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In this module 8 we are going to be talking about prediction in the context of stochastic

models and observations character by noise everything is stochastic. Again here we are

having a stochastic model which could be linear non-linear, we have a noisy observation

which could be a linear function of the state or non-linear function of the state, again 1

can consider 4 different possibilities model being linear non-linear, the observation being a

linear function of the state or non-linear function of the state. 

I am going to start with the simplest possible case where the dynamic model is discrete

time linear model, the observations are linear functions of time, the noise the model is not

perfect. The imperfections in the model are compensated by some random input, we will

talk  about  the  properties  of  the  randomized  the  input  to  if  the  there  is  meant  to

compensate  for  the  deficiencies  in the  model.  The  whole  aspect  of  data  assimilation

assimilating noisy observation into stochastic dynamic models is what we are after the

data  assimilation  algorithm ultimately  when  we  derive  it  is  called  the  Kalman  filter

equation.



(Refer Slide Time: 01:50)

So, the name filter in Kalman filter has a very special connotation, we will talk about what

is filtering what is a prediction and so on a bit later, but we will start with some of the

basic  descriptions  of  the  model  of  the  observation.  The  Kalman filter  also  refers  to

sequential state estimation you may recall from our discussions with static deterministic

estimation case, we can have an offline or an online estimation techniques. 

Online estimation techniques are called are also called sequential state estimation; in the

sequential state estimation things keep moving forward in the 4 D var on the other hand

the  adjoin  takes  you  back  4  D  var  methods  are  in  general  offline  te  or  all  offline

techniques. So, this is an alternate to 2 4 D var where there is no going back everything

keeps going forward the estimation the inverse problem everything is solved sequentially

much like we had a recursive, linear least squares in the context of static deterministic

problems.

So, the model is a discrete time stochastic or random model, this is the general description

of the non-linear discrete time model we have already seen, M is the model map, M is

from Rn to Rn, x case the state. This is the example of a non-linear map this is ab ob or

this is an example of a linear system the addition of noise is new here, Wk plus 1 Wk plus

1. So, let us talk about the timing diagram and this is little bit a little bit of a notation, this

is time k this is time k plus 1 at time k a I have known Xk I would like to know the state



at time k plus 1, the model map maps Xk plus 1 to M. So, M is called 1 step transition

map if it is a non-linear function, it is called 1 step state transition matrix. If it is a matrix,

this is the matrix in the linear case, this is a map in the non-linear case we use the same

symbol m, the juncture will tell whether it is the matrix or a map. The Wk plus 1 is the

noise, Wk plus 1 is the noise that occurs after time k before time k plus 1; that means, I

know Xk I would like to be able to compute Xk plus 1 if there is no noise Xk plus 1

would have been M of M times Xk or M of Xk depending on the models we linear non-

linear.

So, Xk plus 1 is a sum of what a deterministic model would have given you plus a noise

that comes after time k. So, to emphasize the importance of the noise coming after time k

I am going to denote it as Wk plus 1. So, Wk plus 1 is the noise that affects the evolution

of the system, given Xk the noise occurs after time k before time k plus 1. So, Xk plus 1

the value of the state at time k plus 1 is the sum of the deterministic part plus the random

part, that is the interpretation for making it Wk plus 1, in some textbooks you will see Wk

plus 1 is called W k, really does not matter we thought in order to make it very clear that

it is the noise affecting the system after the state k is known it provides a less room for

confusion.

So, Wk what is that, it is represents a compensation for the model error. Come it is also a

random process. One of the simplest is the random processes one can think of is white

noise, what is white noise? W 1, w 2, w 3 this is the sequence of noise that affects the

system. We say w is the white noise if there is no temporal correlation what is it mean?

Expected value of w i w j transpose is equal to 0. In other words if i and j are 2 distinct

moments in time, if I am considered the noise wi and wj they are temporally uncorrelated

for all i not equal to j. So, that is what is called white. So, is an un is a 6 is a sequence of

uncorrelated noise that affects the evolution of the system you may.

So, Xk is the true state I do not know that. So, I am trying to oh add a noise to make up

for the deficiency and M could be a matrix or M could be a map now you got all the

things associated with the model. With respect to the observation again nothing changes

essentially, the same this is the non-linear function of the observation the linear function of

the observation I am trying to do both of them simultaneously because we have gained a

lot of expertise in trying to handle linear non-linear observation models and other things.



H is a map, h is a matrix covariance of Vk 0 covariance of Vk s Rk, I am sorry covariance

of Vk is Rk mean of Vk 0, and Vk is again I should have said this is Vk is Rm sorry Rm.

So, Wk is the model noise w k belongs to Rn, Vk is the observation or that belongs to

Rm, hope the description of the model and the observations are clear.

(Refer Slide Time: 08:15)

Now, I am going to talk about the technical definition of the word filtering, smoothing

and prediction. This definition is due to weiner, this definition is also due to Kolmogorov

these kinds of definitions have been introduced in the literature since early 1940s.

