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Linear Stochastic Dynamics – Kalman Filter Continued

Now, that we have derived the equations for Kalman filter namely the forecast equation

the forecast mean the forecast covariance observation the analysis step the analysis mean

and analysis covariance in this case the system is linear the noise is Gaussian therefore,

the forecast is a Gaussian random variable. 

The observations have Gaussian distribution analysis have a Gaussian distribution as we

had observed several times in the previous lectures that Gaussian distribution is the only

one that is decided uniquely by the mean of the covariance. So, if I compute the analysis

covariance  on  the  analysis  mean  I  essentially  characterize  the  entire  probability

distribution  against  this  now  I  am  going  to  describe  couple  of  simple  example  to

illustrate the dynamics.
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First I am going to talk about scalar dynamics with no observation; that means, this is

called stochastic dynamics. So, let a be a scalar positive w k be a scalar Gaussian random

variable  with mean 0 and variance q,  q is  the variance and x naught is  m naught P



naught. So, P naught in this case is a scalar, P naught is a scalar, the dynamics is given by

a simple scalar linear dynamics x k is equal to a times x k minus 1 plus w k.

So,  we have talked about  the value  of  a  w k x naught.  The solution  for  this  linear

occurrence  can  be  given  by this.  I  would  like  you  to  verify  the  correctness  of  this

equation by substituting back into the, by using the method of substitution that is the best

way to describe it. So, from here we get this solution. Now I can take the mean of both

sides.  Please  remember  the  mean of  w j  is  0  and w js  are  temporally  uncorrelated.

Therefore, if I took the mean the second term does not contribute anything. The mean of

the state at time k is a to the power of k m naught the variance of this state x k at time k

is P k; that is equal to variance of x a times x k minus 1 plus w k.

If  you multiply  a random variable  by a constant  you multiply  the covariance by the

square of the constant variance of the sum, is the sum of the variances, since the two

quantities are not correlated. Therefore, the variance of the state at time k is given by this

and this x k is essentially the forecast, because I am simply using the model. 

So, it a to the power of k m k is the mean of the model forecast the a square P k minus 1

plus  q  is  the  variance  associated  with  the  model  forecasts.  Please  understand  this

variance has two components; one coming from the initial covariance the distribution of

the initial condition. Second coming from the model noise, this is the scalar analog of the

vector  forecasts  covariance;  we  have  already  derived  within  the  kernels  within  the

Kalman framework.

And if you now substitute P k minus 1 in terms of P k minus 2 P k minus 2 in terms of P

k minus 3 and so on, and open it up, and simplify P k depends on P naught a to the power

of 2 k P naught plus q times a to the power of 2 a to the power 2 k minus 1 divided by a

square minus 1. Again I would like you to verify by solving this simple linear recurrence

relation.
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So, for a given m naught P naught and q, what is m naught,  the mean of the initial

condition P naught is the covariance of the initial  condition,  q is the variance of the

observation. I am sorry ma i is the variance of the model noise. I would like to be able to

now analyze the behavior of all the moments, what are the moments the first moment

and the second moment  of the forecast,  that  simply depends on a.  Now that  simply

depends on a, because all the other factors are fixed for a given m naught P naught and q,

the behavior of the forecast moments, the first moment, second moment depends only on

a.

When a is less than or equal within the region a greater than 0 less than or equal to 1, the

model is stable. What you mean by the model is stable. The model solution without the

model solution does not explored to infinity. In fact, it can be shown from the solution of

the model equation. In the previous step x k is equal to a to the power of x naught plus

that we can readily verify that limit x k, as k constitutes is 0, then P k, when the limit of P

k is also given by that. 

So, the limit of x k is given by this, the limit of P k is given by this. And I would like to

be able to tell you that this essentially comes from the first equation I, which I would like

to call it star, which I would like to call it star. So, if this star, if this is double star in the

next equation, both of this comes from star and double star.



Now, if a is less than, if a is less than finite, but greater than 1, the model is unstable that

the complementary part the model is unstable. The limit of x k goes to infinity, the limit

of P k is also goes to infinity, then a is equal to 1 the model defines the random walk. So,

in this case x k plus 1 is equal to x k plus w k plus 1. 

