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So far we were concerned with the model that is linear, but stochastic observations are

also linear functions of the state, the model noise, observation noise, the initial condition

are all normally distributed this is a classic LQG problem, and in this case we had a

complete solution for the filtering problem. So, in this sense Kalman’s solved 1 of the

fundamental  data  assimilation  problem of  assimilating  data  into  an  imperfect  model

where the imperfections are captured by stochastic model noise. 

Now, we are going to be talking about extensions of Kalman’s ideas to assimilating data;

in this case the data may be non-linear function of the state, the model itself may evolve

according to a non-linear map. So, we are going to be concerned with the extension to

non-linear stochastic  models, the stochasticity comes from our assumption relating to

assuming that the model noise is again white, and the observations are again corrupted

by observation noise which is Gaussian. We are again going to fall back on the Gaussian

assumption for the both the model noise and the observation noise, initial conditions are

also going to be random we will assume that to be also Gaussian as in the previous case

the only the primary difference is that because the model is non-linear, the forecast loses

the Gaussian any property right at the first step. 

So, we have to contend with non-Gaussian processes are arising out of the non-linear

systems, and that presents lots of challenges in the data assimilation process, and we are

going to provide how to approach the filtering problem. In this case we will not be first

talking about first moment second moment the mean and covariance, we will be talking

about probabilistic characterization of the forecast the probabilistic characterization of

the analysis, we will try to give an evolution of the forecast probability density analysis

probability dense density, these are in general infinite dimensional problems because we

are trying to talk about an evolution of the density function in the model space. And all

the  associated  mathematical  problems  challenges,  computational  problems  and

challenges that is what we are going to see first. 
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So, let us consider a stochastic model; a non-linear stochastic model we are also trying to

generalize the forcing Wk plus 1 is a model noise vector, we are going to assume the

model  noise vector  is  all  dimensional.  Sigma X is  the coefficient  that  multiplies  the

model  noise sigma X is  the state  dependent  matrix  functions  matrix  R functions  the

matrix sigma is n by R we assume it is full rank we assume it captures the model errors.

So, if I assume sigma Xk is equal to identity, if I assume R is equal to n and sigma Xk is

the  identity  then  the  observation  that  the  model  error  is  simply  a  sequence  of  state

independent Gaussian random of variables, here this is the state dependent noise. So, so

this is state dependent. 

So, we are assuming that the model is driven by in general a state dependent in principle

it could be a general state dependent noise process. R is a variable, R can be in principle

less than n R refers to the they the degrees of freedom that the noise has in terms of in

terms of it is ability to affect the evolution of the state, when R is equal to 1 there is only

one scalar noise that affects all the components of the state vector, when R is equal to n

there are n different noise components that can affect all the components of the state

vector depending on the structure of the make the state dependent matrix sigma x. 

So, there are you can see from the set up by appropriately choosing the sigma matrix by

appropriate choosing the value R, one can simulate quite a variety of assumptions one



can realize quite a variety of assumptions relating to the nature and type of model noise

into the system. 

So, Wk is mean 0 Wk has a covariance Qk. Qk is a matrix of size R by R, the special

cases are 2 special cases are R is n and the and sigma Xk is equal to I n is the identity

matrix. Then origin and sigma Xk is equal to I n what is that we do? There is no state

dependent noise the noise is independent of the state the noise becomes a pure Gaussian

white noise 

The initial conditions are random again it is a multivariate normal distribution with the

mean M naught and covariance P naught hat. So, given Xk Wk is random. So, I can

compute the distribution of sigma Xk, Wk plus 1 the probability density of this vector.

So, please realize this is an n vector sigma Xk times w k is a n vector and. So, it is its

mean 0 it is a covariance is given by this expression sigma Q k plus 1 sigma transpose.

So, we have talked about the choice of the model error or model noise we are also talked

about the choice of initial conditions.
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 Now we are going to be talking about the properties of the evolution of the state of the

system, then minimally the forecast, when there is no observation that is what is called

analysis of stochastic dynamics. 



We are interested in the conditional probability density of Xk, we are interested in the

evolution of conditional probability of I should say Xk plus 1 given in the past. So, what

is the probability that Xk plus 1 will find itself in a state in a set A. So, A is supposed to

be in this case a subset of Rn please realize in some cases we used a as for the subsidy, in

some cases use ef for matrices. So, the occasion will tell you what that symbol means.

So, in this case a is a set. So, what is that we are trying to talk about? Given the past

trajectory model starting from X naught to Xk plus 1, we are interested in trying to find

out what is the probability that Xk plus 1 will belong to a set A, in here Xk is the present.

So, we can think of this Xk, k Xk time k Xk is the present this is k plus 1, this is Xk plus

1. 

So, we were trying we are trying to ask ourselves the following question let me draw the

picture a little bit differently. This is k plus 1 this is Xk plus 1. So, given the state Xk

what is the probability Xk plus 1 will be a subset of the set A. So, this is the set A at time

k plus 1. 

Now, I am given the state of the system at time k minus 1, I am given the state of the

system as time 1, I am given the state of the system at time 0 even though I am given the

complete history from 0 to k, if this probability depends only on X k, but not on the past.

So, k is the present. So, given the present the future probability the future evolution of

the states is the independent of the is independent the past; that means, the state of the

system from 0 to k minus 1 does not play a role once Xk is given in determining, what fk

plus 1 is going to be that kind of property is called Markov property. So, what does the

Markov property say? Given the present past is in consequential to consider the future.

So, the probability that at time k plus 1 due to belong to the set a depends only on the

current state Xk and not in the past. 

So, the model equation given in the previous slide in fact, represents a Markov process as

it is evident from the relation if I am given Xk, I do not have to know anything, M of Xk

can be computed sigma Xk can be computed, Wk k plus one can be generated, it is Wk

plus 1 is the one that brings randomness into the in deciding what Xk plus plus 1 is going

to be. So, given Xk the value of Xk plus 1 does not depend on anything before Xk it

depends on Xk and the noise that comes into the system after the time k that is why the

model is said to be a discrete time Markov model and the process generated by this

model is called a discrete time Markov process. 



The notion of being Markov is very fundamental; it is a stochastic generalization of the

deterministic principle what is the principle of deterministic determinism? If I have a

differential equation if I know the state of the system at time k in principle that is enough

to be able  to compute the state  of the system at  time k plus 1,  because there is  the

differential equation tells you the rate at which the system evolves starting from time k. 

Therefore  Markov property  can  in  many ways thought  of  a  simple  extension  of  the

fundamental  properties  of  deterministic  dynamical  system,  in  this  case  we  are

considerable  concerned with the  discrete  time evolution  a  continuous  time  evolution

Markov process  theory still  exists,  but  that  theory is  little  bit  more technical,  not  to

reduce the amount of mathematical technicality that one needs to know, we can find our

attention to the analysis of non-linear difference equation, in which are driven by state

which  could  be  depend  depending  on state  dependent  noise  vector,  in  the  evolution

together disc describing your discrete time Markov process. 

Therefore we are interested in what is called the one step transition probability, given Xk

what is the probability of Xk plus 1, this is the one step conditional probability is a one-

step conditional transition probability. So, if I am given Xk, M of Xk plus 1 depends on

M f Xk plus the noise term. Given Xk sigma Xk is given expected value of Wk plus 1 is

0 therefore, the mean is essentially the deterministic part M of Xk, the covariance of the

state is given by sigma Q k plus 1 sigma transpose.

So, given Xk, Xk plus 1 is Gaussian and it has a density function whose expression is

little bit complex and, but for explicit analysis I am giving the that the distribution in this

particular form and that essentially tells you how the system evolves. So, once I know

the initial distribution, once I know how they distribute how the system goes from time k

to k plus 1, I should in principle be able to pull the system forward in time. 
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So, we are now going to talk about how knowing one step transition probability, we can

compute multi-step transition probabilities, let us consider transition from time 0 to time

1 to time 2, let us assume I am in state X 0 to start with, I would like to be able to find

out what is the probability that X 2 will be at the position shown in the figure. 

So, in order to go from X naught to X 2, I had to go through an intermediary stage, the

intermediary stage is the value of the state at time one. So, from X naught I can go to any

1 point in the one dimension in the X space in this case for simplicity I am trying to show

um the state space as a vertical line as if it was a 1 dimensional,  but the same thing

applies to multi-dimensional, we are simply representing the multi-dimensional space by

a vertical line. So, X 1 refers to the state at time 1. So, go from X naught is fixed, X 2 is

fixed, to go from X naught to X 2, I had to go through some X 1 in the medium in the

intermediary. 

So, with this the probability of going from X naught at time 0 to X 2 at time 1 at time 2,

is given by continued conditional probability of X 2 given X naught. So, that is what the

conditional probability given X to X naught. So, I would like to be able to argue now, I

started from X naught, I want to go to X 2, X 1 can take any intermediary values. So, I

am going to go one step from X naught to X 1 and from the chose on X 1 I go to X 2,

this X one can be any point in the space in the state space. So, I am going to have to



multiply this conditional probability P of X 2 given X 1, times P of X 1 given X naught

and integrated with respect to X 1 dx 1. 

This  sum total  of the product  of the conditional  probabilities  will  give you a 2 step

conditional  probability  is  called  a  multi-step  conditional  probability. This  relation  of

trying to find how a multi an expression for the multi-step transition based on one step

transition, has come to be called chapman Kolmogorov equation.
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 It is a very basic equation I can now extend this to a general case instead of 0 to 2, I can

now think of the following.

Let us assume I am in state q I am sorry I am in state X q at time q. So, q is some instant

in time, I want to be able to go to k, I would be able to go to Xk at time k. If I want to go

from q to k I am go I will have to go through some intermediate stage you. So, you can

think of that intermediate stage to be you can think of that intermediate stage to be from

q to p. So, P is the time this is X p. So, you go from X q to xp from xp to Xk, you go

from xq to X P and xp to X k. So, xp can take any value in here therefore, q is fixed, k is

fixed q the P, X P is our variable I am going to integrate with respect to X P, I can once I

integrate this I get the transition probability from step q to step k. 

So, what is this this is this is the transition from q to P this is the transition from P to k.

So, this is a combination of 2 multi-step multi step transition probabilities. So, by I i I



can. So, I can break this P to be many things. So, I can go from q to q plus 1 q plus and

then q plus 1 to k that is a possibility in this case P is equal to P is equal to q plus 1 I can

split it like q to k minus 1 to k. 

So, I can. So, in this case P is equal to q plus 1, in this case P is equal to k minus 1 and.

So, I can reduce the multi-step transition by a sequence of one step transitions. So, I

would  like  to  rewrite  this.  So,  X  i  would  like  to  be  able  to  rewrite  this  equation

recursively in this way P Xk given X q is equal to summation, P Xk given Xk minus 1

times P Xk minus 1 given times xq times d Xk minus 1. So, q to p is related to k minus 1

to k and q to k minus 1. So, this is one step transition this is the multi-step transition I

can convert this .