Wiener 1942, Kolmogorov 1942 as I mentioned when I was doing optimal interpolation

wiener and Kolmogorov independently were thinking of the same problem. Wiener was

working  in  frequency  domain  that  because  he  was  an  expert  in  Fourier  analysis,

Kolmogorov another hand was working in time domain. So, except for this difference in

the domain of interest for analysis, they essentially uncovered the same set of results. So,

let us give you a technical of what filtering is in Watson the word filtering is used in

Kalman filters. In general it colloquially filter means something that stops from certain

things going are going out for example, if I have a radio, the radio has as a tuner, the

tuner essentially filters out  all the signals that are that does not belong to a particular

spectrum.



So, we can call a low pass filter, a high pass filter, bandpass filter, we will talk about

coffee filters. So, we know what in Watson filter filtering in an ordinary sense is used; now

technically filtering has a slightly different connotation. So, let us talk about that now;

suppose I have observations from in the interval 1 to N. The observations are zi let us

assume the observations are coming in discrete instances in time 2 3 4 k all the way up to

N. Let zi I running from 1 to N be the collection of observation, let us call the collection

of  observation  as  f  of  capital  F  of  N,  N  is  a  subscript  N  denotes  the  number  of

observations that we have, N also denotes the last instant we have the observation. 

So, given a set of observations Z 1 to Z n, if I want to be able to make a prediction about

the system let me do one thing I do not want to put a k here, that is right fine. If I want to

be able to talk about the state of any estimate or the state of the system at time k, k

greater  than  N,  please  understand  this  is  the  time  interval  over  which  I  have  the

observation, I want to make an estimate of a state of system at a time k beyond N, that

problem is called the prediction problem as you are rightly know as you rightly know.

So, x bar k is the estimate of a state of a system at a time in future, how do I tell the time

in future k is greater than N. So, you can think of N as today now. If k greater than N

means it is the future. So, given all the information up to now trying to estimate the state

of a system at a time in future, that is the prediction problem, that is the definition of

prediction or forecasting. Knowing what I know today what will be the price of an IBM

stock tomorrow that  is the prediction. Knowing what I  know today what  will be the

temperature distribution in early spring in North America that is a prediction problem. So

on the other hand suppose I want I have known all the information from 1 to N I want to

go back, I want to be able to evaluate the state of a system Xk, for some k less than N;

that means, I have the benefit of information from 1 to N, and still trying to go back to

estimating a quantity at a time k, k less than N.

So, k less than N means past, k greater than N means future. Estimating a quantity the

past when k less than N that cause smoothing, because I have the benefit of the entire

observation 1 to N, I am interested in trying to find an estimate at a time k in between 1

and N.  I  can I  am allowed to  exploit  all the observations and that  problem is called

smoothing problem. So, prediction problem smoothing problem, if I  want to  make an

estimate at the time k is equal to N now. So, what is the idea here I have been given a



bunch of observation from 1 to N I would like to be able to get a state of the system at

time k k is equal to N that is called the filtering problem.

So, filtering problem is an estimation problem, where I use all the information up to the

time N and at that time I would like to be able to get the best estimate that is the filtering

problem. Smoothing problem is given a set of observation from 1 to N, I would like to be

able to estimate a state at the time in the past, prediction problem is trying to estimate a

state given the set of observations at a time in the future. So, what is given to you, what

you want  to  estimate,  what  is the  relation of  the  time index at  which you want  the

estimate to be? Depending on the relation of the amount of observation available and the

relative relation of the time index k with respect to N, N is the last time at which the last

observation is available; we have 3 problems smoothing, filtering, prediction.

So, filtering smoothing prediction are 3 classes of problems, there is a classic definition

widely accepted. This is due to the pioneering work of wiener and these classifications are

known since early 1940s.

(Refer Slide Time: 14:43)

So, what is the problem of Kalman filtering, that is what we are going to talk about we

are going to  assume everything is linear everything linear means what.  So,  let  us talk



about this now. I also want to take one more moment to talk about the problems that the

problems relate to  the models. So,  we talked about the model being stochastic, let us

consider the linear model Xk plus 1 is equal to M times Xk plus Wk plus 1 Wk plus 1 is a

white noise therefore, Mk Xk plus 1 is also random, this is a model every model needs to

have an initial condition x naught.  I  am going to  assume even the initial condition is

random the initial condition is picked from a realization from a prior you can think of

there is a prior distribution, with an nor which is normally distributed M naught as the

mean P naught as the covariance.

So, initial condition is random. So, if there is no noise, if there is no if the initial condition

random the solution is random. If there if the initial condition is deterministic and if there

is a noise affecting the model evolution, then the model solution is random. In here I am

considering thus 2 sources of randomness that affects the state of the system, one is the

randomness in the initial condition another is the randomness in the noise. So, the noise

that  affects  the  system,  that  noise  that  forces  the  system the  initial  condition  that  is

random, the observation are noisy.

So, if I did not have noise analysis of a dynamical system with the random initial condition

and random forcing, that is called analysis or stochastic dynamical system. So, I need to

be able to first understand analyzing the properties of stochastic dynamical systems, how I

can characterize the evolution of the state or what are the probabilistic properties, how

they characterize the probability properties of the state, that is the first task. 

