,  what  is  that  we  can  do  we  can  essentially

develop the first order adjoint method. That was developed in 5.1. So, we can use the

first joint a first order adjoint method of module 5.1 to be able to decide on the optimal G

and the optimal G. So, what is that we do, we start from we start with the G, run the

model forward in time. Compute the forecast errors. Compute the objective function.

And evaluate  the gradient  of the objective  function.  And then once you evaluate  the

gradient of the objective function numerically, I can use it in a gradient method.



So, as to minimize the elements of so, as to minimize the objective function Q 1 G.

Recall  that  adjoint  method  gives  raise  to  the  gradient.  Which  is  then  used  in  some

minimization  algorithm  until  convergence.  And  we  have  already  talked  about

minimization  algorithms  in  module  4.3.  So,  by  because  we have  done  lot  of  things

relating to adjoint methods relating to optimization methods. Our discussion becomes

simpler, because we do not want to repeat the entire derivation. An interest reader can

simply  apply.  The  methods  and  derived  the  up,  and  derive  the  expression  for  the

gradient. So, this was the theme of people who wanted to be able to estimate G optimally

using 4DVAR like method.
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But there are a couple of philosophical challenges. What is the first one? Getting the

prior value of G hat may not be as simple as one deems with why is that. If you change

the model if we change the process for hurricane prediction the dynamics is of one type

where the time scales are of one time. If you change the model equation and go from

hurricane to  other physical  processes,  again the time scale  analysis  will  be different.

Therefore, the choice of G hat depends very much on the process that is to be used are

the process that is captured by the model. So, in general there are no specific guidelines

for choosing G hat. So, the only thing that we can fall back on is that for those processes

for which nudging method have applied in the early years.



You have a very, very well-defined G hat, but in general there is no clear-cut algorithm

for generating G hat.  So, the difficulty  with respect to getting the prior value is  one

problem. To appreciate the second difficulty, and this is a more serious problem, we want

to be able to write 5 using 2 as follows. So, let us go back to 5 and 2 what they are. So, 5

is the nudged dynamics, 5 is the nudged dynamics. And 2 is the observation equation. So,

I am you know going to combine the 2 to be able to come up with the exact equation for

the nudged dynamics. So, when I use when I use 2 and 5, they explicit equation for the

nudged model becomes this. Why where is this coming from? Please understand, x k

plus 1 is equal to M of x k plus G times e k. And e k is equal to z k minus I am sorry, z k

minus h f x k and z k is equal to h of x bar k plus V k.

So, these are all the various quantities that are involved in here. So, z k is equal to h of x

bar k plus V k x bar k is the unknown true state. So, I substitute z k in here I get e k, I

substitute e k in here. If you do these substitutions the resulting equation takes this form.

So now, let us look at the structure of this it consists of a deterministic component. Why

this is deterministic component? M of x k is that M of x k is a deterministic model

forecast, h of x k bar the 2 state that is a deterministic. H of x k that is the forecast an

observation counterpart of the observation. So, this term h of x bar k minus h of x k is

there is the actual expression for the forecast error true minus the actual G is a multiplier

constant. So, this term is essentially a deterministic term.

The V k are term now occurs as G V k. So, that is the random term. So, nudging method

in fact, induces a stochastic dynamics, because observations are stochastic. Even though

you are  model  your  model  is  deterministic,  the  process  is  stochastic  because  of  the

observation always have observation noise. If you look at this carefully, you can readily

see this is the first order non-linear autoregressive process. So, what does it mean? X k is

not deterministic x k is stochastic. So, in the previous approach to 4DVAR they didn’t

realize that that is the stochastic term that is affecting the evolution they simply assume

that there is no such thing as a stochastic part in the forcing, they applied the 4D 4DVAR

like scheme. And they found optimal within the framework what they had built. But a

clear examination of that of those ideas essentially it tells you, a correct formulation has

to take into account this autoregressive process. Why this is autoregressive? X depends

on the x k plus 1 depends on the previous x k. So, what is an autoregressive process, this

is k plus 1, this is k.