So, this is a recursive relation using this recursive relation,  I can compose multi-step

transition probability involving any number of steps. So, this general this equation is

called  chapman  Kolmogorov  equation  for  probability  density  functions,  multi-step

transition probability. So, given a Markov process, a Markov process is uniquely defined

by  the  initial  condition  or  the  initial  distribution  and  the  one  step  trait  transition

mechanism. If the one step trait transition mechanism is specified I can create multi-step

transition mechanisms probability values using chapman Kolmogorov equations. 
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So, that is the conclusion so far now, what is the statement of the non-linear problem I

am  given  an  initial  condition  P  naught  X  naught  please  understand.  Pk  Xk  is  the



probability  density  of the state  Xk at time k.  In general  this  probability  density will

depend on k therefore; the subscript for P refers to the time varying density of the state

Xk as the state evolves according to the dynamical system. 

So, what is the question given P naught X naught this is the initial  state distribution,

which is given by X naught m naught hat and P naught hat please remember, that X

naught is equal to m naught P naught. So, I am trying to define my initial analysis to be

m naught, my initial analysis covariance to be P naught. So, with this initialization this

represents the initial distribution, given the initial distribution of the state I would like to

be able to find the distribution of the state at time k, this is what is called the probability

distribution  at  time  k.  So,  I  am I  want  to  remind  the  reader  now there  are  several

probability density functions we are involved in, one is the initial  probability density

another 1 is the transition probability from k minus 1 to k another 1 is Pk xk.

Now, in all this we know this transition density from the model, we are given this initial

condition from external specification that is equivalent to specifying the initial conditions

for the dynamical system. So, given these 2 our job is to be able to compute the state.

The state probability density function at time k. So, this is called the state probability

distribution of Xk ,I would like to be able to compute this quantity now we are going to

look at means by which we can arrive at this evolution of the state probability density

functions in time. 

So, it will be take there once more, given the model, given the forcing, given the initial

condition, the model defines the one sub transition the initial condition randomness is

given. So, you can see there are 2 sources of randomness, one coming from the choice of

initial  condition  another  coming  from the  one  step  state  transition,  these  2  together

decide the state probability  density function.  The state probability  density function is

called is the Pk Xk our ultimate goal is to be able to find out how the states of the model

are distributed and in any given time Pk what is P k Xk for any k. 

Given this I would like to be able to start from what is called the joint density. If I have 2

random variables, I can consider I am I am that that always exists in an appropriately

chosen probability of a space, there is a joint density, then I can consider the marginal

densities I am assuming that we are all familiar with the notion of marginal densities

conditional densities joint densities all basic fundamental concepts. 



So, consider a joint density of the state from X naught to Xk. Using a simple conditional

probability, I can express the condition at the joint density as the product of another joint

density and the conditional density. So, this is P of Xk given Xk minus 1 through X

naught times P of Xk through Xk minus 1 through X naught. So, conditioned on the

knowledge from X naught to Xk minus 1 I can split this into a product of these 2. 

But I have already assumed the process is Markov. So, knowing Xk minus 1, I do not

have to know how I got to Xk minus 1 the past is of no consequence is deciding the

future if the present is known. So, Xk minus 1 is the present. So, the this conditional

probability reduces to your one step trait transition probability of the Markov process, we

are considering.

So, this is the joint density from state 0 to state k minus 1. So, you can now see the joint

density from 0 of the state from 0 to k mine k can be broken down into the product of

joint density from 0 to k minus 1, and once the transition from k minus 1 to k, this

recurrence relation and this I can apply this recurrence relation to this term on the right

hand side. If I apply this continuously now I can you can readily see the joint density is

expressible as the product of the conditional densities; that is a typo, this is X sub i, this

is X i minus 1. 

So, the product of the conditional densities times the initial density. So, this is the initial

density, this is the conditional density. So, I can you can readily see the joint density is

the product of the one state transition densities and the initial density. One sub tastes a

straight transition density is given by the mark the model, this is the initial density. So, I

am expressing the conditional density as a product of everything that I know. 
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So, I am now going to be looking for expressions for the joint density; a little bit more

characterization.  So,  we  now know  P of  X  naught  is  normal,  one  step  trance  state

transition probability which is the conditional probability that is also normal, we have

already argued about the normality of the one step state transition probability for the

model equations. In the previous step we have expressed the joint density as the product

of the conditional densities and the initial densities. Therefore, I can express the joint

density as the product of the normal densities and another normal density. 

The product of k normal density is referring to the k step transition from 0 to k and the

initial  density. If  I  substitute  the  expressions  for  each  of  these  normal  densities  and

simplify I get a constant times exponential of minus Gk; minus 1 half of Gk times the

initial density, where Gk has an expression which is the sum of Xk minus 1 minus M of

X i minus 1 transpose the inverse of the covariance matrix of the one step transition

times X i minus M of X i minus 1. 

So, that is a quadratic form, this quadratic form is a non-linear is non-linear it is much

more than quadratic because M in general is a non-linear function, this will become an

actual quadratic form only when the model is linear, when the model is not linear. So,

what do you mean by saying model is linear M of X i minus 1 is equal to M of X i minus

1 that is the linear case, in this case it is a quadratic form if not this is not a quadratic

form.  So,  in  principle  this  1  is  not  a  quadric  form,  it  is  it  is  more  complex  than  a



quadratic function is the non-linear function. Much of the difficulty in computing the

joint density arises from the this complex nature of the non-linearity that enters into the

description that in the description of the joint density. 

So, the Ck is given by this constant. So, given this now we have computed the joint

density at least mathematically in in the form given by Gk, in the form that is given by

the exponent Gk the expression for the exponent Gk is a complex non-linear function. 

If you recall we are in the middle of discussion of non-linear filtering, in the case of non-

linear  filtering  because  of  the  non-linearity  we  cannot  simply  be  content  with  first

moment and second moment.  The complete solution is derived is given by the entire

probability density function for the forecast for analysis. Once you know the probability

density  function then we can compute any number of moments  first  moment second

moment etcetera. This is largely because of the fact that there are non-linearity in the

system even though the initial condition maybe in Gaussian distributed, maybe the one

step transition probabilities  of the non-linear  system that defines the Markov process

which are also Gaussian. 

In spite of the fact if you want to be able to compute the state distribution at any given

time, that is highly a non-linear function and it is far from being normal. We are trying to

get a handle on on this  important  quantity  namely P k, Xk you may recall  from the

previous page. What you speak Xk is, Pk Xk is the probability density function of the

state at time k, there are 2 case 1 for the state X sub k and on the state itself is changing

another there is a subscript for P, P of k of Xk P of k refers to the density it  is the

probability density of the state Xk at time k, the subscript k associated with P tells that

the probability density function is changing in time. Not only the state is changing in

time the probability density is also changing in time. 

It is this quantity which is of interest to us and we are trying to express the joint densities

to start with, I am trying to go over some of the things we have already done. So, I am

trying to compute the joint density of the state from 0 from time 0 to time k, using this

recurrence we just saw it can be expressed as a product of conditional densities and the

initial density. 

Initial density is normal condition density is normal. So, the joint density is given by

constant Ck times exponential minus 1 half times Gk normal with mean M naught hat



and P naught hat, the crux of the expression relates to analyzing what is contained in Gk

G k is given by this complicated expression which is the exponent and the large that the

most of the difficulty arises from the fact M is not a linear function, in case M of X i is

equal to X i minus 1 is equal to M times X i minus 1 the exponent becomes a simple

quadratic function because M is in general not necessarily a linear function this exponent

is in general more non-linear than quadratic functions. So, in general they are quadratic

functions  and  this  is  largely  the  major  difficulty  in  trying  to  quantify  the  state

distribution. The distribution of Xk at time k which is P k X k, but at least theoretically

one can compute the joint density of the state from time 0 to time k. 
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Once you have the joint density from time 0 to time k, I am still interested in finding not

the joint density, but the state density at time k, pk, xk you know that P, kx, k is the

marginal distribution of the joint density. So, this is the joint density, if I integrate the

joint density over all the variables other than X k. So, this is integration is from X naught

X 1 through xk minus 1. So, there are k iterated integrals each of these iterate iterated

integrals are integrals over Rn, because Rn is the state space. So, when I say integral over

X i that is equivalent to integral over Rn. So, integral over X i integral over R n. So, this

is the repeated integration in the in n dimensional space. 

Please recall we are not trying to do the actual integration we are trying to develop the

theory. So, the theory can go anywhere,  but ultimately we are interested in trying to



compute the probability density function for the state Xk at time k. We can obtain now

your recursive form for this P k Xk why this Pk Xk can can be expressed in a recursive

form? Pk Xk is the probability density of the state Xk at time k. So, if I now Pk minus 1

Xk minus 1 that is the probability density of the state k minus 1 at time k minus 1. 

Then from Xk, I can go to Xk minus 1 by the one step transition probability rules. So,

given  in  this  I  can  compute  the  transition  density  from k  minus  1  to  xk.  So,  this

integration is over Xk minus 1. So, this is this essentially follows from basic probability

theory basic probability state arguments. 

In particular when k is 1, P 1 X 1 that is in the probability density of the state at time 1 is

equal  to the  initial  state  distribution  that  is  the initial  condition,  this  is  the one step

transition probability, the initial density is Gaussian, the conditional density is Gaussian,

but the conditional density is a function of the model map, model map is highly non-

linear therefore, P 1 X 1 can in principle be expressed by this integral, but it is far from

being Gaussian. That is the primary difference between the linear of the non-linear filter

much of the difficulty associated with the non-linear filtering, at least in one part comes

from this inability to preserve normality under non-linear transformation. 

So, now let us give a little bit more life to this P naught X naught is normal, P of X 1

given X naught is normal,  but if  I substitute  all  the normal expressions for this, this

integral  becomes  equal  to  this  well  I  am now going to  talk  about  the  exponent  the

exponent is alpha times X 1 X naught, that alpha times alpha of X 1 X naught is given by

this function that is the exponent that describes the product density. The product of the

conditional density and the initial density, you can readily see this M is a model map this

product  that  tries  to  make  it  a  non-linear  function.  So,  I  cannot  simply  rewrite  it  a

Gaussian and this alpha of X 1 X naught has also another term that comes from the initial

condition. 

So, the initial condition current contribution is quadratic, but the contribution from one

step transition is not, it is a combination of these 2 terms makes P 1 X 1 far from being

Gaussian. That is not that is that is the real rub, then it comes to non-linear filtering as we

move from linear to non-linear maps as you linear as you go from linear to non-linear

models. 



So, if I can. So, by this we have seen that P 1 X 1 is not normal therefore, P k Xk is not

normal, the non-normality continues to dominate the show because the state distributions

are not normal it is not enough to compute the mean and the variance I need to be able to

compute the entire distribution. So, the non-linear filter seeks to up update not the mean

and the covariance as their linear Kalman filter dead let us go back; what is that thing we

did  in  the  Kalman  filter?  We  updated  the  forecast  mean  we  update  the  forecast

covariance,  we  updated  the  analysis  mean  we  updated  analysis  covariance  because

everything  is  normal  by  knowing  the  mean  and  the  variance  I  know  the  entire

distribution that is not the case and that is largely the difficulty. 

