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Now that they have given an expression for the Kalman gain, we have expression for the

forecast analysis, forecast covariance, analysis covariance. I am going to spend little time

and understanding the structure of the Kalman filter in special cases, an interpretation if

you wish of the Kalman gain.

(Refer Slide Time: 00:38)

So, let us try to consider a special case when n is equal to m in principle and practice m

is not equal to n, but any anyway this is a mathematics sometimes if I can do some

mathematical analysis under special cases that may throw some new insight into what I

already have done. So, let us say what kind of insight I can gain by specializing some of

the ah quantities in the expression for Kalman gain, let us assume m is equal to n, let us

also assume H k is equal to I. 

What does it mean? my Z k is equal to X k plus V k, because I am measuring the state

itself that is very simple case. Let us also assume my forecast covariance is diagonal in

general it may not be, but a I am trying to interpret things I am trying to specialize so I



can special as many things. So, I am assuming R k is also diagonal look at this, there are

lots of assumption going to that. 

Why these assumptions? Why not, let us have fun if nothing let us have fun, to see what

comes out of this and that is the curiosity. So, I am going to assume P k is diagonal R k is

diagonal H k is I,  m is equal n. In that case Kalman gain is a square matrix,  this is

Kalman gain I substitute all these things in here I get this expression, please remember P

k is diagonal R k is diagonal therefore, P k f inverse a P k f times P k f plus R k inverse

have an explicit expression in here therefore, if I substitute the KAL this form of Kalman

gain into the analysis equation it becomes this. So, this is what I am after, now please

understand k is given by this matrix so I know a special structure of k that is coming out

of this that is coming out of this. 

So, X k is a vector that vector is equal to this matrix times X k f plus K k z, but K k is a

diagonal matrix right so this essentially tells you K k is diagonal, if K k is diagonal I

minus K k is diagonal therefore, X k hat is equal to a diagonal matrix times the forecast

plus diagonal matrix times the observation. If I consider the i-th element of X k that is X

k I k; that means, i-th element of this vector the i-th element of this vector now has an

explicit expression, this is not R this is P i i sorry there should be same as that ah oh I am

sorry I am time that that is all I know I think I was a little R I correct, this is R i i is the is

the diagonal element to the R matrix, P i i f is the diagonal element of the forecast matrix

these are some of the two. 

Now you can see the sum of these two, so you can see this is the weight. So what is that?

Analysis is the weighted sum of the forecast in the observation that is very simple. What

are  the  weights?  If  you call  this  alpha  this  is  one minus  alpha,  so that  is  a  convex

combination.  So,  you  can  readily  see  in  this  special  case  I  have  forecast  I  have

observation, so the analysis is simply a point in the line joining the two points analysis

forecast and the observation; that means, analysis lies on the line segment joining the

forecast point on the observation point. 

M is equal to n observation space is equal to the model space, so these two points are

lying  in  the  same  space.  So,  what  does  this  tell  you?  The  Kalman  filter  equation

essentially tells you in this special case analysis is the linear is a convex combination our

forecast and the observation. We have already seen this result earlier in a simple case



therefore, Kalman filter equation is very con is very much consistent with everything we

already know, it is the check of this internal consistency is the result of the analysis of

the special case, not only that I would like to talk about that activity. 

Suppose R i i is much larger than P i i f what does it mean? The observation is less

accurate  than  the  forecast,  the  variance  worse  means  is  less  accurate  or  you  may

therefore, so if R i i is larger than forecast is more reliable than the observation therefore,

R I is larger than P k I the denominators are same. So, this equation gives more weight to

the forecast.

That means, analysis always favors the one that is more accurate, on the other hand if R i

i is less than P i i; that means, observation is more accurate than the forecast, in which

case Kalman filter gives more weight to the observation. So, what does it mean? I am it

is like in a committee of 6 7 people every committee member have the same vote, we do

not distinguish one vote is more valuable than the other if it did it that is not democracy

in democracy all votes are equal, in a committee all votes are equal. 

So, you can think of the analysis as a committee decision committee of what committee

of two. Who are the members of the committee? Forecast and the observation, but do

they have the same vote? No. Under what condition they will have the same vote? When

R i i is equal to P i i p I, when P i i f is equal to R i i alpha is equal to 1 minus alpha, if

alpha is equal to 1 minus alpha, alpha is half 1 minus alpha is half both of them have the

same weight, the analysis is simply the average of the forecast and the observation, but

seldom is the case where; P i i f and R i i are the same, R i i comes from the instruments

p i i comes from the model, seldom the case p i i f and R i i can be the same. 