So, it executes a random walk on the real line. In this case x k is equal to x naught plus w

k w k is the sum of all the noise. So, if x k is m naught P k the variance of x k P k is

equal to P naught plus k q. Now you can see, even when a is equal to 1, while the beam

remains the same, its covariance increases linearly as P naught plus k times q. So, this is

simply the analysis  of the behavior  of the solution of the stochastic  linear  dynamics

given by x k plus 1 is equal to a times x k plus w k plus 1.
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Now, I would like to bring in the data into the picture, and that brings I continue the

same example I am now going to talk about Kalman filtering. So, without data I simply

make predictions with model alone. We talked about forecast, mean forecast covariance.

we analyze how the forecast covariance varies for different regimes, when a is less than,

less a is positive in between 0 and 1, when a is positive and greater than 1, when a is

equal to 1. 

So, we divide it the range of values the parameters into three sub regions; one stable and

unstable.  Another  corresponds to the random walk in two of the three cases when a



greater than 1 or a is equal to 1, we see that the variance go to infinity, the random model

is very interesting, and we may have occasion to talk about it later X k.

So, now we let us continue X k plus 1 is equal to X, w k plus 1 w k plus 1 is again the

noise with 0 mean and variance, q z k is equal to h times x k plus V k h is a scalar V k is

a scalar V k is 0 mean is a Gaussian random variable with 0 mean, and variance little, or

now I have the distinguish between forecast and the analysis. Therefore, forecast state is

equal to a times, the analysis of time k. 

In other words I am going from time k to time k plus 1, this transition is what we are

talking about. Earlier we talked about to transition from k minus 1 to k absolutely. There

is no difference except for the values of the indices. So, P k plus 1, yeah is the forecast

covariance at time k plus 1 is equal to a square times. The analysis covariance of time k

plus q, the analysis itself is given by the forecast plus Kalman gain time z k minus h k f.

The Kalman gain is given by this formula, which is, which can be simplified as ,which

can be simplified as P k hat h r inverse and then the analysis covariance is given by this

expression P k f minus something, I am trying to subtract a positive quantity from P k f.

therefore,  the (Refer Time:  10:57) covariant  becomes less.  So, P k f  or. So, analysis

covariance is equal to forecast covariance times r divided by h square times P k f plus

inverse. So, this is the very simple expression for the analysis covariance as a function of

k. All these things arise from the derivation of the Kalman filter, except that we have

substituted the corresponding formula.
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So,  now  given  I  have  the  equations  for  the  analysis  covariance  forecast  forecasts

covariance. I can now talk about the stability of the analysis part. In order to understand

the stability of the analysis part in other words what do I want to find, does the analysis

go to infinity, as time goes to infinity. If the analysis comes down to 0 what happens to

the  analysis  that  are,  what  happens  to  the  forecast  error  as  a  function  of  the  model

parameter. These are some of the things that we would like to be able to understand to

analyze the stability of the filter.

So, in this case forecast is given by this forecast 10 k plus 1 is equal to a times 1 minus k

h h a K k h x k f plus a times K k z of z k the analysis. At time k is given by this. I would

like you to go back to what we have, what we are doing, look at this. now I can substitute

the in this equation, how do I get this. I can substitute the analysis expression into the

forecast expression; that is exact. I can also substitute the forecast expression into the

analysis expression. 

So, that analysis at time k plus 1 can be expressed in terms of a forecast, at time k/ I am

sorry analysis of time k; that means, I can get a recurrence in the analysis value at time k

and k plus 1. All I can also get the forecast expressions, connecting the forecast of time k

plus 1 to forecast a time k; that is the important part of the recurrence in here, analysis

depends on forecast, forecast depends on analysis by mutually substituting each other. I



can express forecast depend on, forecast analysis depend on analysis at time k plus 1 to

time k; that is the recurrence we are talking about.