So, Pk Xk in principle one can compute the only way to be able to compute these things

as numerically of course, there are still very many good numerical integration packages

one can utilize  to be able  to  compute this,  but what  is  that  we are seeking? We are

seeking  something  a  sequential  algorithm,  what  is  the  sequential  algorithm  like  in

Kalman filter, I am going from state time k to at time k plus 1. So, knowing the analysis

and it is covariance at time k, I would like to be able to compute the forecast and this

covariance  or  time  k  plus  1  observation  comes,  I  am now going  to  recompute  the

analysis and the covariance at the next time interval that is the sequential nature, and that

is what we are looking for. 

So, we would we would like to go from time k to time k plus 1, we would like to be able

to update P k minus 1, Xk minus 1 to P k Xk if I can do that that is what the sequential

algorithm  is  all  about.  Please  recall  each  of  these  are  functions  each  of  these  are

continuous, I am assuming the density functions they are continuous these are functions

continuous functions defined over the n dimensional space, and the integral of this must

be 1 these functions have to be positive.

Now, we  can  see  the  I  am  talking  about  non  I  am  talking  about  positive  function

functions that are non-negative and whose integral has to be 1, and they are differently n

dimensional  space,  and when n  is  large  100,  100,0,  10,000 million  you can  see  the

associated difficulties and trying to keep the non-negativity of this function, when you

are trying to do the numerical computation these are some of the challenges one free one

will  find  themselves  in  when  you  are  trying  to  convert  these  things  into  numerical

algorithms. 
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So, what is that we have accomplished? We have simply analyzed the model forecast

with no observation. Starting from the initial distribution, knowing the one step transition

probability of the underlying Markov process defined by the model, I am now at least

theoretically be able to explain R X express Pk Xk. So, we need we have started from we

P naught X naught ,we had access to Pk Xk minus 1 from the if I combining these now I

have an expression for P k Xk no data is involved it is simply model analysis. 

This  idea  of  trying  to  explain  the  evolution  of  Pk Xk that  is  part  of  the  stochastic

dynamics that is the stochastic dynamics part. So, the complete information that one can

hope to give in the case of stochastic dynamics is the probability is the evolution of the

probability density of function. 

Now, let  us  bring in  the filter,  filter  means observation.  So,  when I  am going to  be

developing expression for the non-linear filter I have to have now 2 kinds of densities,

one is the predictor density another is the filter density what is the predictor density? It is

the density of the state at time k plus 1 given all the observations. So, that embeds the

model as well as the observation. So, we are going to call this as the predictor density. 

The filter density is going to be f of k f Xk, which is which is given all the observations

from 1 to k, I would like to get the best estimate of the state at time k. Please recall the

Kolmogorov v in our definition given all the information up to time k estimating the state

of the system at time k is called the filter problem, given all the information up from time



1 to k trying to know the state  of the system at time k plus 1, there is a prediction

problem here instead of simply predicting the mean of the covariance we have to predict

the entire distribution itself. So, this is the predictor density this is the filter density. 

We have some idea of the state density evolution, now I would like to talk about the

structure of the filter density. So, f of k Xk the filter density also changes in time. So, f of

sub k of Xk, Xk changes in time f of k also changes in time much like the state density

distribution changed. 

So,  by definition  this  is  equal  to  the  probability  density  of  Xk given Z 1  to  k,  the

observations from time 1 to time k. This can be written the join this can be written as the

integral of the conditional density of the state of the system from X naught to Xk, given

Z 1 to k, in the integration is from k minus 1 Xk minus 2 and X naught, and that that is

the repeated integration in here. 

That  comes  essentially  from basic  definition  of  the density  functions,  I  want  you to

understand  these  are  all  mathematical  possibilities,  we  want  to  know that  it  is  first

mathematically feasible to describe what I want leaving the computational problem after

the feasibility studies have been completed

So, this conditional density of the state at time k given the observation from 1 to k, is

essentially the marginal of the joint conditional density integrated over X 0 to Xk minus

1. I think that should be pretty clear from basic probability argument. 
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The predictor  density now is  Pk plus 1,  I  am giving again expressions for this  filter

density and predictor density, we saw the filter density in equation 1 we are now giving

the predicted density in equation 2, predictor density is likewise you have the look at this

now the joint predictor density condition on Z 1 to Z of 1 to k, integrated over 0 to k.

So, that is the expression for the predictor density. These 2 densities in principle make

sense, but these are all not in the recursive form. So, what is our goal? To say I have a

non-linear filter is to be able to rewrite these 2 equations 1 and 2 in a recursive form.

So, we arrive at a simple recursive form and who is going to provide the key to the

recursive form, the Markov property the underlying Markov property of the stochastic

model please understand that is the key. So, what is the Markov model essentially tells

you if I know the state at time k and if I know what comes after time k, knowing what

comes after time k I should be able to precisely probabilistically predict what the state

will be. We do not know the exact value, but we would be able to tell the distribution of

the state of the system at the next time. 

The Markov property depends critically on the one step state transition probability, and

we are going to exploit that property to be able to write equation 1 and equation 2 in a

simple beautiful  recursive form. One is that is accomplished at  least  in principle,  we

would have solved the non-linear filtering problem to tell how to make the prediction of

the density of the predictor state, then given the predictor density and the distribution of



the  observation,  I  am going to  get  the  filter  density  the  filter  density  represents  the

analysis the predictor density represent the forecast step.

So, you can see essentially all the ingredients of the Kalman filter are alive and well,

instead of computing the vectors and matrices which are the first and second moment we

are going to have to update the entire functions over the n dimensional space. That is the

key to understanding non-linear non-linear filter equations. 
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So,  with  this  as  the  background  now  I  am  going  to  talk  about  manipulating  the

expressions for f k of Xk is what I want now we will start with the basic statement.

Given the observation from 1 to k the conditioned on that I have a probability density

over the state from X naught to Xk. So, that is the conditional probability distribution

given the observation after time k, a you can you can see the following I  am Xk is

involved, I am also interested in the trajectory of the system starting from X X 0 to Xk, I

am conditioned everything on all the observations up to including time k, Z 1 colon k Z 1

colon k represents all the information that are obtained from time 1 to time k. Of course,

inherent in here is the model information to why going from X naught X 1 is given by

the model. So, that is model information that is observation information. So, this is the

goblet go mix of both the model and the observations. 

Now, using Bayes rule, this conditional probability can be written as Z 1 k conditioned

on the state 0 to k times the probability of the trajectory going from 0 to k divided by P



the probability of observing the observations from 1 to k that essentially follows from

simple Bayes rule. 

So,  we  have  already  applied  Bayes  rule  as  in  3,  now  I  am  going  to  express  this

probability which is the probability of the trajectory starting from X naught Xk, we have

already seen using Markov property, the joint probability of the trajectory starting from

X naught to X 1 is given by P naught of X naught. So, we can talk about this now. So, P

naught of X naught then P of X 1 given X naught, then P of X 2 given X 1 all the way up

to P of Xk minus 1 times Xk. 

So, what does it tell you? This is the probability of observing a particular trajectory of

the system starting from X naught. That it is this is encapsulated in here, it is simply the

product of the transition probabilities that define the path times the initial distribution. 

So, what is this? This is a stochastic analog of simply recursing the set of equations. I

will give you a quick analog, in a linear system if I have Xk plus 1 is equal to M times

Xk X naught is given from here we would know Xk is equal to M to the power k X

naught. 

So, I should be able to relate the system at time k to the time X naught, through the case

step transition probability matrix, the kth power of it, and that is what happens in the

linear system in the non-linear system this cannot be done, but you can think of this to be

an analog of what happens in the case of a linear system. So, for those of us who are who

would like to have a link that is how you need to look at this. Given the initial condition

given the state transition map, how does the state transition map and the initial condition

together define the trajectory. So, this is the probability of observing the entire trajectory

from X naught to X 1 to X I, Xk minus 1 to Xk. 

Now, using the Markov property. So, this is one of the terms in the Bayes rule, it is the

second term in the numerator on the right hand side of 3. Now I am going to consider the

first term in the numerator of 3 on the right hand side of 3, and that is what is given by

this. Z 1 colon k what is mean with what I have all the observations from Z 1 to Z k, I am

conditioning it  on the trajectory, now look at  this now. I have already computed the

probability  of observing the trajectory. So,  conditioning this  is  known. So, given the

probability  that  a  particular  trajectory  is  observed,  I  can  now  conditioned  on  that



particular trajectory, I can then compute the probability of the observation conditioned on

the trajectory, that is the whole idea that is a very simple idea. 

Again we are going to apply the manipulation of conditional probability again and again.

So, this can be written as probability of Z 1 given Z 2, Z k X 0 to Xk times probability of

Z 2 to Z k and the same trajectory. 

Now, let us look at this now, Z 1 it is it is the observation at time 1. X naught X 1 these

are the state at system at time 0 and time 1. X 1 depends on X naught and Z 1 depends on

X 1, Z 1 does not depends on X 2 what is X 2, X 2 the state of the system at time 2; what

is Z 1? Z 1 is the observation at time 1, the observation at time 1 does not depend on the

future state I hope that it is very clear.

So, in view of the non-dependence of the observation Z 1 on states beyond X 1; that

means,  Z  1  does  not  depend  on  X  2,  2  Xk  if  it  does  not  depend  on  X  2  Xk  the

conditioning has no value, I can drop that conditioning out of consideration. So, I can

rewrite this term as P of Z 1 conditioned on X 1 times P of then the rest of this the rest of

the term comes in here right now. 

So, now we can see I am trying to bring a recursive structure into the system, and this

recursive structure is again a consequence of Markov property. So, let me let me say it

once more. If I have a time one state X 1, Z 1 is an observation that comes at time one, X

2 is a future state it makes sense to think about the system does not have the anticipatory

power in other words my todays observation of temperature is not going to take into

account tomorrows temperature, todays observation is measured on today and perhaps

some of the past even that has taken place.

So,  same  consideration  because  of  such  simple  arguments,  you  can  readily  see  the

conditioning even though I have conditioned this on Z 2 to Z k, X naught to Xk todays

observation  does  not  depend on tomorrows observation,  todays observation  does  not

depend on tomorrow state  therefore,  the dependence of  Z 1 and Z 2 to  Z k can be

dropped dependence of Z 1 and state from X 2 to Xk can be dropped, therefore, Z 1 can

at best depend on X 1. So, the first time simplifies as follows that again comes from the

mass Markov property as we observed. 



Now, look at this now; this is the left hand side, this is one of the terms in the right hand

side, the this is the first term and this is the second term. tThe second term and the left

hand side are exactly the same except that the left hand side is from 1 to k the right hand

side from 2 to k. So, what does it mean? I have expresses a recursive structure, this

recursive structure now can be adapted to the second term in the right hand side. I can

further apply the recursive structure. 
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So,  if  I  apply  this  recursive  structure  continuously  open it  up,  I  have  that  is  called

iterating you. So, iterating this we get this density is equivalent to product of probability

of Zi versus X i, i is equal to 1 to k. 