So, k plus 1 depends on the previous values of the state. So, I am dependent on myself at

the previous time plus a random noise, plus the random noise. So, once you recognize

this is an autoregressive process x k becomes a random. If x k is random what does it

mean? X k the trajectory is a random process. So, this essentially tells you x ks are

serially correlated, x k serially correlated. Why they are serially correlated? Let us go

back now. I have x naught I have x 1. X 1 has the effect of effect of then x 2 x 3. X 3 x 3

depends on x 2. X 2 depends on x 1. X 1 is random x 2 is random. Therefore, x 1 and x 2

are not totally independent they are x 1 is a random process R, R is a realization of

random process x to the realization of random process x 2 depends on x 1. So, there is a

serial correlation that is induced.

So,  this  serial  correlation  was  neglected  in  almost  all  of  the  treatment  of  nudging

schemes. And this observation was first made by us. So, we would like to be able to

make amendments to the optimal estimation of G by taking this serial correlation into

account. So, that is one of the second problem. Not only second problem, but also, we

propose a solution to go around and solve the second problem.

(Refer Slide Time: 34:32)

So, let us let us talk about this now. So now, that we have established that the errors are

serially correlated. So, what did I want? I would like to be able to define a matrix C.

What is this matrix C? The matrix C is R N m times R N m. Why N m? M is the size of

the forecast error. Please understand, please recall this decides the forecast error. I have



N observations. So, if I consider all the observations to all the observations together as

well as I consider a gigantic vector. The set of all forecast errors from time 1 to n. I am

sticking them all together to get a gigantic vector which is R n m.

If I have a vector R N m, it is covariance must be R N m times R n m. So, C is the

represents in M a gigantic matrix that represent the serial correlation between all the all

the states. So now, we are going to define in now you may ask a question, how do you

know C. We have to estimate C, because once we know that they are serially correlated

we have to take that correlation to account in trying to define your weight function. And

that is what J 3 G is all about. So, J 3 G is an alternative to J 2 G that we saw earlier, J 2

G neglects the serial correlation. Now this is a new objective function, that involves the

weighted sum of squared errors, the waiting is related to the serial correlation matrix. 

(Refer Slide Time: 36:39)

So now we can minimize, now we can minimize with respect to a new function instead

of Q 1 is Q 2 Q 2 G is equal to J 3 G plus J p. G if you minimize J 2 G using the nudge

dynamics as a strong constraint model. You try to take into account the serial correlation,

but computing the covariance C in 12 is not easy.

Hence in principle finding an optimal G for non-linear model is a difficult problem. So,

in our view the so called optimal methods that are proposed between 1990 and about

2005. Covering a period of about 15 years. They claim that their optimal is indeed are

not optimal. So, that is that critique about the methodology. And we are also going to



suggest a way out of this critique, but in general. So, what is that mean? Nudging you

can implement heuristically. More often that did not works, but if you want to move

away from heuristic  methodology  to  an  optimal  methodology, where  I  am trying  to

design a G which is best, then you have to take into account all the processes that are

involved. If you look at it carefully, there is a serial correlation trying to minimize the

errors without taking that serial correlation to an account always leads to leads to results

that are not optimal. That is the, that is it that that is their simple way of looking at what

is happening in here. 
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So, in order to be able to define the matrix e I have to look at the structure of the forecast

errors,  because if  you want  to  be able  to  understand the serial  correlation  I  need to

understand the structure of the forecast errors. So, let us spend few minutes on trying to

understand  the  structure  of  the  forecast  errors,  within  the  context  of  being  able  to

consider the nudging scheme as the first order non-linear autoregressive process. That is

the next step. So, the let this be the true model. Let x not bar be the true, but unknown

initial state. So, what does it mean if you use the true model, and starting from the true

initial state the model forecast will be perfect? It will match the observation modular

noise. Please understand, when we say match, match only the deterministic sense, we

cannot  match the random process anytime.  So, whenever we say something matches

something, it is always modulo noise. Mod noise is something we may have to live with.