The second task is suppose I give you on the top of it observations, how do I bring in the

observation in addition to the stochastic and model analysis, to be able to combine the

model and the observation to get the an analysis. So, the model solution is now going to

play the role of background, observations are going to still play the role that it has played

all along. So, the model forecast playing the role of a background provides the prior, the

observation is going to provide you the new information we are going to combine them.

So, you can think of Kalman filter again within the Bayesian framework. So, there are 3

sources  of  randomness;  initial  condition  is  random,  model  forcing  is  random,  the

observation noise is random we are going to assume that all the 3 noises are uncorrelated.

So, what is the basic idea? Given a set of observation fk from time 1 to  k, fine us to



estimate of x hat head of Xk look at this now. I have given k observations from 1 to k, I

am I want the best estimate x hat k you can see from the previous slide this is the filtering

problem.  So,  x hat  k  is  the  filtered  estimate,  what  is  the  characterization  of  filtered

estimate, that minimizes the mean square error again a least squares, the magic of least

squares comes again and again and again is inseparable.

So, what is the idea here? Xk is unknown; Xk hat is the estimate that is the error in the

estimate. So, Xk minus Xk hat transpose times Xk minus k hat, that is the covariance of

the error I am sorry I should not say the covariance of the error. This is inner product of

the 2 anomalies I  am sorry this is the sum of the variances of all components of the

forecast of the filtered estimate and that is essentially given by the trace of this matrix a

bracket  is  missing.  So,  this  quantity  is  inner  product  there  is  a  scalar  this  scalar  is

equivalent to trace of the covariance matrix please realize this is the covariance that is the

trace. So, that is equal to trace of I should say this I do not think this is correct I am sorry.

So, the that trace is enough. So, now, we have stated the problem, I want an estimate Xk

hat  of Xk such that  it  minimizes this mean square error, that  is the statement  of the

problem; because I have given all the information up to k, if I am because I am interested

in  estimating  the  state  Xk  this  is  also  called  filtered  estimate  or  the  estimator  that

estimates Xk hat is called the filter equation that is where the notion of filter comes in. 

If I also can show that this filtered estimate is unbiased, we have already seen minimum

square error is equal to minimizing the variance if the bias is 0. We have we have seen this

relation when we talked about the Bayesian setup therefore, it is very prudent to analyze

and arrange things such that the estimate not only minimizes the mean square error, it is

also unbiased. These 2 combined together will give you the minimum variance estimate.

Now please understand, we are not now talking about linear minimum variance estimate,

we the  we are  not  bringing linearity right  now we are  simply say I  want  to  have a

minimum variance estimate, linearity refers to the structure of the estimator.

So, that is the I want the best that is exactly the whole idea here. I also want to bring out

1  more  this  problem is  called  linear  quadratic  Gaussian  LQG,  is  that  is  the  lethal

combination. Linearity the model of the observation, quadratic mixture of the objective

function to  be minimized and the Gaussian nature of the noise involved. Kalman first



showed this LQG combination is the lethal combination lethal in what sense we can get

absolutely beautiful results is the 1 of the very few cases we have absolutely beautiful

results.

So, one can ask yourself a question well seldom in life is linear why are you backing on

linearity the problem is well non-linear problems are hard to solve anyway I cannot solve

them I  can  only approximate  them.  So,  we  mathematically is  interesting  to  ask  you

question which problems are solvable in closed form and what are the properties of the

solution at least I want to enjoy the moment. So, the moment of enjoyment occurs when

you deal with LQG problem. So, in the literature on control theory actually Kalman was

the  control  theorist,  Kalman  introduced  this  within  the  context  of  control  theoritic

arguments therefore, within the con within the context of control theory, LQG theory is

the very famous very popular very fundamental theory and this is an instantiation of the

beauties of LQG.

(Refer Slide Time: 22:40)

So, before I talk about. So, where are we? We described our model, the model has 2

sources of randomness initial condition and the first thing observation has another source

of randomness which is observation noise, given a bunch of observation, given a bunch of

given the evolution of the dynamical state, I would like to be able to estimate. So, given

the observation also given the model information, I  would like to  combine everything



whatever you can do, you do give me the best estimate in the sense of minimizing the

mean square error which in addition if I add the concept of unbiasness, also gives you the

minimum variance estimate that is the problem we set up to solve, and that problem when

everything is linear is called LQG. 

So, before we I would like to separate the thing in 2 phases; first is model analysis model

forecast  analysis  or  model  forecast  step.  Let  us  take  the  baby step  0  to  1,  once  I

understand what goes from 0 to 1 then I can go from k to k plus 1. So, let us consider the

transition from 0 to 1. Please recall my initial conditions are random I have assumed the

initial conditions  comes from a normal distribution with the  mean M naught  and the

covariance P naught. Now I would like to be able to separate several quantities of interest

to us, Xk is the pure is the true state, Xk f is the forecast is the forecast estimate of the

true state Xk hat is the analysis. So, this is the analysis this is the forecast. So, these are

the 2 quantities we will go back and forth Xk is the state of the system. So, Xk is the state

of the system this is forecast there is analysis.

So, initially at time 0, I do not have any observation, the only information I have about the

initial state is that it is normally distributed therefore, what is my initial analysis? My initial

analysis is the mean of the initial distribution. So, what is the initial analysis covariance?