So, we can now I have 5, I have 4, I can substitute 5 and 4 look at this now what is 4? 4

relates the second term on the numerator on the right hand side of the Bayes rule what is

a 5? 5 relates to the expansion in the property of the first term on the right hand side of

the Bayes rule. So, I substitute 4 and 5 in 3 simplify the trajectory given the observation 

The filter density is simply the module density of this conditional density integrated with

respect X naught 3 Xk minus 1. So, that is what this 1 is. So, this is integrated X minus 1

X minus 2 and X naught. So, the entire expression the for the filter density in full form is

given by this look at this now. I am multiplying 1 over the probability of observing the k

first k observation, 1 over probability of Z of 1 colon k, that comes from the denominator

of the Bayes rule that was given in equation 3 the right hand side of the equation 3. 



The numerator of the Bayes rule I have utilized the recursive property and broken down

into several factors. So, one of them relates to one step transition probabilities now look

at  this  now the  structure  is  absolutely  beautiful,  this  relates  to  the  model  transition

probability, which  is  given by the  Markov process.  This  is  given by the  conditional

density of the observation, this is the initial density, initial condition if you want to call it

and this is integration with respect to their the k time variable, that is what comes from

here. 

So, this is a this expression is the complex expression, it is, but it is easy to understand.

So, the filter density what is the filter density? The density of the state at time k given all

the observation is equal to 1 over the probability of observing all the observations times

the integral the k fold integral along the path from 0 to k minus 1. And the integrand is

the  product  of  the  initial  density,  the  model  one  step  transition  probability  and  the

conditional density the observation given the state. So, nothing could be more beautiful

than this we know the conditional density, we know the state transition distribution, we

also know the initial conditions what is the only thing we need to do? We need to have it

all multiply them and that gives you an expression for the filter density. So, it is not that

we  cannot  compute  the  filter  density,  it  is  simply  that  computation  of  this  difficult

conceptually disposable. So, this is one part of the solution of the non-linear filtering

problem.

Now, I would like to come to the forecast density, please understand filter density is the

analysis. So, we have done the analysis part.
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Now, I  would like  to  be able  to do the forecast  part.  In  Kalman filter  equation,  the

forecast depends on the previous analysis the analysis depends of the previous forecast, it

is this interdependency the forecast analysis that makes the sequential  method a very

beautiful and extremely effective.

So, now, let us try to compute the forecast density, what is them forecast density? Is the

probability of given observation 1 to k, I would like to be able to explain not only what

happened up to k, but also beyond k given Z, 1 to k what happened up to k that is filtered

that is done. Now I want to know what is happening beyond, that is why this is called

filtered density, again I am now talking like a broken record this conditional probability

can be written again broken down by applying the conditional probability rule again to

gain the recursive form.

So, this is equal to probability of Xk plus 1 having observed the stage from X naught to

Xk and having observed the observation 1 to k times, the probability of being able to

observe the state from 0 to k given the observations at 1 to k observation from 1 to k. I

hope that transition is clear, it  is simply a very simple probabilistic  rule of trying to

express the conditional density as a product of 2 other related conditional densities, it is a

very simple mechanism.

Now, let us come to the first term of this product term what is given? I am interested in

the conditional density of Xk plus 1 different the entire trajectory from X naught Xk, and



the observation from 1 to k, but the process case Xk is markov. So, once the Markov

process Xk plus 1 depends only on Xk and nothing else nothing else matters therefore,

the first factor depends the conditioning depends only on X k. So, the first factor reduces

to probability of k plus 1 given Xk, that comes from the previous discussion that we have

already had therefore, the second factor is the right hand side of 6. So, let us go back to

the right hand side of 6.

The right hand side of 6 is the filter density. So, let us look at this now, I would like to a

spend  a  minute  on  that.  So,  the  probability  density  of  Xk  plus  1  given  the  entire

trajectory is 0 through k and the observation times, probability given observation 1 to k

and this now what is this part that is the filter density by 6. That is the right hand side of

6, therefore, by identifying this to be the filter density now I can express what I want. So,

that is 8 is a beautiful expression for the forecast density.

So, the forecast density now can be written using the right hand side of 6 let us go back.

The right hand side of 6 is given by this expression which is the k fold multiple integral.

So, I am going to copy that multiple integral in here therefore, the forecast density is

simply integral of the entire path given the observation and the integration is from 0 to

that. And again I can decompose this from the previous argument to this integral, please

understand we have already done that decomposition. Therefore, Pk plus 1 of Xk plus 1

is mouthful you can see it will probably take a 5 minutes to write this slide, I am trying

to spend less than a minute on this you understand that,  but all  I am trying to do is

nothing new it is simply manipulation of conditional probabilities that is all what it is.

So, except for the complications in these size of the expressions, the ideas are extremely

simple. Therefore, by substituting this quantity from the previous slide I get this part that

is integrand that is integrand hopefully that is clear to all of us.
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Now, I  can  rewrite  that  integrand  into  the  product  of  conditional  density,  once  of

transition probability yeah. I can express this as a one-step transition probability times

this quantity and that quantity is essentially fk Xk, and times one step 1 step transition a

look at this this is beautiful what is that we have said? Analysis k is equal to forecast at

time k plus the Kalman gain Vk minus Hf Xk f that is the a data assimilation step and to

be able to get Xk plus 1 f is equal to this is M times Xk hat, that is the forecast equation

this is the analysis equation we saw the embodiment of analysis equation previously with

respect to the filter density this is the analog of this.

Look at  this  now the forecast of time k plus 1 in the linear case is model times the

analysis time k. Now let us look at this here, f of k what is this this is an analysis time k

why this color analysis time k this is not as vector that gives analysis this is the analysis

density that is the filter density.

So, model operates on here model operates on analysis, here model operates on analysis

density, what is the model one step type transition matrix therefore,  if I multiply the

analysis density with the 1 straight state transition probability and integrated over Xk I

get this. So, I have already said this this is the analog of the forecast at time k plus 1 is

equal to model times the for the analysis at time k Malay system time k.
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So, we have now considered both the equations.

So, let us l try to think of the non-linear filter is little bit more simplification is needed. If

you consider this conditional probability, that can be written like this again by applying

simple Bayes rule, this is a simple Bayes rule I am sorry this one I should have said Xk

Xk minus 1, the k and X we are at the same level I am sorry for that this is product X

naught. So, that is the numerator part of it.

So, this essentially for us from the Bayes rule, which is given in the right hand side, but

Z the probability the observation given the state, again given by in long form given by

this  we  already  know probab  the  probability  of  observing  k  given  the  entire  thing,

depends can be written as a product of these 2 conditional densities, but this one depends

only on the state at time k. So, that becomes the conditional probability distribution of

the observation given Xk, and then we get the second quantity from here.

So, I get the recursive form, by again I can rewrite this in this form by the Bayes rule this

must be Z k minus 1 sorry Z k minus 1, this again must be Xk , Xk minus 1 Xk minus 1 I

applying the same Bayes rule here 11. So, you can readily see how I am able to compute

the  probability  of  observing  the  set  of  all  observation  given  the  trajectory  in  this

particular form as given by 11, I am as given by 11 the substitute. So, now, look at this

now.
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Substitute this 11 into 10, you then you essentially get what you want. So, this is the

forecast sorry this is the filter density which can be written like this, which can be again

written from substituting 11 into 10 we get this form, and this is exactly the relation

given an in our book. I am sorry this is exactly the relation given in our book chapter 29

equation 21 and section 2. So, with this we have it readily seen the recurrence relation

relating to f depends on P and P depends on f.

Let me go back to and say equation 9, the predictive density depends on the filter density

in and the right hand side of 7 also depends can be rewritten as the predicted density. So,

these  2  equation  together  gives  you  the  expression  for  the  non-linear  filter  in  in  in

general term.
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You can now I am going to further simplify f of k, Xk let me let me go back. You can see

there are lots of things to be done this is the equation 7.

So, I am going to substitute 8, 9 and 10 and 11 to get back to the forecast, I am sorry the

filter density coming back the filter density. So, the filter density again from fundamental

principles is given by integral of this, and that can be written by using Bayes rule by this.

Then in the previous  slide in  equation  M 10 and 11, we have broken this  down by

applying Bayes rule that gave rise to the factor like this, which comes out of the integral

and this is what I have within the integral I integrate this, I get an expression which is

probability of Z k given Xk times probability of P k X k.

The probability of Pk Xk, this probability of Pk Xk comes from here. So, the probability

this integral in the in it is entirety gives raise to Pk Xk, now look at this this is the analog

of the analysis.  The analysis  of time k plus 1 is  equal to  forecast at  time k plus on

Kalman filter times this, what is the analog coming in here? This is the filter density, this

filter density depends on the forecast density I am sorry this is the filter density depends

on the forecast density and the observation. So, this is the density the observations and

that gives you the recursive form, and this  is analog of the an analysis  stuff. This is

analog of the analysis stuff yes this is easily said than done, I hope you are able to keep

track of the all the major you are able to keep track of all the major issues in here, and

that is the relation that relates to the forecast with the filter the forecast of the filter.



I am I hope it is it is clear. So, substituting again 11 in 10 you can see this relation is

again given by the 29. 2.1 in our book and that is the important relation that relates the

particular density with the filter density. 

So, in summary what is that we have accomplished? Yes I know I may have some of you

might think that I may have gone a little fast, but again this is an advanced course, in this

course we are we will not be able to hang carry you and show you every little step, but

we have shown all the basic major steps going from one step to another step is largely

part of the exercise, I hope you will be able to pursue, but it this will provide you a good

big picture modulo some of the algebra, I hope with this you are able to see the relation.

So, 13 I am sorry 12, 12relates the forecast to the filter, 9 relates the filter to the forecast.

So, 9 is the model forecast step, 12 is the data assimilation step, you can readily see the

data assimilation step let us spend 1 or 2 more minutes on this the filter density at time

came is the predictor density at time k. If Xk is known I can conditioned on Xk, I can

conditioned on Xk, then this is the conditional density of observation and once I have

conditional  density  observation  the  this  ratio  comes  is  again  as  a  multiplying  factor

which is essentially meant to induce that the density is that the condition for the densities

observed what is the condition for the density? The integrals must we want.

So, you can think of this as simply a multiplying constant and 1 of those this is the ratio

of the probabilities of observing the observations, yes the program the expressions look

little  complex,  but  the  basic  idea  of  going from forecast  to  analysis,  analysis  is  the

forecaster analysis in the function space must be clear. It is this iteration in the function

space  which  is  an  infinite  dimensional  space,  which  makes  this  iterative  scheme

impractical. 

Except for in very simple cases, what are the simple cases linear Gaussian chronic is one

case  where  I  can  implement  this  because  it  reduces  to  updating  the  mean  of  the

covariances.  In  the  literature  they  have  identified  a  few  handful  of  other  cases

combinations of non-linear systems and associated noise, where they could explicitly

express these integrals in closed form.

So, other than these elementary cases, these equations in general are not easy to compute

and hence the difficulty of non-linear filtering. I want to reemphasized, it is not that we

do not know how to do non-linear filtering; this has been done way back in the mid-



sixties.  Our  derivation  depends  on  the  development  in  bucys  buck  our  development

depends on the book by Bucy I did not spell it correctly sorry our Richard Bucy. The

original paper was be Kalman the second paper was Kalman and Bucy Kalman originally

derived the filter in discrete time, at the same time bucy was also deriving the Kalman

filter  in  continuous  time,  when  bucy  submitted  the  paper  Kalman’s  first  paper  was

already under we had has been accepted.