So, if I iterate this equation x k bar is equal to M bar k to the power k x naught bar. So,



observation is given by this equation. So, I can substitute 16 in here to get 17. So, the

expression for z k the observation at time k is given by equation 17.

(Refer Slide Time: 39:51)

So, x 1 is equal to M of x naught, sorry. So, I am now going to.

Talk about the nudged forecast model. In the previous case we talked about the unknown

true forecast model. M may not be equal to M bar; that means, that there is a model error.

So,  what  is  that  I  mean?  I  am  going  to  talk  about  I  would  like  to  be  able  to

simultaneously  arrange  G such,  that  it  not  only  corrects  for  the  model  error  also  it

corrects for the initial condition error. So, I am trying to kill 2 birds in one stroke. So, let

x 1 be equal to M of x naught. X naught be the initial condition for any k greater than

that M of x k plus G times z k minus h k. That is the nudged model. The nudged model

can be written like this. Because I am considering a linear model to be able to do things a

little more precisely. For nominee I would like to be able to expose the difficulty for the

linear model, if the linear model is difficult the non-linear model at least is one nudge

more difficult than the linear model. 

That is the aim in here in this discussion. So, my nudged model becomes 19, where the

matrix a is equal to M minus G h. G is the gain to be determined,  h is the forward

operator, M is the 1 1 step transition matrix for the linear model. So, I am assuming the

model is linear, the observations are also linear function of the state. So, iterating this

equation 19, I get this. And z k contains the unknown truth plus noise. So, the noise is the



embedded within the z k term. The noise is embedded within the z k term. I hope that is

clear. So, 20 is obtained by iterating 19, a simple iteration gives you the expression. So,

what is this expression the nudged state at time k depends on the state at time x 1 plus

anything beyond substituting 17 in 20. So, let us go back to this is 20. What is 17? 17 is

an expression for the observation based on the models solution.
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You get an expression for x k which is the model state the forecast stage given by this

expression, is a funny looking expression. A little complex expression, but I do not think

there should be any difficulty in trying to verify that.  Why am I trying to find that?

Because I would like to be able to pin down the forecast error. So, z k minus h of x k is

the forecast error. Now, therefore, I know z k z k please remember z k is equal to h of x k

bar. Plus, V k h of x k bar we have already computed in equation on 16. Based on h of x

k bar I also have in relation for z k from 17. So, I can substitute for z k from those

equations in here. I have already computed x k in the previous slide let us look at it once

more that is the equation 20. So, substituting all these things, what do I get? I get an

explicit expression for the forecast error in the nudging model. Why is that? If I want to

be able to compute the forecast error covariance, the serial correlation I need to be able

to get an explicit expression for the forecast error itself that is the first step. And that is

what we have accomplished. So, look at the structure of 22. 



22 has several terms. This is the first term. This is the second term, this is the third term,

this is the 4th term is the summation. The 4th term itself is a sum of 2 terms, but among

all these V k is a noise term V k minus 1 minus J is a noise term. So, there are 2 nice

terms, the rest of it are deterministic terms. So, the error is noisy. You can also see the

error of time k depends on V k. As well as error I am the; I am sorry, the noise at time V

k as well as the noise at time 0 to yeah, 0 to timetables k minus 2. So that means, there is

a serial dependency among all these noise expressions. So, when J is you can you can

really see. So, I am I am I am depending on V k.

Then when J is 0, that depends on V k minus 1. So, let me write that down. Then J is

equal to 2 that depends on the V k minus 2. When J is equal to k minus 2, that depends

on V 1. So, therefore, e k the error d k does not only depend on V k, but also the entire

sequence. In the past it is this dependency of e k, on the entire not noise sequence up to

including time k, that it uses the serial correlation. I hope that part is clear to you. It is

this serial correlation I am now going to have to extract.
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I  am  now  going  to  rewrite  this  expression  e  k  for  the  sake  of  convenience,  your

deterministic part plus the random part.  The deterministic part has this expression the

random part has this expression. So, 24 and 25 correspond to the domestic part of the

forecast  error,  and  the  random  part  of  the  forecast  error.  So,  you  can  see  23  is

deterministic eta k is stochastic. What is the stochastic part? Stochastic part is again the



noise.  From the past  the  noise from the present,  the past  noise are  weighted  by the

powers of A and you may remember A is equal to M minus G H. So, so what does it

mean? The random part of the forecast error depends on the model dynamics depends on

the forward operator it depends on the model dynamics A it depends the forward operator