So either R i i is more or R i i is less and that essentially tells you this Kalman scheme is

very intelligent it is very adaptive it gives more weight to information with less variance,

it gives more weight to the information which is more accurate that is the beauty that is

the speciality. And we have already talked about this when we derived linear minimum

variance  estimate,  we have  already  talked  about  this  in  the  context  of  the  Bayesian

estimation,  Bayesian  structure  linear  minimum  variance  structure  they  all  have  this

property.

So, what is that other important thing? Forecast has some variance, observation has some

variance, analysis has some variance when you combine these two random terms I am



getting a new term which is random the variance of the combination analysis is less than

the variance of the individual component; that means, I am having two bad decisions I

am able to create a better decision from two bad decision, if you want to call bad in terms

of variance in terms of the fact that variance is not 0. So, that is the beauty of data

assimilation,  data  assimilation  tries  to  improve  tries  to  provide  a  linear  combination

whose variance is less than what goes on. 

And that should not be new to any one of us who have done anything in probability

theory for example; in probability theory we have this follow that mean I am sorry let me

cut this result, we have already seen that earlier if X i is a random variable, if X i is i i d

random variable, if X i have 0 mean and variance sigma square. If I compute X bar as

summation X i i is equal to 1 by n, i is equal to 1 to n, X bar is also random but the

variance  of rank this  is  sigma square over  n.  So,  individually  they all  have a  larger

variance,  but  I  combined  them  linearly  as  a  linear  combination  with  equal  weights

average is a linear combination are you may so the variance of the average is sigma

square over n when n goes to infinity the variance goes to 0. 

So, what is that we are trying to do? We are trying to develop a quantity for random

which is unreliable, a quantity which is more reliable than what goes in. And that is the

general context of central mid theorem. What the central mid theorem says? That if you

have a sequence of i i d random variables if you compute the average of that the average

has a variant that goes to 0 as time goes to infinity and I can also normalize this average

the normalized average. So what is the normalized average? If I sup if you divide by the

variance  it  tends  to  have  a  normal  distribution,  a  that  is  what  is  called  central  mid

theorem. So, the idea what we are seeing is that is very similar  to what central  mid

theorem  says  except  that  central  mid  theorem  is  an  asymptotic  theory  we  see  an

embodiment of the principle. 

What is the principle? I can travel if I can if I if you give me two random quantities i can

combine them in a clever way the combined quantity is random, but it is variance is less

than the variance of the two quantities that went in, that is the basic principle of data

assimilation and that is borne by this analysis.
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I also want to make another ah comment P k; P k hat, to be able to do P k hat I do not

need the observation I can pre compute them, their independent observation. I hope you

recognize let us go back to the expression I think that can be talked about only when I

look at the expression

(Refer Slide Time: 11:50)

Look at the P k hat in 1 in here sorry look at the P k hat in 1 in here, the expressions were

P k hat involves forecast i already know the forecast needs only the model look at the

other  term,  they  all  need  only  the  forward  operator  they  do  not  really  need  the



observation itself.  So, what is  it  what does it  mean? The expression for the analysis

covariance while it depends on the observational covariance forward operator it does not

depend on the actual values of the observation. So, if you set up a problem if you know

the  forward operator  even before  you take the  first  observation  you may be able  to

analyze the structure of some of these covariance’s offline out of time that is idea. Now I

am going to talk about the case when there is no observation. 

What do you mean there is no observation? I am simply have the model I am going to

run the model for work what happens let us have fun. So, in this case X k f is equal to X

k analysis is equal to forecast because analysis differs from the forecast only when there

is observation,  when there is no observation analysis forecast is analysis in that case

analysis covariance is forecast covariance for all k I hope that becomes very clear. The

forecast itself is generated from the previous forecast, so the forecast at time k is M k

minus 1 times X k minus 1 f because there is nothing else, that essentially tells you X k f

is equal to the product of all the matrices times the initial forecast, but the initial forecast

initial analysis therefore; X 0 f is equal to X 0 hat. And what is X 0 hat? It is the mean of

the initial distribution. 

Now let us consider the forecast covariance, forecast covariance look at this there is a

recurrence k depends on k minus 1, so if you open this up there is a product there is a

product of model matrices times P naught, the transpose of that product plus the product

of model and Q j this where M i j is given by this, all of with my place when. So, when

there is no observation this is what is the forecast covariance,  now when there is no

modern noise I can set Q j is equal to 0 no observation no model noise. 