So, the reviewers asked both of them to get together and publish a common paper. So,

first  is  Kalman  second  is  Kalman  Bucy  and  Bucy  has  been  working  in  non-linear

filtering ever since nineteen late fifties early sixties, and the derivation that we had given

here is adapted from Bucy’s papers and in a monograph he wrote. So, this essentially

meant to provide you the idea that filtering problem what is filtering problem? The data

the sequential data assimilation problem in a non-linear system is solved theoretically,

but not computationally that is the story.

So, far we had concentrated on deriving the filter equation and the predictor equation on

the function space, these are infinite dimensional in nature computationally extremely

demanding. The next question is even if I spent lot of effort to be able to get the entire

distribution,  from the  forecaster  perspective  what  kind  of  forecast  product  I  have  to

develop from these probability distributions. If you think about it for a moment more

often  than  not,  we  are  used  to  interpreting  the  mean  we  have  a  reasonably  good

interpretation of the variance, I do not know what would mean to a public consumption if

I say the third moment is this the fourth moment is this.

So,  third  moment  relates  to  skewness  of  the  distribution,  fourth  moment  is  called

kurtosis. Skewness of the distribution essentially tells you the mean and the mold may be

different  or the whole thing can be tilted to one way or the other the kurtosis  if  the

kurtosis was large what does that tell you? The tails are thick the kurtosis for the normal

distribution is 3 is step 4 the standard normal distribution is 3, what is meant by saying

the kurtosis  is larger? The kurtosis larger statistically  me implies  that  the probability

mass for very large values of the state variable are larger. If the probability match for

very large values of a state variables large means what? High impact events could occur

with a larger probability that is what kurtosis larger kurtosis means that is called tail of

the probability distributions.



So, if you are trying to develop a forecast product generally we can only process the first

moment second moment, third moment I am not sure how we use it in our interpretation

of events that could occur. Fourth moment if you say kurtosis is more than 3, I am not

sure it is very easy to interpret the likelihood of rare events happening.

So, kurtosis means kurtosis is large means rare events can occur much more frequently

than smaller kurtosis that is what it means. So, in principle larger kurtosis means the

potential for extremely rare events to happen with a higher frequency, that is all what it

means. So, looking from our ability as well as the usage of statistical quantity to interpret

random phenomena in nature, we generally settle down our being a settle down on being

able to predict the first moment which is the mean the second moment or the second

centered moment which is the variance.

So, from that perspective while we have in principle derived expressions for the update

of the filter equations or the predictor equation in the n dimensional space, more often

than not we are interested simply in moment dynamics. What is moment dynamics, how

the mean update themselves are evolve how the variance evolves. Please go back the

Kalman filtering is essentially dynamics of the first 2 moments mean of the covariance,

and that fits everything we generally know how to do in statistics and how to interpret in

statistics.
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So, given these we are now going to look at how to derive the moment dynamics from

the dynamics of probability density functions that is what we are after now. So, consider

your non-linear dynamics given by this, consider non-linear observation given by this the

forecast step what is the forecast step? The conditional expectation of the best linear

estimate; I hope it is clear from our discussion of the statistics, conditional expectation is

the best estimate.

The conditional  expectation  is  the  best  linear  estimate  and we are  now going to  be

looking at what is the best way to be able to compute this conditional expectation of the

forecast.

So, the forecast at k plus 1 is equal to expected value of X of k plus 1 given Z at 1 to k. Z

at Z from 1 to k means what? I have I have been given all the observations from Z 1 to Z

k, but and I am I also no Xk, I also know X naught I know every state I would like to be

able to predict Xk plus 1. So, that is. So, given all the information Xk as well as Zk, I

would like to be able to predict Xk plus 1, and we have already seen in the derivation of

the Kalman filter equation forecast the best estimate for the forecast is the conditional

expectation of the state given all the observation.

This expectation is taken with respect to the predictor density, but Xk plus 1 from the

model  is  given  by  this  conditioned  on  that.  Conditioned  on  observation  1  to  k  the

expectation value of Wk plus 1 is 0 therefore, it reduces to the conditional distribution of

the non-linear value of X of k given X 1 to k. This conditional density I am now going to

call  as  M  hat  of  Xk.  M  hat  of  Xk  please  understand  evaluating  this  conditional

expectation is not easy, but such a conditional expectation exists, I am going to call it M

hat Xk what is the M hat Xk? Into the average of the value of the state passed through

the  non-linear  map  given  all  the  observation,  the  expectation  is  with  respect  to  the

predicted density.
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So, it is it you can really see M hat of Xk is equal to M hat of Xk is not equal to M of Xk

unless M is linear, only in the case of linear linearity M of M hat of Xk which is equal to

M of Xk that is the linear case.

So, in general the expectation that we got in the previous step the condition expectation

in that we regard in the previous step is not equal to M of xk. So, what is the idea? I am

trying to seek approximations to the conditional moment. So, what is the basic idea here?

I have analysis X hat k which is. So, let us pretend I have an analysis X hat k I am going

to be I am approximating M hat of Xk around X hat k.

So, let us look at this what is what is the idea here? Suppose I have X naught hat initial

condition I know the analysis I am going to be able to make a prediction I would like to

be able to make a prediction X 1 f and what is that this is equal to e of mf X 1 given Z 1,

and that is equal to M hat of X 1 then general this is not equal to M of X hat. 

 So, I should have put yeah thing in here therefore, it is very difficult to compute M hat

of X 1 because is a is a conditional is an integral relating to the conditional expectation.

So, I can only approximate. So, what is that we are going to approximate M hat, the

small  neighborhood  around  X hat  of  k.  So,  what  is  X  hat  of  k?  X hat  of  k  is  an

approximate analysis known at time k, I am going to approximate my forecast around

that.



So, we seek an approximation of M of Xk near Xk hat. So, f of k is equal to M f Xk

minus. So, what is that, that is the that is the error mf Xk is the actual value mf X is the

expected  value.  So,  it  can  think  of  that  as  an  anomaly.  F  k  hat  is  the  conditional

expectation you can see the hat opposes the conditional expectation. So, this is going to

be this is fk. So, a conditional expectation of a k fk f of k given the all the observation

that is 0, that you can readily see from the definition of f of k, because if you took the

condition expectations of M of Xk given Z one colon k is equal to M hat of Xk please

remember that is the definition. And that immediately when applied to this immediately

implies this, then apply to this immediately implies that therefore, the error the anomaly

has expected conditional expected value 0. 

I am now going to define the forecast error which is given by this, the forecast error is

equal to Xk plus 1 is given by this, that is a forecast from our definition f of k this is the

first term that if we combine these 2 that is f of k therefore, if I use my definition of f of

k, ek plus 1 is equal to f is equal to f of k plus w k plus 1 that is the forecast error.

So, you can write readily see how the approximation start building up. I have f of k I

have e of k plus 1 that is called a forecast to error, the forecast to error has 2 terms 1 due

to f of k another due to Wk plus 1. This is the forecast error term which is very similar to

what we have in the linear case.
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So, if I consider the X conditional expected value of e k plus 1 of f given this, I can now

substitute ek plus 1which gives rest  these 2 terms; the first  term is 0 because of the

definition of f of k, the second term is 0 because of the definition of the noise therefore, e

k  plus  1  f  is  unbiased.  So,  therefore,  Xk plus  1  is  an  unbiased  estimate,  this  when

combined with the least square estimate it becomes the minimum variance estimation.

Therefore Xk plus 1 f is also a minimum variance estimation in our based on the basic

statistical information we have created.
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So, compute the second order approximation  properties  of ek plus 1 f,  second order

properties relates to the covariance structure. So, the covariance structure Pk plus 1 that

is equal to this must be this must be e. 

So, this must be ek plus 1, f times e k plus 1 f transpose given Z 1 to k expected value

that is the expression. Ek plus 1 is the f of k plus Wk plus 1, f of k plus Wk plus 1

transpose if you multiply both of them f of k and Wk plus 1 are uncorrelated because f of

k depends only one up to time k, Wk plus 1 is what happens after time k. So, this reduces

to this equation. So, you can think of Pk plus 1 that is the second moment you can think

of. So, let us look at what is the we have accomplished.

We have a forecast look at this now we have a forecast in we have a forecast in page 18

you have the forecast covariance approximation in page, I am sorry in the at this stage it



is  not approximation we have a  computed everything reasonably exactly, but we are

going  to  later  see  fk  is  not  easy  to  handle  because  fk  has  M bar  M bar  has  to  be

approximated therefore, , but at least in principle this is the forecast covariance in other

words, I am trying to derive the general expressions assuming everything is possible

without worrying about computational issues right now.

So, the data simulation step now can again be given by Xk plus 1, I am trying to do what

I have did in the case of a linear case I am going to do the derivation from the scratch

ground up. So, if I have I am going to make my analysis depends on a plus k times zk

plus 1, you may remember in 1 of the earlier discussions of statistical estimation, this is

the structure of the linear estimation a is the vector k is the matrix. So, this is the an. So,

you can express the analysis of the linear function of the observation where a and k have

to  be  determined  to  make  the  analysis,  um unbiased  and also  analysis  of  minimum

variance.

So, with that in mind I have e bar, I am sorry e hat of k plus 1 is equal to the basic

definition in here which is given by this equation which is given by this equation. So,

this is the equation for Xk plus1. So, my job is to be able to find a k such that this is a

blue X hat k plus 1 is a blue. So, if I did that sorry.
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I am going to take the conditional expectation on both sides forcing unbiasness that gives

rise to the value of a.



Now, please understand I have k hat h hat h hat essentially comes from the fact that I

have been given the expression for the update. So, this is the expression for the update.

So, I have a computed according to this relation sorry I have a computed according to

this  relation  therefore,  if  I  substitute  at  this  a  in  this  expression  which  is  in  this

expression sorry in this expression in page in in page 21. So, this is the expression I am

going to compute I have I have already computed a I am going to substitute a in here in

star if I did that, I am going to get a structure for a given by this. This been substituted in

the previous expression gave the structure you can see this is the typical update from

Kalman.

So, what is h bar? H bar is given by the conditional expectation, please understand this is

as difficult to compute as M bar Xk, h bar Xk this is equal to expected value of Xk let us

go back I want to be able to remind you where it was. So, look at this in page eighteen is

given by the conditional expectation of the conditional expectation of the conditional

expectation of M of Xk given observations one through k and that is exactly what we are

going to sorry oh did I that is right this is this is conditional expectation given Z 1 colon

k likewise for h, h of Xk bar h of Xk bar in this case is equal to e of e of h of Xk plus 1

given Z 1 colon k 1 colon k and these are the 2 difficult quantities to compute.

So, even though these are difficult quantities to compute, but we know such quantity

exists  mathematically. So,  we have derived the  underlying  expressions  following the

derivations of the linear Kalman filter, assuming all the calm of complicated integrals

can be evaluated.