H, it  depends on to  be chosen the matrix  G which is  the gain matrix  to  be used in

nudging. And of course, all of the errors in the observation starting from time 0 to this

time to the time k.
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Therefore, the expected value of e k is equal to the deterministic part. The expected value

of eta k the random part is 0. Now I am going to further. If I assume the a general value

of n, the expressions are more gets more complex. So, instead of n, I am thus assume n is

equal to 3 to just to get a feel for the expressions in this in this in this quick discussion.

So, let us assume I have 3 observations at time k is equal to 1, 2 and 3. And so, by

specializing this. Now look at this now the previous expressions, they go for k 1 to n. N

is the last observation time. To simplify to get of to get that aha feeling I am simply

going to assume n is equal to 3 with our loss of generality.

So, if I substitute n is equal to 3 and simplify, the expression there the expression for the

random part  of the forecast  error  which is  eta.  Eta  that  is  look at  this,  now eta  one

depends on V 1 eta 2 depends on V 1 and V 2 eta 3. Depends on V 1 V 2 V 3 eta 4 will

depend on V 1 V 2 V 3 V 4. So, that this means etas are correlated. It is this correlation



makes the 4DVAR scheme, little defective in the sense they have not taken, the entire

weight function that accounts for the serial correlation.
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A simple exercise in statistics, computation of correlation tells you C i j which is the

correlation between errors at time i and errors at time J is given by expected value of eta

i eta J transpose. In the case when n is equal to 3, eta 1 1 is given by R. What is R? R so,

I am please go back now. V k is equal to M of R k, I am it is not is generally assumed R

k  is  identically  equal  to  R,  why  vks  are  coming  from  instruments.  When  we  buy

instruments, we buy instruments in bulk. So, I am going to assume all the instruments,

that make measurements are the same type; that means, the covariance of the error the

error characters of the instruments are the same. So, R k does not depend on k R k

simply is R. So, that is a very useful assumption. Even though the theory I can continue

with R k, I  do not want to unnecessarily complicate  the expressions by trying to be

general. There is no loss of generality in assuming R k is R.

So, that is R C 2 2. So, what are this? So, C is a matrix, which is C 1 1, C 1 2, C 1 3, C 2

2, C 2 3, C 3 3 everything because it is symmetric, I do not have to worry about the

bottom part. But I can continue the C 2 1 C 3 1 C 3 2. So, I am going to compute all of

these elements. You can see I have computed all of these elements. Like this, look at this

now R, R plus this R plus 2 terms. C 2 1 C 1 2, now look at this C 2 1 2 1 2, they are that

transposes of each other we will talk about the symmetry of the resulting matrix in a



minute. But I am trying to give you the exact expressions for the C s. So, let me go back

and remind you once more. I would like to x, I would like to be able to understand the

presence of serial correlation, n observations to make life simple I assumed n is equal to

3.  So,  I  substituted  an n is  equal  to  3 in  the expression for  the  forecast  covariance.

Especially  the  random part  of  the  forecast  covariance  using  the  random part  of  the

covariance, I am simply computing expressions for these co-variances. 

(Refer Slide Time: 51:21)

So, C 1 3 C 3 1 3 C 3 2. You can you can really say can compute this. From this you can

readily see they are all related. So, what if I, if they so, in the early methods based on

4DVAR what did they not use? They did not use this term. Sorry, they did not sorry, they

did not use this term, they did not use this term. So, these are the new term that comes

into the picture.