Pk hat that is equal to P naught. Please understand analysis supposed to represent the best

information I have. So, initially the analysis contains only information to right from the

initial condition. If you give me a Gaussian random variable as an initial condition, what is

the best estimate of the random variable is the mean.

What is the best estimate of the covariance is the covariance underline distribution. So, I

am now going to postulate the initial analysis x naught hat is the M naught, initial analysis

covariance P hat naught is P naught that is exactly this statement as well as this statement.

Once I have initialized the analysis and its covariance, I want to be able to generate the

forecast.

So, I would like to be able to now use them. So, again there is no observation now only

model. Knowing what I know at time 0 if a feed this information to the model, if the

model  gives  me an  output  how  do  I  generate  the  forecast  from the  model  output?

Knowing that  the model output  is random, that  is the question this is what  is called



stochastic dynamical system analysis. So, given x naught the predict I want to be able to

compute the prediction of the state x 1. 

So, x 1 is the state of the system, x 1 is going to be a random. So, I would when I am

trying to talk about predicting a random phenomenon, I can only I need to think about

decomposing  the  random  process  into  1  of  2  things  there  is  a  deterministic  or  a

predictable part. There is an unpredictable part we can only control the predictable part un

control unpredictable part we have no control. For example, the noise, but very nature is

not predictable. Therefore, what is that I am going to define now again I want to bring

out one more fact.

From the when we did the mean square error estimate,  what is the theorem we have

proven. Within the Bayesian within the mean square error analysis, the best estimate is the

conditional mean we have already shown that. Therefore, I am going to want to create x 1

f please understand my notation, what is x 1 f ? X 1 f is the part of the forecast of the

state at time 1 that I have control over that is a predictable part,  and that is equal to

conditional expectation of x 1 given x naught hat. What is x naught hat? X naught hat is

the information about the initial state, who is going to create x 1 model is going to pull

the x naught hat into x 1. X 1 is the true state of the model; the true state of the model

according to the model equation is the M naught x naught plus w 1. Now I am going to

talk about one more little thing, you can write the model equation like this Xk plus 1 is

equal to M of Xk plus Wk plus 1 I can also write the equation to be M k of Xk plus Wk

plus 1.

 In star. So, this is double star these are all important things that is why I am trying to

spend a little time. Both are linear, but in here M does not vary in time here M varies in

time. If the algebra the mathematics of it is not much different between M varying in time

M un invariant in time. So, I am assuming and I am sticking it k to m. So, what is double

star mean? I  have a linear time varying model. If I can allows the linear time varying

model, that time invariant model you simply take the k out of m. 

So, without loss of generality I can assume the model is yes its time varying therefore, M

0. So, if I am using my model to be time varying model x 1 is equal to M naught x naught

plus w 1 that is the model equation, please go back to my model equation earlier. A that is



Xk plus 1 is equal to M of Xk plus Wk plus 1, for simplicity to get started I assumed M is

a constant now I am sticking M sub k. M sub k essentially refers to the fact that model

could also be varying in time, the algebra is no different if I can get a free ride why not I

would like to get the maximum benefit out of it.

So, if I use the model, this is what the model will tell you as your x 1 is. I am sorry this is

what the model will tell you r as your x 1 is, but x 1 is random what is the estimate of x 1

conditional x; what is the best estimate of their true state conditional expectation. So,

conditional expectation of x 1 given x naught hat that is equal to M naught of x naught

hat because look at this now conditional expectation of. So, conditional expectation of a

linear  operator,  conditional expectation of  a  sum of  the  conditional expectations,  the

second conditional expectation is expectation of w 1 with respect to x naught hat, that is

0, because w 1 is white it does not depend on anybody else.

So, M naught I will I already know at time 0 x naught hat I already know coming from

time 0. So, given x naught, the best forecast I can make at time 1 is M naught x naught

hat. So, now, this error is going to this prediction is going to be in error. So, x 1 is the

actual state, x 1 f is the predicted state the difference is called the error in prediction e 1 f,

superscript f always refers to forecast or predicted quantities hat always refers to analysis

quantities.

So, I am now going to get an expression for e 1 f that is equal to. So, x 1 is equal to M

naught x naught plus w 1, x 1 f is equal to M naught x naught hat. So, if I substitute and

simplify I get this, but by definition this is equal to e naught. So, now, I get a recurrence

relation for the evolution of the forecast error, now look at this is the beautiful expression.

The forecast error at time 1 is M naught times the analysis error at time 0 plus w 1. The

analysis error in the previous step is going to dictate the forecast error in the next step

that is how the analysis or the forecasts are related. Now I would like to come by. So,

analysis is filtering, analysis the given time forecast is the predictions.

So, we had talked about smoothing prediction and filtering. So, in this process I already

have filtering and prediction part  of 2. So,  you can think of in our hat is the filtered

estimate, even f is called the forecast estimate that is a predicted estimate errors and. So,

on I  hope this is clear this is where the rubber (Refer Time: 32:27) road we need to



combine several things in here.