So this is the variance of this is the variance of the forecast when there is no when there

is no observation then there is no modernized please understand the forecast covariance

at time k only depends on the initial covariance and the product of the model along the

line along the trajectory. So, I want you to be able to look at all the special cases then

there  is  no  observation,  when  there  is  no  model  noise,  what  happens  to  these

expressions? This is simply a sidekick arrangement of analysis which is which is helpful

to recognize the role of each of this. 



When m is not equal to n, when H k is not equal to I then there is no observation, when

there  is  no  model  noise,  these  are  all  these  are  all  these  all  provide  different  ah

interpretation of the derivation.

(Refer Slide Time: 15:19)

Now let us consider when there is no dynamics static case when there is no dynamics

mean that study case; that means, M k is I, W k is 0, Q k is 0 there is no model noise

there is no model noise covariance there is no M k M k is I in which case X k plus 1 is

correct X k is equal to I then which K z K a is equal to H k X plus P k there is a static

case, because there is no dynamics that is only 1 time k. So, in which case the forecast is

equal to analysis, this is the initial  covariance the forecast and the present forecast is

equal to the previous analysis. 

These are the Kalman gain in this particular case if you do that they essentially take this

following form these are exactly the same as in the static case. I am going to leave the

verification of these exercises, why is that? I am going by doing this exercise we are now

going we are going to establish I have already done static deterministic data assimilation,

I have already done static stochastic data assimilation we have direct formulas for the

optimal estimate their covariance and everything else. Now I want to understand are they

and the Kalman filters are related? Yeah if you if you take the dynamics off if you take

the model noise off it becomes a static case the Kalman filter equation reduces to your



form  there  is  already  discovered  within  the  context  of  static  analysis  and  all  these

exercises are meant to show the beauty the nesting.

What is the nesting? when you when do you say some two results are nested? when you

special when you specialize one you get the other, linear and non-linear result are nested

in the same when you assume non-linear is especially kept linear you get old results

back. So, in mathematics getting a set of nested result is beautiful in itself. 

Why? yes a set of nested result is beautiful in itself that gives you a room for consistency

check if nothing we can check the consistency, if nothing we can understand the static

theory and dynamic theory are one is called extension the other another is called the

specialization of the other the as animals they are not too different from each other it is

that  realization  of  nesting  that  enables  you  to  see  that  this  theory  is  not  a  ah  an

amorphous collection of ideas it is a monolithic structure.

It is essentially understanding appreciating this monolithic structure, monolithic nature of

the ideas that the underlying concept of least squares brings to the forefront, it is the least

square that ties everything; static, dynamic, special cases, generalization and that is the

beauty of the whole discipline of dynamic data simulation and static case as a special

case. 

(Refer Slide Time: 18:28)



Now another last one you can see there are lots of important special cases to consider;

when the observations are perfect R k is 0, in this case the analysis covariance take this

far take this farm ah the P k takes this particular form. 

So,  when the observations  are  perfect  you can readily  see you are going to  have to

require to compute the inverse of H k, P k f plus H k, please understand this is the

quantity that decides the Kalman gain, so this must be K k sorry this must be K k. So, go

back this is the Kalman gain expression R k is 0, if R k is 0 I have to compute the inverse

of this H k is the m by n, P k is n by n, H k transpose is n by m therefore, this matrix is a

m by m matrix the whole question comes in how do you know this matrix is invertible?

So, that could be trouble. So when you have a stochastic dynamic model when there is a

perfect observation Kalman filter computationally could be could face difficulty because

this matrix may not be non singular. 

Why? Let us look at this now let us suppose m is greater than n. Let us suppose H is a

full rank matrix. So, the rank of H is n the rank of P k f is n, but this matrix is m by m, m

is larger than n. So, your matrix is made out of matrices of smaller rank, a larger matrix

built out of matrices of smaller rank and that is a kick. So, even though; the expressions

are simple H k, P k f, H k transpose is a m by m matrix, m is larger than n, H k even

reproduce the full rank this matrix need not be a full rank if this matrix is near need not

be a full rank I cannot get the inverse. So, in this case what is one way computationally

to deal with I simply take the generalized inverse which you have seen, so generalized

inverse.