So, by substituting this, I get one recurrence for the forecast the one recurrence for the

analysis. So, if I have a forecast, I can compute the forecast error, if I have analysis I can

compute the analysis error. We have already seen the forecast is equal to forecast minus

the state given by the model analysis. Again analysis error can again be computed as we

have  already  seen  how to  handle  the  analysis  error  forecast  errors,  I  also  have  the

expression for  the  forecast  covariance  in  terms of  analysis  covariance,  and this  case

covariance is essentially a variance. 

The forecast variance is the a square times the analysis variance plus q here. Again the

analysis variance depends on the forecast variance. Again I can substitute each other, I

can substitute this in here, I can substitute this in here, I can then relate forecast at k plus

1 to forecast at time k analysis time k plus 1 to analysis at time k, if you do that the

example continues.

(Refer Slide Time: 14:38)

Now, after that substitution, I get this equation. Yes you can see this is heavily, there is a

lot of heavy algebra. Now divide both sides by r. If I divide both sides by r I get this

relation. So, what does it tell you. This tells you the forecast covariance are time k plus 1

is related to the forecast covariance of time k. 



Now look at the expression on the right hand side, the forecast covariance occurs both in

the numerator and the denominator. So, this is the non-linear recurrence relation, there is

a non-linear recurrence relation. 

Therefore, I am now going to change the notation, I am going to define P k is equal to P

k f by r. If I did this, this one in view of this one, you get this relation, where alpha is the

ratio of q over r. This is an interesting ratio, what is q. q is the variance of the model

noise r is the ra variance of the observation noise.

So, if the ratio of the two noise is alpha.  So, if you look at this normalized forecast

covariance, see that is what I want to emphasize in. This is the dynamics of evolution of

their normalized forecast variance, what is the normalization. I have normalized this with

respect to the variance of the observation, I have normalized this is the variance of the

observation. So, if you look at this relation, you can see a is a constant P k depend P k

plus 1 depends on P k h is a again a constant alpha is the ratio. 

So, if dip this expression on the right hand side, depends only on a h and alpha. This type

of recurrence relation in mathematics in the theory of difference equation has come to be

called riccati equation. It is a first order equation, why this is the first order equation k

plus  1 depends on k.  Its  scalar, because  we are  concerned with only with a  radiant

variances is non-linear;  obviously, because the right hand side depends on P k in the

both, in the numerator, as well as the denominator. Therefore, it is the first order non-

linear scale of occurrence.

The particular structure has been around for a long time, it is due to riccati an Italian

mathematician. There is a Riccati equation both in ordinary differential equation as well

in difference equation. Here we are concerned with the difference equation, and analog

of the Riccati equation. This equation is not easy to solve, because its non-linear.
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So, now I am going to talk the asymptotic properties of the forecast covariance. So, let us

see how you got here, once more I substituted the quantities, because forecast depends

on analysis, analysis depends on forecast, I mutually substituted them and made forecast

depend on forecast, analysis depend on analysis. 

Likewise we did for the covariances as well.  Once we did the covariances I am now

trying to single out the forecast covariance. I normalized the forecast covariance by the

observational  covariance  r,  and  rewrote  the  equation  that  resulted  in  a  normalized

forecast covariance dynamics, which is difference equation. It is the first order scalar

non-linear difference equation.

Now, I am going to look at the asymptotic properties of this first order non-linear scalar

equation,  why, what is the aim. The aim is the following. I would like to be able to

understand  the  regimes,  excuse  me  namely  does  the  under  what  condition  does  the

covariance grow, under what condition the covariance the forecast covariance died out,

that relates to an analysis of stability of the forecast covariance. 

Now  once  you  analyze  the  stability  of  the  forecast  covariance,  the  corresponding

properties of the analysis covariance follow immediately, because forecast covariance

depends on analysis of covariance analysis, covariance depends on forecast covariance.

So, behavior of one, asymptotic behavior of one will imply the asymptotic behavior of

the other.



So, to that the end, I am now going to assume h is 1 without loss of generality, what is h,

h is just a parameter that relates to converting the state into the observation. So, please

remember z k is equal to h of x k plus v k. In this case I am assuming h is equal to 1, I

am assuming h is equal to 1. So, in that case my equation now becomes simpler, like this

a square P k over divided by P k plus 1 plus alpha. I would like to be able to understand

the behavior, the long term behavior of this equation, this important the equation star

here.