(Refer Slide Time: 32:33)

So, what is P 1? P 1 is the analysis I am sorry the forecast covariance at time 1. So, let us

lets go back in here, this is 0, this is 1, I had x naught hat I had P naught hat is equal to P

naught, I have x 1, I have x 1 f, I have to have P 1 f. I already know this this is equal to M

0 of x naught hat, now I need to compute what this one is; if you if you understand this

step, the step of going from k to plus 1 will become trivial. So, Pk plus P I am sorry P 1 f

f is equal to e of P 1 f e 1 of f times e 1 of f transpose, e 1 of from the previous page is

this expression that is that expression. There are 2 terms in each if you multiply there are

going to be 4 terms we already know the error in the analysis the previous step on w 1.

So,  the  error  in the  analysis  e  naught  0  in this  step  and w 1  these  are  uncorrelated

therefore, of the 4 terms the 2 of the terms will die because of this uncorrelated nature as

well as w 1 is mean 0, I am left with only 2 quantities the 2 quantities are related by this.

So, for because we are doing this for the first time let me try to write this down. What is

this? This is equal to M naught, e naught hat, e naught hat transpose, M naught transpose

plus w 1, w 1 transpose plus M naught, e naught hat, w 1 transpose plus w 1 times e

naught hat I am sorry I made a mistake one second and you get w 1 times e naught hat

transpose M naught hat. You can readily see the multiplication of these 4 terms leads to

these 4 quantities; I am going to think of expectation of the whole. Expectation of the



whole is equal to expectation of the individual quantities; I am now going to distribute

that e to every term. So, that is equal to e of this, plus e of this plus, plus e of this term

plus e of this term now M naught  being a constant it comes out  this is the previous

analysis this is the feature noise these are uncorrelated.

So, this product is equal to 0, M naught comes out this the next noise this is the previous

error. So,  this term is 0,  this term is essentially the noise covariance Q,  Q 1,  this is

essentially M naught E of e naught, e naught transpose M naught transpose and what is

that, that is P naught. Therefore, we get the expression M naught P naught M naught

transpose plus Q 1.  There are 2 things what they have noticed here the cove the the

predicted coherence the at time 1 consists of 2 parts for example, one part if the initial

covariance magnified by the model, say this is the initial covariance magnified with model,

the second one is the covariance that is introduced by the model noise solid at are you all

with me, please back then part you have to have an here this is an moment.

So, if a model is stochastic dynamics, if the randomness are coming from 2 directions Q 1

is the uncertainty in the prediction coming out of the model noise, the first term is an

uncertainty  that  comes  from  the  initial  condition  noise,  initial  uncertain  the  initial

condition. Therefore, the prediction has 2 sources of randomness from the initial condition

and the forcing, and those 2 together I did trivially contribute to the total covariance of

the prediction, why this is added to? 

Because we are assuming everything are uncorrelated. If there is correlation between e

naught and w 1, then there will be other terms that is coming to cover, this equation the

correlation  will  also  try  to  increase  the  value.  So,  why  do  we  assume  things  are

uncorrelated, because I would like to have a plane simple elegant formulation and that is

nothing can be simpler, nothing can be more beautiful than this formulation I hope you

got.  I  hope you got  the idea of  going from step  1  as  going from step  0 to  step  1.

Therefore, I now know the forecast; I now know the forecast covariance. One singular

predicate once I have forecast I can create mischief.

What is the mischief? A forecast is the best estimate I can have of the state at time 1, I

have the forward operator now I can use the forward operator and the predictor state to

create  what  is called model predicted observation.  So,  that  is what  it  is.  What  is the



expected value of Z 1 given x 1 is equal to xf. Z 1 is already given to you from Z 1 is

given by mother nature, but I am interested in the conditional of Z 1 expected value of Z

1 with respect  to  x 1  is equal to  xf,  that  is  what  this  is  may now condition of  the

knowledge I would like to be able to get Z 1 from the model is H 1 x 1 plus V 1 x 1 is

equal to  x 1 f this is the gain conditional expectation is the linear  operator,  this  the

conditional expectation of V 1 given x 1 is equal to x 1 is 0.

Therefore the model predicted observation is H 1 x 1 f, again I am assuming the model

operator the linear operator can be changing in time. So, am I considering H or H of k am

I considering M or M of k. It turns out the arithmetic the algebra replacing by H by H, k

M  by M  k  are  no  different  from keeping  them time  invariant.  So,  without  loss  of

generality we will pull the time index all through that the idea. So, now, let us look at, this

now this is the model predicted observation. So, Z 1 is the actual observation this is the

model predicted observation. So, that is the error in the predicted value of the observation

given the model state forecast. So, the product of the 2 is going to give you V 1 inverse V

1 that is equal to r 1 as it should be r 1 is the observational covariance error.

(Refer Slide Time: 39:56)

So, that is a check on what we are trying to do. So, the basic this is the basic idea, I have

already illustrated. So, you gave me x naught, you gave me x naught hat and P naught hat

I there you use my model.



I use my w 1 or model M 1 w 1 I created my forecast, I created my forecast covariance.