(Refer Slide Time: 96:31)

Now I am going to derive the moment dynamics let Gk be the difference hk, h of Xk plus

1 minus h of Xk plus 1 hat we already know from this definition if I take the conditional

expectations of both sides that is 0 therefore, this the analysis error is given by Xk plus 1

minus X hat of k plus 1 I already know the structure of the X hat k plus 1 using the

Kalman filter equation.

So, this can be rewritten using the definition of Gk, this can be rewritten as this when

combined with this equation. So, ek plus 1 look at this now the analysis error is equal to

forecast error minus correction Gk is a random quantity Vk is a random quantity Gk and

Vk are random quantity I want to be able to compute the analysis covariance in this case

this must be I think the left hand side must be P k plus 1 hat. Pk plus 1 hat is equal to if

this is the analysis error expression this times it is transpose conditioned on Z is going to

be Pk plus 1 hat. If I multiply these 2 after I do lot of algebra I get this expression you

can readily see in this expression I have Ak is a matrix Ak is a matrix given by gk ek plus

1 f conditional expectation on Z 1 to k Dk is given by Ck plus Rk plus 1 and Ck is given

by gk gk transpose again conditioned on that.

So, there is a lot of lot of notations in here I can compute I have an expression for Ak I

have an expression for Dk I have an expression for Ck. So, if I look at this expression I

know I know Dk I know Ak I know Pk plus 1 the only thing I do not know is k I am

sorry I know Ak, but I do not know k sorry. So, my job is to be able to find k such that.



So, this this d is known I want to be able to find k such that. So, Ak is known Dk is

known pkf is known k is not known.

So, I am going back to the old homework how do I make the trace of Pk plus 1 minimum

to the appropriate choice of k, that is the minimization problem that we have already

involved  in  this  expression  is  a  quadratic  in  k.  So,  this  gives  rise  to  a  quadratic

minimization problem. So, giving this quadratic minimization problem I can I need to

find k go back. I need to find k such that it minimizes a trace of P hat k plus 1 which was

given in the previous page.
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So, by method of perfecting the squares again I am going back to the exercise as I have

done earlier in the context of Goss to Kalman I am doing exactly the same thing the

mathematics are absolutely similar. So, I am trying to rewrite the equation for Pk plus 1

hat  this  is  the method of perfecting  the perfect  square,  the method of  perfecting  the

square if I want to be able to now look at the expression on the right hand side this is

another method for minimizing.

In the earlier case what did we do we computed we minimized the i th term the i th term

in other words we minimized Pk plus 1 i with respect to a given row of k, minimize with

respect  to the i  th row in here I  am in demonstrating another basic principle  we are

simply trying to express the previous quadratic expression as the product of these 2 this



is called method of perfecting the square. So, this is 1 term this is the another term d is

known.

Now look at the structure now Pkf is the sum of 3 terms, first term is known is that is

independent of k second term is known that is independent of k, the third term is known

it depends on k. So, if some term does not depend on k I cannot choose k to be able to

change  it.  So,  the  only  way  to  be  able  to  affect  k  is  to  make  those  terms  that  are

dependent on k 0 therefore, by picking k is equal to a k transpose Dk inverse I can make

this quadratic term to vanish in that case my best or optimal covariance is given by this

expression where Ak is the matrix already known Dk is the matrix that is already known.

I would like to emphasize the following fact that this derivation that we had given is the

generalization of the linear filter derivation if M. M of X is equal to M times X is h of X

is equal to h times X, this derivation I had given in the past 5 6 slides reduces to the

derivation  of  the  Kalman filter,  the  moment  dynamics  for  the  Kalman filter. So,  by

camouflaging the difficulty in computing certain conditional expectation and we are able

to  derive  the  moment  dynamics  the  first  moment  dynamics  and  second  moment

dynamics the mean and the covariance forecast mean forecast covariance analysis mean

analysis covariance.

Pushing  into  the  background  the  details  of  the  or  the  difficulties  of  the  conditional

expectation computation, but giving them a name, they I we know that exists by giving

them a name I can I do not have to worry about the computability at this time I simply

can carry on the derivation. So, we have completed the derivation of the dynamics of the

first  2  moments  in  any  general  non-linear  filtering  equation,  which  parallels  the

development  in  the  linear  carbon  case,  and  how  do  we  know  if  this  parallels  the

development to the linear carbon case if you set M of X is equal to M times X, h of X is

equal to h times X our derivation essentially reduces to the Kalman filter equation.

So, it is in that sense there is nesting, it is in that sense it is a parallel derivation of the

filter equation especially the moment dynamics for the non-linear case, I hope this part is

clear.  So,  in  the  earlier  part  we  talked  about  the  updating  of  the  updating  of  the

distributions now we have talked about updating of the first moment and second moment

assuming such filter density assuming such prediction density exists they do we may not



know it exactly, but I can handle it mathematically what we have done that is what we

have done.

And this  derivation  again  parallels  the  development  of  the  linear  minimum variance

estimation it essentially rests on the fundamental principle, the conditional expectation is

the  best  mean square  estimate.  So,  that  is  the  fundamental  statistical  fact  the  whole

derivation rests on I think it  is in sense it is a it is a unification of the derivation of

moments both in the non-linear case as well as the linear case. I hope the reader will

appreciate the parallels and the role of conditional expectations and so on.

With this as a background now I am going to consider specific approximations. So, that

gives rise to approximation to moment dynamics. So, until now the moment dynamics I

have considered are exactly in the sense are exactly in the sense even though I do not

know how to compute them such a thing exists.
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Let me proud through I got what I want, but once you realize there are certain quantities

which  cannot  be  actually  computed  we  begin  approximation,  when  we  start  doing

approximations we get the notion of approximate moment dynamics.

So, approximate moment dynamics there are several degrees of approximation first order

approximation  depends  only  on  first  order  Taylor  series  expansion  of  non-linear

quantities, second order approximation rests on a second order Taylor series expansion of



non-linear a conditional expectations. So, first I am going to derive approximations from

the  second  order  filter,  what  is  the  second  order  filter?  The  filter  equations  are

approximate, but they are approximate up to the second order term, the second order

term in the use of Taylor series up in the approximations.

Now, you can see wherever there is approximation Taylor always comes to our rescue if

you  use  Taylor  what  is  the  advantage  I  can  cut  the  approximation  at  any  order  of

accuracy in in all practices we generally are able to handle the first order accuracy the

second order accuracy, because that is what mostly used in practice. So, to derive the

non-linear errors we are going to approximate them. So, what are the non-linear error

terms go back f of k is equal to I think earlier, we had we had denoted as lowercase f of k

let me go back and talk to you about it in here in page 9 in slide 19 f of k is equal to M of

Xk minus M hat of Xk that is the same expression that is given in here too.

So,  I  am seeking second order  approximations  look back even though I  have call  it

capital F of k we have earlier defined this to be we had earlier defined this to be defined

this to be f of k Gk is again the same kind of thing which is h, but at time k plus 1. So, I

am now going to be concerned the forecast step M of X k. So, what is that I am trying to

do I am assuming I know X hat k I also know M of M hat of Xk is not equal to M of Xk

hat.

So,  I  am  going  to  approximate  M  hat  of  I  am  going  to  approximate  this  in  the

neighborhood of in the neighborhood of X bar k. So, that is what I am trying to do now.

So, M of Xk according to the second order Taylor series is M of Xk bar. So, I am trying

to do everything around approximation around k hat. So, I have a Jacobean times the

error I have this second order term in here where DM is the Jacobean and this is the DM,

DMis the vector that depends on the hessian term. So, you can see this is the quadratic

pop with respect to the hessian of M 1 quadratic form with respect to hessian of M 2

quadratic form with respect to hessian of mn.

We have already seen these things in a module on multivariate calculus how to have

secondary Taylor’s expansion for maps. So, it is essentially comes from 1 of the early um

slides  on  multivariate  calculus  now I  would  like  to  be  able  to  take  the  conditional

expectations on both sides I have to take the conditional expectations of both sides of this

equation given.
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Z k the condition expectations on both side given Z k is given by M bar of Xk is given

by M bar of Xk and that is equal.

So, by taking the conditional expectation on both sides of this, I get the first 2 term I get

the first term I get the expected value of the third term. Now if you go back to the second

term consists of the Jacobean at Xk bar and ek. So, if I take the expectation of Dm Xk

hat ek hat given a given observation Z, 1 to k that is equal to Dm Xk hat times e of Xk

hat given Z 1 k and we have already shown that is 0 that this is 0.

So, in view of that even though there are 3 terms of the right hand side if I take the

conditional expectation I get only 2, now I am going to give you a little example to be

able  to  illustrate  these  calculations.  So,  let  y  be  equal  to  y  1  y  2,  let  the  like  the

covariance of y is given by expected value of yy transpose, which is given by this is

assumed the given by this matrix let us also assume a is the matrix which is symmetric.

So, y is the random vector with this covariance matrix, a is a symmetric matrix I am now

considering possible different quadratic form which is y transpose Ay, I am trying to

compute  the  expected  value  of  this  possible  different  quadratic  form  and  that  by

substituting this in here is the sum of 3 expectations because expectation of the sum of

the sum of the expectations expectation of y 1 is sigma 1 square expectation of y 1,y 2 is

sigma this must be 2 b sigma 1 2 plus c times sigma 2 square. It can be verified this is



simply the trace of the matrix Ap trace of the matrix Ap is can be written as a times e of

expected y transpose y.

The  trace  of  the  expectation  of  the  trays  they  commute  therefore,  this  is  equal  to

expectation of the trace of a yy transpose, the trace remains invariant under the cyclic

permutation therefore, trace is equal to y transpose ay y transpose Ay is a scalar trace of a

scalar is itself. So, that is equal to expected value of that therefore, we have come one

circle around that tells you the details of the calculations with respect to compute in the

expected value of this, we are we interested in this computation let us go back to this

term.

What is this term from the previous slide this term is a vector. Each component of this is

a quadratic form the delta square M 1 delta square M 2 delta square mn they are all

hessian matrices they are symmetric. So, y plays the role of ek, a plays the role of the

hessian therefore, expectation of this. So, the I am sorry therefore, the expectation of the

vector of hessians are this vector of scalar product, let me let me talk about that once

more sorry.

So, what is this expectation has got on it? This is 1 half of expected value of e 1 ek

transpose del  square M 1 ek,  ek transpose del  square M 2 ek all  they are up to  ek

transpose  del  square  mn  ek.  If  I  take  the  expectation  of  a  vector  that  is  equal  to

expectation of the individual component of it, expectation of the individual components

which is of the form e of e k delta square mi ek and this is an hessian matrix this looks

like this looks like this term that is why that particular term is this particular example is

very meaningful I hope I hope the relations are very clear.