In order to understand the long-term be here of this what do I do. I am trying to look at

that increment P k plus 1 minus P k; that means how much P k plus 1 differs from P k at

the gate stop. If I substituted P k plus 1 in terms of P k and did the algebra. I get this

relation, I get this relation, which can be now written as a ratio of a polynomial divided

by P k plus 1; the polynomial P bin P k is given by the expression on the numerator,

which we can readily identify. Yes, if you are trying to read through, there is a ton of

algebra, and I think the only way to be able to do it, is to be able to hit all the major

developments,  and that  is  what  I  am trying  to  do  leaving  behind  the  details  of  the

derivation of algebra to the reader.
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So, when does this recurrence relation on P k converges converges; that means, P k plus

1 is equal to P k is the condition for convergence P k plus 1,1 is equal to P k is the



condition for convergence at which time lambda delta k is 0, at which time delta k is 0,

delta k is the equilibrium if delta k is 0. Then g of P k must be 0. 

So, now, you can see how we have ah, changed the variable from P k to delta k express

delta k as a ratio of two polynomials in the normalized forecast covariance P k. We have

already now identified delta k being 0 is an equilibrium point, at which case P k plus 1 is

equal to P k; that means, P k does not change, it is come to a stable value, because delta k

is the ratio of two polynomials in P k the numerator polynomial must be 0 for delta k to

0, and that is where we are.

So, this calls for analyzing the behavior of the solution of the numerator polynomial. The

numerator polynomial is equated to 0, it is rewritten, it can be rewritten by changing the

variables. So, I am going to concoct a new variable beta, beta is equal to a square plus

alpha minus 1. Please understand a is the model parameter alpha is the ratio of the two

variances model noise to observation noise. 

So,  I  can concoct  a new symbol  beta  to  this  term.  So,  if  I  did that,  my polynomial

becomes this. This is second order polynomial in P k. I can now apply the standard rule

for finding the roots of the second order polynomial, there are two roots P superstar, and

P sub star. These expressions are now dependent on only beta, and alpha please recall

beta depends on a and alpha.

So, I have a numerator polynomial g of alpha, which is a quadratic I have solved it. So, I

now know the value of the equilibrium at which point, the forecast covariance will settle

down. There are two equilibrium P superstar and P sub star. Now we would like to be

able  to  understand  the  behavior  of  the  solution  around  these  two  equilibria,  to  see

whether the slope of it is increasing or decreasing; such as it is like this or if you like

this, this corresponds to,, this corresponds to unstable, this corresponds to the stable.

Why this corresponds to stable if I am here, this is this is P k P k plus 1 is smaller, if I am

here this is P k. So, from here it pushes here from here, it pushes here; however, if I am

here the. In this case if I am here, it grows bigger, if I am here it grows bigger. So, it goes

away, and it goes away. 

Therefore, this is unstable; that is stable, stable means if I am to the left of it, it pushes to

the right, if I am to the right of it, it pushes to the left; that means, the stable equilibrium



is an attractor in the neighborhood and unstable equilibrium is the repeller. If I am to the

right, I move to the right. If I am to the left, I move to the left. So, this is the repel here

attractor attractor. 

So, to be able to see something is a repeller on attractor, we have to get the slope of g of

alpha. I am sorry g of P k in the, at the point where the equilibrium occurs, where the

equilibrium occurs. Therefore, the general expression for the gradient of g g prime of P k

is minus 2 k minus 2 P k plus beta.

Now, we are going to evaluate by setting P k is equal to P superstar. Superstar is of the

star of the superscript in this case the derivative is negative. So, please understand here

the derivative  is  negative,  here the derivative  is  positive.  So,  the derivative  negative

corresponds to an attractor, the derivative positive corresponds to repeller. So, you can

readily identify, this is P star, this is P sub star.

(Refer Slide Time: 25:53)

So, P sub star is unstable P star is stable. So, we need to consider only. Again I want to

reemphasize  one,  is  an  attract  one  is  attractor,  another  is  a  repeller  stable  unstable.