As  I  do  that  somebody  is  giving  you  observation  and  somebody  is  giving  you  the

observational covariance.  So,  I  have 2 pieces of information in here,  I  would like to

combine these 2 pieces of information to create an analysis and an analyst covariance at

time 1. So, combining these 2 to get this is called the filtering. Going from here to here is

called prediction. All we have done is to finish the predictive part we have not done yet

the combination part. So, this step is called the data assimilation step D A step. This part

is called the forecast step. So, now, you can imagine I started with x naught hat P naught

hat I made a forecast, then I got the observation I created the new analysis x 1 hat x 2 hat

P, P 1 hat then I am going to use the model to to get x 1 I am sorry x 2 f, P 2 f.

Then I am going to get Z 2 R 2, from these 2 I am going to get Z 2 hat P 2 hat and the

system continues a that  is a cycle that  is a sequential process.  So,  where is the data

assimilation step comes in? The data assimilation step comes in after the forecasters made,

the forecasts plays the role of the background observation is a new information I  am

combining them you can see the Bayesian point of view. And that is repeated it is because

of this we call it sequential. I think it is better to remind ourselves what do we do in 4 D

var? In 4 D var we first decide a time horizon N we get observation Z 1, Z 2, Z 3 Z N we

get all the observations, then you tried to fit all of them to be able to decide the best initial

condition. Once you bet they decide the best initial condition,  then we run the model

forward anything beyond N is called a forecast that is what we do in 4 D var.

In  sequential  we  never  look  back  we  keep  only  going  forward.  Sequential  data

assimilation is exactly what is being practiced in all forecast centers of the world, these

days. So, sequential is in other words I know what I know I simply want to update given

the new information to continue new to get the new analysis. So, if I know how to go

from 0 to 1, that is essentially the same step to go from kn k minus 1 to k, k to k plus 1 or

k minus 1 to k. So, what is the general step? Now that I have described the process of

going from 0 to 1 very clearly, I can take lebordy with some other details in going from k

minus 1 to k. So, I have been given the analysis and the analysis covariance at time k

minus 1 from these 2 using the model M, I am going to create the forecast in the forecast

covariance these 2 are generated using the model equations observations come.

I  do  the  data  assimilation  part;  it  is  here  the  data  assimilation is  done.  So,  forecast



prediction  data  assimilations  filtering.  So,  prediction  filtering  are  continued  to

sequentially, this combination of prediction filtering somehow call Kalman filtering. So,

what is Kalman filtering? Kalman filtering is the with the process that underlie assimilating

data into a linear model when the observations are linear. So, Kalman filter essentially

assumes LQG; LQG Kalman is in fact, a master of the LQG world, he essentially here he

has he has done many wonderful things in control theory Kalman filtering is only one

aspect of his multifaceted contribution to control theory, but it is this Kalman filtering that

is applicable in the geophysical domain.

Because in geo physical domain since we are concerned with natural occurring system, is

there is no way to control the natural (Refer Time: 45:01) you cannot control a hurricane,

you cannot control ah an earthquake, you cannot control the blowing out of a top of a

mountain a volcano. Natural ecosystem we can only observe we can only predict,  but

engineering occurring systems you can analyze you can predict you can design you can

control.  So,  that  is  the  fundamental  difference  between  engineering  approach  to

engineering problem and scientific approach to natural I mean natural occurring systems.

So, geologists geophysicists and atmospheric science people are also interested in same

kind of problems that engineers are interested, the only thing is engineers have an added

advantage of being able to  control whereas, in sciences you simply have to be able to

predict.

So, for example, if there is going to be hurricane we cannot change the hurry motion of a

hurricane. Well engineers have sometimes suggested, when at the time when the hurricane

forms wanted to just drop a bomb and dissipate. It this is a typically in engineering idea. If

you talk to an atmospheric scientist or anybody else they will simple laughs at it and go

they would not even care to ah think of answering that. 

So, engineers mind is always, if you know that there is a danger why do not we control it

and prevent the danger from occurring that is the engineering that is why engineers are

design, but it is very difficult to be able to control natural occurring systems. But that is

why much of what Kalman has done is unknown other than the Kalman filtering, because

it is the Kalman filtering is the only one aspect of the engineering solution that he has

developed is applicable to the data assimilation setup. In fact, Kalman did not call it data

assimilation. In fact, the ultimate paradigm in data assimilation was stated by Kalman is



embodied in Kalman filtering.

What is that? I have a stochastic dynamic model, I have observations I would like to be

able to sequentially keep updating, and creating newer analysis from previous forecast and

an observation.  So,  in my view in 1960-61 when Kalman published his paper  called

Kalman filtering that is forerunner of all the data assimilation systems known to mankind.

For example, the 4 D var came out only in the mid-eighties, Kalman filter was applied to

meteorological problems only in the early eighties. 

So, Kalman filter as a solution to a data assimilation problem for earlier than many of the

folks in geophysical world had imagined dreamed that is what I would like you to think

about why? In the context of weather forecasting in 1960, what is the what was the kind

of tool they were using? They were still using successive approximation there was no 4 D

var there was no 3 D var, all these things came much later. Even the Kalman filtering idea

for it to see through the engineering scientific literature it took well over twenty years.

So, in my view Kalman filter is one of the earliest of the complete solution to the data

assimilation problem in the context of linear stochastic models and linear of observations

there are functions of the linear function of the observation corrupted by noise. I hope the

sequential aspect of the idea is clear now.