And it is these new terms we are interested in in incorporating. I hope these expressions

are  clear.  These  expressions  can  be  very  explicitly  evaluated  by  the  closed  form

expression for the random part.
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So, I have I have compute a matrix C. So, let us go back now. I have computed the

matrix C. Please understand, quadratics in trying to consider a quadratic forms only the

symmetric part of the C matters. So, the symmetric part of C. So, C is equal to C plus C

transpose by 2. So, we compute C as I have done. And compute the kind of concern the

symmetric part of C. So, this the new C is called the symmetric part of C. Now the

correction term J 3 now look at this now the correction term J 3 in 13 let us go back. So,

13 a; this is the new J function. Z inverse is to be used here please understand, C inverse

is used to be here. It is generally the k is that I need to know the weight matrix if I am

going to consider the weighted least squares, I need to know the weight matrix weight

matrix  is  C  inverse  I  have  computed  C.  So,  in  principle  I  can  compute  C  inverse.

Therefore, the correct term the correct term J 3. So, J 3 the correct term in 13 is the

correct form with the symmetric matrix C inverse, where C is the symmetric part of the

computer. So, what is this C? This is the computed C.

This is the C that is used in the left-hand side C is the one that is used in 13. So, you

compute the deterministic part of the computed C, and that becomes the new C, who C

inverse is the one that is going to be used in the quadratic function. The inverse of the

symmetric matrix of C is the one that is used in in in in in 13 th. And I would like to

reemphasize the fact which I have already mentioned this matrix C depends on M H and

R. What is M model? What is H observation operator? What is R noise property? So, you



can readily see it the serial covariance is a function of the model the forward operator,

and the noise all the 3 players in the game. 
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So, I have now completed one aspect of the estimation problem for the optimal G. This is

using 4DVAR. So, we talked about what they did, and we talked about what is wrong

with it, and we also talked about what is the meaningful way to correct it. Now I am

quickly going to provide a review of the second approach that was used in the post 90 era

based  on  2  stage  Kalman.  Like  scheme  it  was  introduced  by  a  group  of  French

atmospheric scientist vidard et al 2003. This uses a Kalman filter like predictive part that

combines it with a conventional nudging scheme. So, you can readily see so, you can

now see the following idea. If you knew some of the basic approaches to assimilation

that we have covered in this class you can hybridize these methods to be able to generate

newer methods. 

So,  in  this  course,  we  are  not  going  to  be  talking  about  all  possible  methods  of

hybridization. We are going to be we have described all the methods in their purest form.

Because before you can hybridize you need to understand what is the power of each of

these techniques. Therefore, this being the first level course at the graduate level we have

emphasized. All the basic tools which if well understood, not only be applied directly

also can be used to devise newer schemes for data simulation and other problems; that is

the idea. So, this is an example of such hybridization. So, what is the thing in here. The



first 2 step is the following. Let x k minus 1 be the state I know I am using the model to

create a forecast. The second step is I am going to do an analysis, which is forecast plus

G times z k minus h of f. So, what is this? This is the nudging part. So, you make a

forecast. And then you create an analysis. The forecast comes from the model. 

The analysis comes from the nudging the nudging uses a G. G plays a role of a Kalman

filter. And they would like  to  be able  to  determine  G.  Using method  similar  to  the

arguments of Kalman filter. You can see the how the hybridization comes into play. So,

that is what I am going to quickly describe.
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So, define d k which is equal to z k minus h of x k f, which is the innovation. The new

information that G k contains other than what the observation gives you. So, d is the

vector of such innovations. D is again a vector of size N m now. I am going to concoct N

m m J, n x naught of G, J n is called the nudging induced a cost function. So, that is

equal to the transpose of this.