So, that could be that could be numerical difficulty, computing the generalized inverse is

not easy therefore, what is the story? We would tend to think that in the observations are

perfect  mean there is  no observation there is  no error means that  will  help you. So,

within the context of Kalman filter equation perfect observations are a nuisance perfect

observations of nuisance in this particular case ah.
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Therefore, the rank of P k so that is exactly what I what I have talked about sorry, so

from here you can see the rank of P k is less than or equal to n minus 1 that that matrix

may not may not be may not be s p d and if that matrix is not a s p d there could be a

computational difficulty therefore, what is the story? When R k is small this could cause

computational instability. That is again comes from the analysis of the special case.

(Refer Slide Time: 22:04)

The last one is called residual checking how do you check the correctness of? Suppose

you  have  written  a  filter,  you  think  your  program  is  right  how  do  you  check  the



correctness  of  that?  That  is  what  is  called  residual  checking.  What  is  the  residual?

Residual is z k minus H of X k f innovation, x k hat is given by this; the Kalman filter

equation is the forecast plus Kalman gain times the innovation therefore, r k is equal to z

k minus H k X f I am going to substitute for z k from here I have the forecast I can be re

written  like  this  it  can  be  re  written  like  this  therefore,  residual  has  this  equivalent

expression. The covariance of the residual is given by this you can readily see that. 

So what is that one could do? So, if you are trying to implement if you are trying to

implement  the  Kalman  filter  at  every  stage  you can  extract  from your  program the

residual. So, you will have a time series this residual, if you have this time series that

there is a residual from the time series you can compute the covariance of the time series.

So, the computed value of the time series from the residual must match this. So, you

know H k you know the forecast covariance, so you can theoretically compute this you

can practically  compute this  if these two agree;  that means,  implementation is  pretty

good that is the way to check for the residuals.

(Refer Slide Time: 23:37)

So, now I have talked about computational cost; The forecast step let us look at very

quickly, the forecast step matrix vector multiply because to multiply matrices you have

to multiply and add. Let us talk about this  now, if  I  am going to compute the inner

product of two vectors; so a b c, x y z if I want to compute the inner product of these two

a x plus b y plus c z I need to multiply also I need to add, so I have 2 3 vectors I have to



multiply three multiplication two additions. So, if you have to do the inner product of 2 n

vectors I have to do n minus 1 multiply n and in my I am sorry n multiplied and n minus

an addition or it may therefore, there are basic operations a basic number of operations.

So, matrix vector multiply 2 n square to compute this quantity is going to take 4 n cube

plus n square, to compute this quantity is going to take this much time, to compute the

inverse is going to take me that much time, to compute the Kalman gain is going to take

this  much  time,  so  the  total  cost  of  computing  the  Kalman  gain  is  given  by  this

expression. 

So, this is the price they are to pay, that tells you the amount of addition, multiplication,

subtraction,  division you have to perform your computer must be able to perform all

these in a short time; that means, I may need more powerful computers, so this talks

about the workload. And who should be interested in this? If anyone who is going to be

able to write a program to develop a system they have to worry about these things.

(Refer Slide Time: 25:20)

Again that thing continues this is the analysis covariance I am sorry, this is the analysis

covariance analysis covariance computation takes this much, the total cost of computing

the analysis  covariance  these are  the  various steps  of this  that  is  n cube,  this  is  the

residual computation that takes this much time, this is the multiplying the residual by the

Kalman gain takes this much time, then I have to add the forecast with that is n time so



the total cost for the analysis computation is this much. So, in the previous we talked

about the total cost of computing the Kalman gain. 

Now, we are computed  talking  about  the  total  cost  of  computing  the analysis.  So,  I

believe we all have a good handle on what things are happening; yes it is a very dense set

of lectures, these lectures use many of the results from the previous analysis this way a

representation is a modular way that way I can present many results ahead of time we

become familiar with individual components of these results. Now we are trying to ah

assemble all the results within the context of Kalman filters, so with this we have in

essence completed the analysis of linear Kalman filter equation this is a classic problem

is  the  sequential  data  assimilation  scheme  even  though  Kalman  did  not  call  it  data

assimilation that is exactly what he was doing.

And  I  want  folks  in  geophysical  sciences  to  realize  that  Kalman  coming  from  an

engineering discipline actually solve the data assimilation problem for the first one to

solve it, but the first one to solve it that is the importance of this. Now where do we go

from here? I am going to illustrate these things by some examples and I am also planning

to give a table with a complete algorithm and that is what we will do as the first order of

business in the next lecture.

Thank you.