I am just trying to give this example to be able to manipulate the expected value of the

second  order  term  in  the  Taylor  series  expansion,  e  that  is  the  vector  each  of  the

component  is  a  quadratic  form.  So,  if  I  know how to  compute  the  expectations  of

quadratic form I can compute the expectations of individual elements of this vector, and

hence this example provides you a handle on how to compute the conditional expectation

and the second term. In the first equation on the top of the slide twenty 6 hope that is

clear yes it is mouthful it takes 5 more than 5 minutes to be able to type this, but I am

trying to spend less than half a minute, but you know the basic steps.
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So, using that example I am interested in computing the quadratic form. So, this is the

row vector, this the matrix, this is the column vector. So, from the previous example I

can say this is equal to a trace. So, from the previous example what is the formula here

expected value the quadratic form is equal to the trace of 8 times expected value of yy

transpose, that is the equation I am trying to use here therefore, this is this is a, this is this

is the matrix a, this is the expected value the expected value of this Pk.

So, this is the hessian this is the covariance matrix P hat. So, we have computed the

expected value of the term on the right hand side of the first equation. So, with that I am

going to derive a vector a vector of second order corrections. So, this is the vector of

second order corrections, each of the terms are induced by term type the terms of this

type  the  middle  term  was  already  0  therefore,  the  forecast  using  the  second  order

approximation is equal to is exact values M hat, it is approximate values M of Xk bar

plus the second order correction that is the real kicker.

So, this is called the second order correction to the forecast let me write that down. You

can see you learn a lot of probability manipulations, when you when you do these kinds

of computation that further helps you to visualize the power of the statistical arguments

and the interaction between statistics and matrix vector manipulations I would like to

anticipate. Suppose I do not consider the second order approximation I only consider the

first order approximation the delta square will be 0.



So, you can readily see if you make a first order forecast that is essentially the first order

forecast is essentially equal to M of Xk hat. This is the approximation the actual value of

the forecast is Xk plus 1 f is equal to M hat of xk. So, I am trying to replace this by this

that is the start in the second order, what do I do I add the second order term therefore,

second order forecast must be more accurate than the first order forecast.

Where  do  you  when  do  you  consider  what  is  the  right  order  for  approximation,  it

depends on the degree of non-linearity. Now if you go back what does the second order

correction term depends look at  this.  Now delta  square mi is  the hessian of the I  th

component of the model map if the model is mildly linear I am sorry mildly non-linear

the second derivative may not be too high, in that case you can you can essentially get

away with first order approximation.

If your model is such that the second derivative the hessian of each of the component is

strong first  order  approximation  would  not  cut  it  for  making forecasts  second order

approximation  is  more  meaningful.  So,  this  essentially  tells  you  by  appropriately

controlling the order of terms in the Taylor series expansion, I can improve the accuracy

or the forecast. So, this is second order accurate forecast. So, this is the second order

forecast. I also want to may remind you first order forecast is not easier while first order

forecast is not easier I already know Xk hat from the previous step, I simply be able to

evaluate the function map at the previous step.

So, that is the start, but to be able to compute the second order I have to do lot more

arithmetic.  So,  a  second  order  forecast  is  definitely  more  accurate,  but  it  is

computationally more expensive. So, what does it bring you it brings you the accuracy

versus time trade off. So, anybody who is involved in approximating any quantity at the

degree  of  approximation  and  the  degree  of  approximation  related  to  the  quality  of

approximation, the cost of computing the approximation is will be the ultimate judge in

trying to decide the order that we will feel comfortable with. So, using the derivation that

parallels  the  linear  Kalman  filter  by  trying  to  approximate  M  hat  of  by  trying  to

approximate M hat of Xk around X hat k we have tried to arrive at a second order correct

forecast. 
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Now, if I am going to do a second order correct forecast, what is it is covariance. So, that

is the level now I had talked about the covariance in order to be able to compute the

covariance again I am going to go back to the error in this forecast. The error in the

second order forecast can be written like this where DM is the model Jacobean which we

already know eta k comes from the second order term eta k comes on the second order

term we already know the error is equal to f of k plus Wk plus 1 therefore, the forecast

covariance is equal to from here this equation follows very easily, the forecast covariance

what is the forecast covariance Pk plus 1 f is equal to expected value of ek plus 1, f times

ek plus 1 f to the power f transpose. 

So, that is the that is the formula. So, when I apply this formula using this because f of k

and Wk plus 1 are not correlated it reduces to 2 terms the cost and vanish the f of k is

given by the expression that we have seen earlier. So, if I substitute all these things and

bulldoze all the details I get these terms. So, this is the expression for the forecast error

covariance when the forecast is second order accurate. 

Now, let us take some time to be able to compute all the expectations all the conditional

expectations in here.
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Eta k is quadratic in e k. So, now, let us look at this now. This is the most important part

of the whole step sorry. So, this is where we are eta k is quadratic in ek, this gives a this

gives what is called the moment closure problem the this gives us to what is the moment

closure problem. 

So, what is the moment closure problem, if I want to compute the second moment if that

depends on higher order moment if I want to be able to compute the first moment, that

depends on the higher order moment. So, let us look back in here Xk plus 1 f that is the

conditional  expectation  for  the  forecast.  So,  the  conditional  forecast  depends  on  the

second  moment.  So,  first  moment  depends  on  the  second  moment,  second  moment

depends on third moment fourth moment. 

So, what does that tell you, you cannot compute these moments in a closed form because

each 1 lower moment depends on the higher moment this provides the computational

difficulty  that  difficulty  has  been  around  for  a  long  time  in  all  non-linear  problem

especially  in turbulence they always deal with this problem, which is called moment

closure  problem.  So,  what  does  it  mean? If  a  second order  moment  depends on the

previous second order term in the higher order term they will simply approximate by

dropping  the  higher  order  terms  that  is  what  is  called  a  simpler  moment  closure

approximation problem.



The same moment closure approximation problem comes in here. So, dropping please

understand I am trying to compute Pk plus 1 f Pk plus 1 a second moment where are the

third moment terms comes in. So, let us look at this now this term ek plus 1 times eta k

eta k it depends on the second order term ek depends of the first order term the product

of ek hat and eta k, third order term. Therefore, you can readily see the moment closure

problem coming and derailing our ambition to be able to improve the accuracy. So, what

is our aim our aim must be able to use second order term to improve the accuracy for the

first moment which you have already accomplished. 

Now,  using  that  approximation,  for  the  first  moment  I  am  trying  to  develop  an

approximation for the second moment, but the sec expression for the second moment

depends on second moments of other quantities and third moments of related quantities.

So, I am going when I am trying to compute if I need third moment if I do not know the

third moment I can complete the second moment. So, that is the issue in here. So, what

are we going to do approximation ideas are very clear, moment cursor problem this is

intrinsic to non-linear problem and how do we tackle this we simply close our eyes and

drop all those terms that we do not know. 

So, in trying to get a second order approximation, drop the third order and higher order

approximation that actually leaves, that essentially leaves only these 2 terms I am sorry

that essentially leaves with only these 2 terms the following terms are dropped . So, once

I drop that, my approximation to the second order I am sorry second order approximation

to the second moment is given by this. So, there are 2 things to do consider 1, what is the

moment that is being approximated second what is the order of approximation. 

So, first moment depends on certain second order term second moment, dependent on

higher order terms. So, the moment closure problem shows ugly face. So, by considering

simple solution to this moment closure problem by dropping the third degree and higher

degree term we get the expression for the forecast which is second order accurate what is

that this is the forecast dynamics this is the moment dynamics I would like to remind

you, this is very similar to the Kalman filter equation in the Kalman filter equation what

is that we have forecast is equal to M times P k, M transpose plus Qk plus 1. 

So, this is very similar to that DM is the Jacobean of the DM transpose is the Jacobean

transpose. So, when M is M of X is equal to M times X, the M DM of X is equal to M



therefore, this relation even though we say this is second order accurate it looks like the

Kalman filter  Kalman filter  a  linear  case.  So,  you can see the analogy between this

equation  and  that  equation.  So,  I  have  derived  the  expression  for  the  approximate

evolution of the forecast and the forecast error covariance. 
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Now, we can do the same thing for the data assimilation step, I have the expression for

the analysis that is equal to forecast plus the Kalman gain times the innovation. Now h k

plus 1 I can express h k plus 1 in the form of forecast now look at this now to be able to

make a forecast I am anchoring on the previous analysis. To be able to make the analysis

I am going to make I am banking on the previous forecast. The forecast depends on the

Xk plus 1 forecast depends on the previous analysis and the analysis depends on the

forecast we can we can even put it Xk plus 1 is equal to Xk plus 1 that that relation still

holds good 

Therefore I can approximate h of Xk plus 1 is equal to h of Xk plus 1 f plus this again

this is  the first  order term this  is the second order term taking again the conditional

expectation  conditional  expectation,  we  already  have  h  bar  what  is  h  bar  please

remember h bar of Xk is equal to e of h of Xk given Z 1 to k all these are conditional

expectations the conditional expectation of ek plus 1 f is 0 therefore, this is the second

order accurate expression for h bar. 



Where delta square h again follows the same second order Taylor series approximation

by in view of the example, I have already incorporated all the information. So, this is the

second order correction term this is the second order correction term, I hope that is clear

I am doing exactly similar to what I did in the case of model map except here the map is

h. 
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Therefore I want to substitute back. So, the analysis, what is the second order accurate

analysis? The second order accurate analysis is equal to second order accurate forecast

plus Kalman gain times the second order accurate innovation. So, this is the second order

accurate innovation second order accurate innovation, this is the second order accurate

innovations. 

Now, we want to be able to compute. So, I have already approximated the analysis, I

would like to be able to approximate the analysis covariance analysis covariance is given

by this expression from our definition, we already know Ak, we already know Gk, we

already know Ck, we already know Dk, please remember these are the derivations I had

already given.
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I am now going to substitute manipulate the whole thing therefore, g of this is given by

accept k plus 1 there is no and here and I have I am going to express this by a second

order Taylor series minus this . So, Gk I am sorry that is a the error term in here I will I

will I will conclude. So, this must be please go back I would like to go back and tell g

there is a term in here that is missing, I would like to go back to the definition of Gk. So,

look at this now at the top of the page 23 Gk was defined h of Xk plus 1 minus h hat of

Xk plus 1 and that is what I am now going to have to pull in here. 

So, this is going to be h hat of Xk plus 1, let us go back to 23 once more that is right. So,

this is please remember that this is the expected value, which is being subtracted from h

of  Xk  I  want  to  remember  that.  So,  Gk  is  a  kind  of  an  anomaly  in  the  non-linear

conditional expectation and that is that is what being done in here that is what being done

in here.

So, if I expanded this on the Taylor series expansion, I know the Taylor series expansion

is given by this, I know the expansion for this is given by this. So, I have to subtract

these 2 quantities. If I subtracted these 2 quantities my Gk now takes the form which is

given by this now my psi k much like the eta k previously is given by this gobbly goo

expression this Gobbly goo expression essentially relates to the error in the second order

approximation, which is again you can think of it is second order anomaly if you wish to

call it. 



So, Ak is given by definition is this if I substitute the value of Gk from the previous

consideration Ak can be seen to be equal to this quantity.
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 Now I would like to be able to compute a show that Ck is given by I know I am going a

little too fast for many of you, but I want you to understand these calculations are very

simple I want to keep repeating that. So, Dk is given by this expression kk is given by

this expression Pk plus 1 in the end is given by this expression that is the expression for

the analysis covariance for the expression for the analysis covariance. 
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So, with this I am now going to summarize this is the final summary of all the things we

have done so far. So, I am going to give you the expression for the second order filter,

the second order filter. So, it is given in a form that you can right away right away the

program. So, this is a model equation this is the observation look at this now model is

non-linear observations are non-linear we have the standard assumptions about w kvk I

also have standard assumption assumptions over X naught, X naught is given by M of M

naught P naught. 