G transpose p f inverse G d f n. So, you can think of these 3 as part  of the weight

matrices.  P f is the forecast error covariance.  So, that is very similar to the one that

comes in 4DVAR like scheme. Here, because of the way that G appears in in in equation

30. 31 is a very natural way to be able to consider a J function. So, the model error

covariance. So, here look at this now in here p f is the model error covariance. Using

Kalman  filter,  you  may  realize  even  if  the  model  is  linear,  computing  the  forecast



covariance involves 2 matrix multiplication. So, computationally it is it is much more

expensive than the 4DVAR based idea 4DVARbased idea.
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Therefore, they concocted several components for the overall minimization. One is the

background term. What is background term? X naught until now we did not worry too

much about x naught. So, initially I may allow the error, but as the system picks up in

time the error will reduce that was the basic idea. Now they would like to be able to start

with some background information for the model initial state itself. So, that goes to show

you the flexibility of how many such terms if you knew you can add to the objective

function to be able to create um a solution that takes care of several pieces of information

that you may want to bring to barrel the problem. So, J 2 is essentially the sum of square

of a criterion. Please remember, they used R k, yes. We have now argued use of R k is

not correct because the forecast errors are correlated. 

So, in that sense the use of R k in 331 essentially closer that I to the presence of serial

correlation.  So,  what  is  the  best  way  to  do  it?  You  still  need  to  be  able  to  get  an

expression for the forecast error, and need to be able to compute the serial correlation.

Essentially, you are trying to talk stochastic dynamic models with stochastic observation

within the context of nudging. So, when you are trying to do everything stochastic you

need to call spade a spade and using R k does not fit that pattern. i that is one of the

observations that we have made. So, you can cut a new cost function. Please understand,



until now we only consider the cost function is a function of G. Now the cost function is

a function of x naught and G.

So, it is a slightly extended formulation. So, J and G we have already seen J 2 G we have

already seen J b x naught.  So, there is  a penalty coming out of x naught,  there is  a

penalty  coming out  of  G there is  a penalty  coming out of  x naught  and G. So,  our

objective is to minimize not d 3. I am sorry, it is Q 3, sorry minimize Q 3, using the

adjoint method. When the nudging model is used as a strong constraint now look at this.

Now again they concoct a common like scheme, but they want to be able to find the

initial condition, and optimal G by method similar to the adjoint method when using the

adjoint the nudged model as a strong constraint. You can see the power of the 4DVAR

like principles  where you can apply it  repeatedly  whether it  is  initially  whether  it  is

estimating the initial state or parameters or anything else. 

So, in this case G is a parameter, you can think of it for the nudge model.
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Since the forecast errors are correlated, we need to correct J 2 G. Please understand, we

need to be able to correct J 2 G J 2 G is given by 33. So, this is what we talked about. R k

the use of R k inverse. So, all the other terms are closer. The only term that does not fit

the bill is; because, 33 relates to the total sum of squared errors weighted sum of squared

errors the waiting is not appropriate, the waiting is incorrect. So, we can again correct the

weight  function  by  appropriately  computing  the  seal  the  serial  correlation.  So,  the



temporal covariance estimation is an important part of this. We only cited the need for

computing this temporal correlation.

We have not done this explicitly. I think it will be an interesting exercise for somebody to

be able to take up this 2-stage nudging scheme, that involves 4DVAR and the Kalman

like scheme. And compute the serial correlated errors. And if you if you use that you

should be able to find out what is a good scheme, what is the good method. So, that

could in my view a good starting point for probably a master’s thesis.
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With  this  we  have  provided  you  a  major  all  the  major  ideas  that  relates  to  the

development of nudging schemes. We have given several exercises there are extensions

of the discussions that we have had.
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This  module  follows  a  paper  that  we  wrote  in  2013.  Lakshmivaraham  and  Lewis,

nudging method a critical overview. This appeared as a chapter 2 in a book entitled data

assimilation for atmospheric ocean and hydrological application. It is the second volume

published by springer Verlag in a series, edited by Sangee Park and l x. And that paper

contains  lot  more  information  about  basic  nudging.  We also  leaded  to  the  relation

between observer theory as was developed by Leuenberger in 19, the early 1960 62 63

64 in the time frame work. And in that in our paper in our critical review, we have talked

about the intrinsic relation between observer theory and the nudging theory to be able to

see how observer theory can help to be able to design better nudging schemes. Nudging

schemes are general  schemes,  which are which are very useful  class of methods for

forcing a model towards the observation by using the notion of this state feedback. So,

with that we conclude our discussion, an introductory discussion of nudging methods.

Thank you.