So, what is that I am now going to do, I am simply going to run through the mill I have

been given x k, Xk hat k minus 1 P hat k minus 1.
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I am going to run through the model. So, my forecast at time k till the analysis this is the

analysis till the analysis through the model, you get the forecast, then you get the forecast

error. If you have the forecast error, this is the expression for the forecast error then this is

the forecast covariance which is the product of these 2 terms, because the cross term

vanish this is the expression for the forecast covariance. Look at this now no data only

model.  So,  I  go  from 0  to  1,  I  go  from k  minus  1  to  k.  So,  let  us  look  at  the

computational aspects of this now. To be able to generate the forecast I have to run the

model, running the model is essentially matrix vector multiplication that is cheap. So, this

is going to be o N square, but let us compute let us let use see what happens in the update

of the forecast error covariance assume. Pk minus 1 is given P Pk minus 1 is a N by N

matrix, M is a N by N matrix.

So,  I  have to  do  one matrix multiplication,  another  matrix multiplication each matrix

multiplication is going to cost me o of n cube, this is going to cost me o of n cube. Then I

have to  add 2 matrices that is going to  cost me o of n square. So, which is the most

expensive part in Kalman filter equation it is not the forecast it is. Updating the forecast

error covariance updating the forecast error covariance is of the complexities of the order

of N cube, you please remember that we did. If you want to multiply 2 matrices of each

size 1 million, and teraflop machine you took about 12 and half 13 days, we have already

examined that.  So,  this  multiplication  will  take  13  days,  this  multiplication  will take



thirteen days and this is probably several hours. We are talking about a month’s time and

there is only to do the forecast error covariance. So, what does it mean? For large systems

where the state of the system is in the order of 10 to the power of 6 or higher.

While I  know what  to  do in Kalman filters? Its  impractical to  get it  done in practice

because of course, of dimensionality such problems in computing field is called infeasible.

It is not that I do not know how to solve I do not know how to solve it is simply that with

the kind of environment computing environment I have, I cannot finish this what is the

added outcome of this? This promotes an idea telling computer folks you folks, you need

to build me a larger machines sorry what is the need it was megaflop machines then it was

a teraflop machines, then it became petaflop machines, peta flop machines are 10 to the

power of 15 there are very few petaflop machines around the world, now they are talking

about exascale machines, where the flop rating is 10 to the power of 18 flops 

Japan china I am sure India also has joined this race America. So, almost all the wealthy

countries in the world the government related in the wealthy countries in the world they

are  putting  enormous  resources,  in  the  development  of  faster  and  faster  computers

because it is the availability to the faster and faster computers, that are going to be useful

in making major technological innovations in the future. So, weather forecasting in this

sense is one of the hardest computational problems, not because we do not know how to

solve, but because we do not have powerful enough computers to support us to be able to

perform large computations in a short time.

So, that is a aside story that  coming out  of this, then fed us to  need deal with larger

computers essentially come from these kinds of arguments.
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Again I  am going to  quickly run through some of the things, which we have already

talked about from going from 0 to  1. So, the conditional expectation of Zk given the

forecast is this the I can talk about the condition the covariance of Zk given x k, now

please understand everything is conditional.  Why I am conditioning everything on the

amount of information that is available, what are the information available one coming

from the model another coming from the observation.

So, everything is a conditional analysis. So, what is the data assimilation step?
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Now I would like to be able to come back to the data assimilation step you go back, I am

sorry I can I can I can read here. So, what is the data assimilation step? I want to cut

through the mess and give you. So, this is k minus 1, this is k I had Xk minus 1, I had P k

minus 1, I have xkf, I have P kf, I have Z k, I have Rk, I am going to combine the 2 to get

Xk hat, and Pk hat. So, this is the analysis that is a forecast that the observation.

So, what is that I am now trying to do? Please go back we already have a lot we know a

lot of things we already have done the static Kalman filter. Now do you see this is the

static  Kalman filter  look at  this  now? I  have  I  have  a  forecast  Xk f and its  and its

covariance, I have observation and its covariance. So, what is it I can do I want to be able

to combine them. 

I can combine them in the Bayesian way, I can combine them the linear minimum variance

way I can combine them as a 3 D var way, we have seen all of them almost all these

earlier experience leads to the fact the analysis of time K is equal to the forecast at time k

plus  zk  minus  Hk  times  Xk  f,  what  is  H  k  times  skf?  That  is  the  model  predicted

observation what is zk is the actual model observation. 

Other than my place if I have model I should be able to predict everything you should



never be afraid of prediction, the prediction may come true prediction may be a bust, if

the difference is large prediction is the bust. Even though the prediction is the bust I am

learning something. So, Z minus Hk s xkf is the innovation, is the new information that

the observation brought to 4, that I did not I could not have known at the time I am I

when I made the prediction. So, I am going to combine the forecast with innovation, the

coefficient of linear combination is a matrix k. K is called the Kalman gain matrix, k is the

rectangular matrix of size r n by m. So, what is that we have done we have made the best

forecast I hope you understand that.