Therefore, in the limit P k will go into the attractor, when P k goes into the attractor at the

attractor P star is equal to a star a, a square P star divided by 1 plus P star plus alpha. So,

you can readily see this  must  be the expression for the forecast  curve,  a normalized

forecast covariance at the point at the equilibrium. 



At the equilibrium you can solve this equation for P star, and you can get the exact value.

I would like to now give strongly recommend that you plot g of P k versus P k. You

know g of P k is a very simple expression, and also would like you to plot delta k versus

P k, and verify all the claims that we have done. Thus for I think these are very important

exercises to understand thoroughly, the long term behavior of the forecast covariance,

when the model is scalar with the model is scalar.

Now, you can see I have the P star, and P superstar, and P sub start depend on beta, beta

and alpha, beta depends on a. So, you can find the regions in the parameter space that

gives rise to stable behaviors that gives rise to unstable behavior. I hope that is very clear.

So, what does this tell you? Again I want to reemphasize this, this to essentially tells you

that no matter, where you start P k plus 1 will come and settle, at this point depending on

the values, depending on the values of a alpha and so on.

So, using MATLAB I would like you to be able to verify all these conclusions, and that

is an important part, that is an important part of the analysis, that is the important part of

a, understanding of the Kalman filter dynamics.

(Refer Slide Time: 28:26)

Once I know it converges, I think it makes sense to ask ourself the question, how fast

does it converge, that relates to the rate of convergence. This is not the first time we are

talking about rate of convergence; we are talked about rate of convergence, when we



talked  about  gradient  methods,  and  especially  when  iterating  methods  like  gradient

method.

So, in any iterative algorithm, there are two questions; one should ask, does it converge if

it does, at what rate. So, we are going to quickly indulge in this, in the calculation for the

rate of convergence let y k vehicle to P k minus P star. So, what is P k minus P star P k is

the current value of the normalized forecast, covariance P star is the asymptotic value at

the stable equilibrium. So, I would like to be able to measure the difference between,

where I am and where I will hit sooner or later.

So, I also know the equation for P k plus 1. So, we would like to be able to compute the

rate at which, we would like to be able to compute the rate at which we converge. So, y k

plus 1 is equal to P k plus 1 minus P star. So, I am going to substitute P k plus 1 P star

simplify use the relation y k, this is, this must be P k. sorry P sub k P k minus P star is y

k, this is also P k. Sorry this is also P k P sub k P sub k. So, if you, this is also P sub ks.

So, if you can now see we have already got an expression for y k plus 1, relating to y k,

and what is y k. y k is essentially the difference between P k and P star

So, if I consider 1 over y k plus 1; that is given by this expression. So, this expression is

essentially coming from here, which I can rewrite like this. Again this is y k. Sorry y sub

ks. Now I can rewrite this expression as a sum of these two terms. Again a little algebra

will give you. So, 1 over y k plus 1 is equal to 1 over y k times a constant plus another

constant. So, I am getting a recurrence for 1 over y k plus 1. 

So, please go through the algebra. Now y k is the distance between P k and P star I am

trying to express y k plus 1, which is the distance between P k plus 1, and P star in terms

of y y k. So, I am trying to get a recurrence in y k, instead of trying to get a recurrence. I

can equivalently get a recurrence in run over you y k. Why we would like to be able to

consider a quantity, which is easy to analyze that is all what is the matter here is.
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Now, I am going to change the variable once more. You can see how many different

ways in which, you can look at it. So, 1 over y k is z k that essentially tells you the

previous equation at the bottom of slide 30. Now becomes a linear equation, the linear

equation is given by z k plus 1 is equal to c times z k plus b, where c is a constant and b

is a constant that is the case.

So, let us go over this quickly once more, I have a riccati equation, I am going to change

the variable for the riccati equation. I have a riccati equation for P k. Now I have a riccati

equation, I have a corresponding non-linear equation for y k plus 1, while I have defined

y k, I am trying to rewrite it as a recurrence in whatever y k, it  turns out the riccati

equation, after making this transformation. 