Therefore what is the second order accurate forecast; this is the second order accurate

forecast what is the second order accurate forecast covariant that is given by that, what is

the second order accurate analysis that is that now please understand what is this term

that  makes  the  second  order  accurate  this  is  the  second  order  term that  affects  the

forecast likewise this is a second order term that affects the analysis. 

So, this is the second order term that affects the analysis there is a second order term

affects forecast  that is  why both the forecast and analysis  are second order accurate.

These the even though the expression looks like the first order expression because of the

closure  we  ended  up having  the  second  order  accurate  forecast  covariance  like  this

second order accurate analysis, covariance by this and the second order accurate Kalman

gain is this. 

Now, look at this now everything is approximation forecasts are approximation, forecasts

covariance  is  an  approximation  Kalman  gain  is  an  approximation  analysis  is  an

approximation. So, if you think back hey this is the best you could do in the case of non-

linear system, second order approximation is the best you could do. So, this filter in the

literature has come to be called second order filter that helps you to approximate the

evolution of the state as a function of time. So, you can readily see forecast step and the

and  the  analysis  step  they  go  hand  in  hand  much  like  much  like  the  Kalman  filter

equations are. So, this is the sequential second order accurate moment dynamics for the

non-linear filter. 

So, that is the whole description of this, it is the second order accurate evolution of first

moment and second moment of the forecast and the analysis within the context of within

the context of non-linear model and non-linear observation it turns out that this equation

reduces to the Kalman filter equation, when the model is linear I am going to approx I



am I am going to establish this now. If the model map M of X is equal to M of X, D x m

is equal to M the del square M is 0 with me. Please I should say del square mi is 0

because each term if del square mi is 0, the second order terms are 0 in and M and the

whole thing reduces to the Kalman filter equations.

Therefore in this case second order filter implies reduces to the classical Kalman filter.

So, in the sense this is an extension, when do you say a is an extension of b a is said to be

an extension of b, when you specialize a becomes b that is called nesting. If an extension

does not have this natural nesting property, then then the extension does not have much

much much it cannot hold much water the extension argument cannot hold much water.

So, to say something is  an extension of something else,  I should be able  to get that

something else from the extended value if I set  certain parameters if  I  specialize set

certain parameters to extreme values.

So, in that sense you can see the consistency. Please understand in my derivation of the

second moment in my derivation of the approximate moment dynamics I showed that our

derivation parallels Kalman filter derivation, and it reduces the Kalman filter when you

make appropriate choices again I am trying to demonstrate the same thing. So, this this

allows us to be able to maintain that beauty of nesting when you go from special to

general or general to special. 
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If you set all the moments all the second order moments to 0, you get what is called a

first order filter, first order filter in the literature is called extended Kalman filter. So,

extended  Kalman  filters  which  many  of  you  may  have  heard  of  what  is  extension

Kalman  filter  once  Kalman  filter  was  announced  in  1960-61  very  soon  they  were

interested in extending to non-linear cases very they met with lots of difficulties. So, they

started approximating the first approximation that was developed within the context of

space  travel  was  essentially  extended  Kalman  filter.  Extended  Kalman  filter  in  our

notation is essentially a first order filter first order filter is obtained from second order

filter simply by setting the second moments to 0. 

So, this is the model dynamics this is the observation both are non-linear, this is the

forecast step this is the forecast analysis the forecast covariance, I would like to remind

you 2 things now the forecast covariance is the expression for it exactly the same in the

first moment in a second moment. 

But the trajectory of the second moment dynamics, second moment approx are going to

be different therefore, even though the expressions look the same the actual values will

be different because the forecast trajectories. In this case and in the previous case are

slightly different because the second order term is going to affect the forecast trajectory 

So, one thing we had remembered while the expressions may look the same the actual

trajectories will not because the second order term; alter the trajectory compared to the

first order term. So, the forecast step again is similar to what we have except the second

order correction term, there data assimilation step is again that that looks very much like

the linear Kalman case this is the Kalman gained this is the analysis forecast. These are

gain very similar to the second order filter what is the only difference the only term that I

marked by second order approximation terms are absent in the table in 35 compared to

the 1 in 34.

So, that essentially completes our derivation of moment approximation to the non-linear

filter. So,  general  order  general  expression from the moment  dynamics  second order

approximation first order approximation. So, what is that? So, if you are given a non-

linear system if the system is not too big you can apply the first order moment equation

the first order dynamics second order filter. So, you can experiment with by taking a

small simple problem you can solve the problem by second order filter, you can solve the



problem by first  order filter, you can plot the trajectories of forecast from first order

versus second order you can also plot the trajectories from first order filter analysis of it

the analysis from both the cases.

So, how do the analysis differ with the order of approximation to me that is a very good

in an interesting exercise. It could be a part of a classroom computer related project on a

model  chosen,  and  it  turns  out  this  if  you  change  the  model  the  quality  and  the

quantitative differences between this approximation may not hold across various models

therefore,  when you want  to be able  to apply non-linear  filters  to small  dimensional

problem, it is better to do it in slightly different ways first order filter second order filter

and then compare the performance and then compare the performance. So, that will be a

very very nice interesting class project, I often in my teaching, I give these projects in in

in my class and they are extremely very educative. The systems I give I do not give large

dimensional system 2 dimensional 3 dimensional.

So, what is the typical system I will like suppose there is a object falling freely from the

sky it has been falling for, long that the acceleration is countered by with the friction. So,

stokes law comes into effect and the particle is descending with a constant speed. So, the

vertically  it  has attained the terminal.  So,  called  terminal  velocity  if  a  friction  filled

medium if a bar if a particle is dropping down, a stokes lie essentially tells you it will

reach a terminal velocity where the acceleration is going to be countered by the friction I

am putting a radar at the bottom I am trying to observe the position and the velocity of

the particle through the radar, and I am asking them to be able to assimilate your non-

linear model for the free body and radar observations. So, it is a very simple educative

model using which one can bring out various discussions relating to non-linear filters

non-linear approximation quality of non-linear approximations. 

So, we have talked about second order filter, first order filter I have now I am now going

to take couple of minutes in talking about another Kalman filter equation these exercises

are  taken  from our  book this  is  exercise  29.5,  because  this  exercise  is  imparting  is

important I am going to talk about this this is called a linearized Kalman filter.
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What is the linearized Kalman filter I have a model equation Xk plus 1 is equal to M of

Xk. 

So, what do I do? I pick a state X naught I compute the non-linear trajectory X 1, X 2,

Xk then I induce a perturbation to X naught. If I want to call it the unperturbed state it

could be a bar state it could be a base state the perturbed state X naught is equal to X bar

naught plus delta X naught it comes to X 1, it comes to X 2, it comes to Xk. So, what is

that we now know delta Xk is equal to D at Xk of M delta Xk plus 1.

So, let me write that equation clearly sorry let me write that equation a little bit carefully.

Delta  Xk  plus  1  is  equal  to  d  at  Xk of  M delta  Xk  this  is  the  propagation  of  the

perturbation  this  is  called  in  mathematics  variational  equation  meteorologists  calls  a

tangent linear system we have already come across this equation in the context of 4 D

war and that is this equation 

So, for this linear system delta X naught is the initial condition. So, what is that I do

now? I  am having a  non-linear  system I  control  the  base  trajectory  this  is  the  base

trajectory I am I superimpose perturbation; I superimpose an initial perturbation and talk

about the dynamics of evolution of perturbation that is a linear equation excuse me. This

linear equation essentially tells you how the superimposed initial perturbation propagates

at the top of the base state. 



So, now forget about the original non-linear model consider this perturbed model this is a

linear model. Now let us assume I have been given observations originally. So, let us

assume originally I have been given observation which is zk is equal to h of Xk plus v.

So, now, what am I going to do I am going to consider increments the observation. So, I

am going to linearize ek along the base based trajectory. 

Therefore delta Z k is equal to Z k minus h of X bar k, what is X bar k is the base

trajectory to a first order approximation, I can say del delta Z k is given by this first order

quantities.  So,  look  at  this  now I  have  this  as  the  model  equation,  my  observation

equation is going to be delta Z k is equal to h times I am sorry this is not right my this is

equal to D of Xk bar of h times delta Xk. 

So, look at this this equation looks like Xk plus 1 is equal to A k Xk, this equation looks

like Zk is equal to h of X k. So, you have a linearized observation, you have linearized

model.  Now add some noise to this linearized model to get this.  So, this  becomes a

linearized stochastic model this becomes the linearized observation if you have a linear

model and the linear observation I can do a classical Kalman filter, that filter going to

give you an approximate estimate of the forecast and the approximate estimate of the

analysis for the perturbed system by adding the perturbation the perturbed forecast on the

analysis that the perturbed analysis to the base I will get the actual. 

So, if I know the increment if I know the base by adding the increment to the base I

know the actual. So, what is the what is the order of approximation? Here this is called

zeroth order filter. So, we talked about second order approximation we talked about a

first order approximation now this is called a zeroth order approximation to the non-

linear filter. So, what do we do we simply a create a linearized variational equation for

the evolution of the model of the perturbation across the base state then we considered a

linearized version,  of the observation we throw the original  models  out  you are you

consider  the linear  model,  a  linear  observation as your given model  you do a  linear

Kalman filter or a classical filter, you compute the analysis you compute the forecast you

add them to the base state you get the actual forecast and the approximation to the actual

forecast and approximation to the actual analysis. 

So, this is called the zeroth order filter or the linear Kalman filter is a very interesting

exercise. So, you can take a simple non-linear problem and do it in 3 ways, and look at



the  quality  of  approximation  in  and  what  do  I  get  what  do  I  lose  what  is  the

computational cost this could be a very interesting exercise and this module has been a

summary of our chapter 29, and that completes our discussion of non-linear filter yes this

module is very dense because non-linear problems are not easy. So, we have on 1 part

the stochastic dynamics the Markov property, on the other hand we have non-linearity on

1 hand we have conditional  Gaussian distribution,  on the other  hand the conditional

Gaussian distribution do not transfer itself as Gaussian for the predictive density.

So, we have tried to deal with that exactly as far as we can and derived the update in the

infinite dimensional space, then we want to come to the real world of finite dimensional

computations. When we came from infinite dimensional space to a finite dimensional

space  we had moment  approximation,  but  moment  approximation  even though is  an

approximation even this approximation is riddled with what is called a closure problem. 

So, I have to tackle the approximation at several levels. So, if you superimpose one level

of  approximation  to  another  level  of  approximation,  other  level  of  approximation

ultimately, when you when you when the when the fog clears you can have essentially a

second order accurate filter, first order accurate filter, zeroth order accurate filter. These 3

are considered to be meaningful approximations to the non-linear filter problem; with

this we come to the end of the discussion of non-linear filters.

Thank you. 