So, Xk f is the best  forecast  available that  is the best  background information that  is

available to me now I need to estimate. So, this is the estimator this is structure of the

estimator what is that is the linear structure? This this can be written as why this is the

linear structure Xk hat is equal to I minus K k Hk x kf plus K k, Zk do you remember this

looks like L times Xk f plus k times Z k. So, L is a matrix, k is a matrix, in this particular

case k is k k k l is this. So, why am I bringing this this is the linear. So, the estimators are

linear structures, I would like this estimate to be unbiased, I would like this estimate to be

minimum variance. So, I am going to fall back on linear minimum variance estimation a

that exactly what Kalman did and I do not know how to do too much because I have

already covered linear minimum variance estimation. 

So, what is that? I have done I have essentially prepared all the concoctions needed, I

simply need to mix them it is like a fast food chain in McDonalds every order is met

within 5 minutes, how did they do that? They anticipate and a certain amount of sale, they

tried to prepare all the ingredients the ingredients are already stored whenever an order

comes, they simply need to assemble they already ingredients to make the product. So,

every product they can assemble a in a short  time, that is why this is called fast food

chain. And that is the approach I have taken here I have prepared all the concoctions that

are needed to do the Kalman filtering. So, what are the various things we did? We have

talked  about  given  2  pieces  of  information  one  called  background  another  called

observation.

How to mix them, how many different ways in which we have we have looked at them

Bayesian way, we had to looked at linear minimum variance way we are talking about 3 d

var way. So, I have all kinds of concoctions ready and now I am facing the problem, I can



simply call any one of these framework and be able to solve the problem. So, I now know

from the theory we have already talked about how to determine Kk, we already have the

formula from gauss to Kalman one of the modules we have seen. So, this gives raise to I

am simply trying to remind ourselves this is the forecast volume this is the observation

this is the actual model.

So, 4 acts true state forecast observations and the Kalman filter equations, and also I

would like you to understand the forecast the analysis feeds in to the forecast and the

forecast  feeds into  analysis look at  that  now. The previous analysis provides the next

forecast, the current forecast and the new observation decides the current analysis that is

filtering. So, this is the filtering step, I hope you enjoyed this is the forecast step oh I

already here I have it here. So, the whole question is my analysis is the linear function in

the forecast and observation, the linear function of the forecast and observation I would

like to be able to I one more. 

So, I will erase this part, you already know this part therefore, what is involved in here? I

already know i, I already know h k. So, the only thing I need to determine is Kk, linear

structure is involved I only need to be able to compute the covariance of Xk hat, the

covariance of Xk hat is going to be a function of K k, I am going to minimize the trace of

the  covariance  with  respect  to  the  elements  of  Kk  a  that  is  the  minimum variance

estimation, I have already talked about the methodology for doing this in the previous

class.
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So, I have earned the right to quote the results, but again even instead of simply quoting,

I am trying to probe you through the various steps I am not let me quickly tell you the

various steps I am not. So, this is the analysis structure, I already know from the previous

step how the variables in time k are related to  variables in time k minus 1.  So,  I  am

relating this to I am sorry, I am jumping I am relating these 2 variables in time k plus 1

from k to k minus 1, k to k minus 1 I am having the error, I substitute the error in here I

get the structure of the analysis error. So, this is the structure of analysis error, now please

understand  the  structure  of  the  analysis  error  involves  the  Kalman gain,  I  have  not

determined Kalman gain I only talked about what is that therefore, the analysis covariance

is given by this structure and I have to be able to come ok.
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So, if you do these I am simplifying sorry sorry. So, I hope you got this structures again

as a yes is easy for me to do this because look at this now ek is the sum of 3 terms 1, 2

and 3. So, there are going to be 6 terms when you multiply in pk. If you carefully analyze

these  terms  and  simplify you  get  your  Pk  to  be  this  expression  this  is  the  ultimate

expression Dk comes in here. Please recall this is exactly the expression we have done in

one of the earlier modules, this is the term this is quadratic in k, this is linear in k this is

linear in k, I need to be able to minimize that trace of Pk with respect to Kk, Kk has nm

elements.
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The conditions for the Kalman gain minimization of the total variance we have already

done, and that analysis I am now quoting the optimal Kalman gain is given by this.

So, now I have computed the optimal gain. Once I compute the optimal gain I wanted to

go back the optimal gain depends on kk. So, I know the value of k k. So, if I substitute it

the optimal gain value in here, I get the minimum expression for the minimum value of the

analysis  covariance.  The  minimum expression  for  the  minimum value  of  the  analysis

covariance is given by this, which can also be re written like this. Yes there is ton of

algebra to be done, I am assuming you will do the algebra and I not only do the algebra,

but enjoy the lessons coming out of this algebra is a very educative algebra as any other

algebra is.

So, the expression for the Kalman gain is given by this, the expression for the optimal

covariance analysis covariance is given by this. So, I have completed the Kalman filter

equations. So, what is that now we have said? Let me do it once more in here, I know

some of you might feel that I have gone a little faster, but there is nothing I have done

here is new I have already built everything in here. So, if I am going from k minus 1 to k I

have to  I  know how to  compute  x hat  and Pk hat.  So,  that  is of the  Kalman filter

equations. We summarize this Kalman filter equation in a tabular form little later, before

that we are going to provide several comments relating to the structure of the Kalman



gain. 