These two transformation namely y k is equal to P k plus 1 minus P star 1 over y k is

equal  to  z  k  the riccati  equation  becomes  linear. Linear  equation  can be  very easily

solved; I can iterate the linear equation. So, this is the solution from the linear equation,

which can be written like this. So, z k is given by this expression that is an important

expression. So, 1 over z k is y k y k is equal to 1 over z k defined by this. So, let us not

worry about this part.

In this equation b divided by c minus 1 is a constant even. So, when c is greater than 0,

and c is. I am sorry when c is greater than 1. I am sorry then c is greater than 1 c k to the

power c to the power k goes to infinity. Therefore, y k will tend to 0, y k tend to 0. So,



you can readily see that,  this expression is  equal to c to the power minus k times a

constant.

Therefore when c is greater than 1, this y k tends to 0 at exponential rate. I think that is

the importance of this. So, c is equal to 1 plus P star by a whole square, and that must be

greater than 1. So, under the condition that c is greater than 1, which in turn relates to 1

plus P star, divided by 2 square, you are greater than 1. We can really see y k converges

at an exponential rate.

So,  this  is  an  exponential  convergence;  that  is  an  important;  that  is  an  important

conclusion.  So,  what  is  that?  We have  accomplished  the  following  by  converting  a

sequence  by  converting  the  ricatti  equation  to  a  sequence,  through  a  sequence  of  a

transformation. We converted it a non-linear equation to a linear equation, which we then

solved and found conditions, under which this linear equation solution to which go to

infinity, which in turn means z k goes to infinity. 

Z k goes to infinity, when c is greater than 1, when z k goes to infinity, when c greater

and 1, y k tends to 0. Now please realize why the definition y k the definite y k is P k

minus  P  star  y  k  refers  to  the  distance  between  the  current  value  of  the  forecast

covariance with the asymptotic value. So, that distance goes to 0 at an exponential rate,

and  this  gives  you values  of  the  parameters  under  which  the  Kalman filter  forecast

covariance, not only converges, but also converge at a exponential rate. Excuse me, the

rate of convergence continues.
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Once we have, again we have assumed h is equal to 1. Once we have the convergence of

P k, we can now conclude the convergence of P k hat, which is the analysis covariance

the expression for P k hat divided by r, is given by this equation. If you took the limit of

this P k hat tends to the limit, because P k f tends to a particular limit, and this is the limit

of the analysis covariance. So, analysis of covariance converges with forecast covariance

they work in locked step .
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Now, I am going to go back to the analysis of what is called stability of the filter stability

of the filter h is 1, this is the forecast covariance. Sorry this is the forecast covariance. I

am sorry I must say forecast covariance that is wrong. This is the forecast error. The

forecast error can be simplified to be this. The forecast error recurrence has two parts, the

homogeneous part and the forcing part. 

The homogeneous part is given at the following the forcing part, consists of two error

terms a K k k v k plus w k plus 1. So, this is the stochastic part, this is the deterministic

part. The deterministic part is also the homogeneous part, because this is the first thing.

Please recall K k the Kalman gain is given by this. So, from here I am going to get 1

minus K k as this.

(Refer Slide Time: 37:35)

So, the Kalman gain K k is given by this formula which is P k divided P k plus 1. From

that you can h readily infer 1 minus K k is equal to 1 over P k plus 1 substituting these,

and simplifying it can be verified that the e bar f of k plus 1 is given by this recurrence,

substituting in the value of P star. It can be verified that e bar f k plus 1 is equal to 1 over

square root of c times e bar f k.

Since c is greater than 1, 1 over square root of c is less than 1; that means, in going from

time k to time k plus 1, the error reduces. Therefore, if you compute the error e k bar f

with respect to the state at time N e k bar f is given by 1 over square root of c to the

power k minus N times e bar f by N. 



So, N is, can be thought of as a starting time, since 1 over square root of N 1 over square

root of c, is less than 1 as k goes to infinity. The term 1 over square root of c to the power

k minus N tends to 0. Therefore, the overall error goes to 0. This in turn means the filter

is  stable.  So,  we  have  analyzed  all  the  properties  of  the  Kalman  filter,  and  have

illustrated the derivation, as well as the nuances with respect to several properties of the

Kalman filter equation, using a simple static linear dynamics.

Thank you. 


