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In this talk, we are going to be looking at a method that has come to be known as optimal

interpolation. I would like to provide a quick historical perspective of this approach to

prediction estimation based on a method that has come to be called optimal interpolation.

During  the  1960s  and  70s  operational  centers  in  USA,  Sweden,  Japan  and  others

routinely used iterative scheme like Batherson, Drues or Crosman type that we talked

about in the last lecture. These methods have also come to be known as successive error

correction, you can see z minus h f x k in the iterative scheme, which we can think of in

innovation  is  also can  be  thought  of  as  the  error. And by iteratively  performing the

update we are trying to transfer the information from the observation network to the

computational  network, so that method that class of methods crosman types schemes

have also come to be called successive error correction method 

Then this  was going on in USA, Sweden, Japan rather countries,  in Soviet Union in

1960s a technique called optimal interpolation was championed by Gandin - Lev Gandin.

Optimal  interpolation  was developed earlier  independently  by Norbert  wiener around



1940s in  the USA and Kolmogorov in the Soviet  Union the  story goes that  Norbert

Wiener developed this method in the early 40s, but he did this work under a defense

contract,  so  it  was  classified.  And  by  the  time  he  could  publish  it,  it  has  to  be

unclassified.  So, it  took several years before the first classification of Wiener’s ideas

were known to the public. So, the publication date the open publication date is around

1949,  but  here  also  independently  developed  in  the  early  40s  not  knowing  that

Kolmogorov was also working on similar problems. This goes to show big minds think

similarly even though they have been working in geographically distinct locations.

(Refer Slide Time: 03:14)

What is the basic idea of this method called optimal interpolation. I am going to illustrate

this notion of optimal interpolation using a simple 2D grid problem. It can be extended to

3D grid as well. Consider a two-dimensional grid with n x times n y number of points; n

x is the number of points along the x direction; n y is the number of points along the y

direction, n is the total number of grid points. Let that be m observations inside this grid

space. As an example I had n x 4, n y is 4. So, n is 16, I have a set of five observation z 1,

z 2, z 3, z 4 and z 5; we can think of this observation as scalar observation temperature,

pressure,  humidity  or  concentration  of  some  chemical  whatever  quantity  filtered  by

essentially it is a scalar.



(Refer Slide Time: 04:25)

So, I am now going to consider two cases in our illustration. First, let us assume the

observations are perfect, observations of perfect mean there is no noise. Why do we do

even though we know observation generally are associated noise, I think it is good to get

a grip on the idea by assuming that observations are perfect. So, the field variable of

interest  as I said is a scalar field variable,  it  could be temperature,  pressure etcetera.

Consider time k noon, January 1st 2016 as an example. So, k is a specific instant time.

There are m observational occasions. So, at that time k, there are m observations of the

scalar  field  variable  temperature  pressure  whatever,  and  I  have  a  m  vector  the

components of the vector are Z k 1 k 2 k m is a m-dimensional vector at time k Z k.

These are the observations that are available from the m observation stations.

Now, the observation that we are going concerned with has a natural variability in itself.

For example, if you consider the temperature at the downtown Paris on December on

January 1st of every year there is a natural variation. They no two successive years will

have the exactly the same temperature in downtown Paris at noontime on January 1st for

the 100 years. So, you can think of these ah scalar variable to be naturally varying, this

natural variability is captured or is described as a random process. So, given this natural

availability we are going to consider Z k as a random vector. So, Z k is random not

because of the observation errors, Z k is not because of the inherent natural variability

the  resulting  from changes  that  are  inherent  to  climate  variables.  It  is  assumed  the

observations are error free that is what perfect observations relate to.



(Refer Slide Time: 07:15)

So, the whole method of Wiener and Kolmogorov which has come to be call optimal

interpolation rests  on the assumption that the properties of the random vector Z k is

stationary.

(Refer Slide Time: 07:34)

What does mean the random process that describes the temperature time series is I am

sorry that is correct has a stationary distribution. So, what does it mean, Z is a random

vector every random vector has an associated probability distribution. If that probability

distribution is invariant in time, this is called a stationary distribution. If that probability



distribution  changes  in  time  is  called  a  non-stationary  distribution.  A fundamental

assumption is that the temperature in downtown Paris at noon on January 1st of every

year is drawn from a stationary distribution. The stationary distribution is the one that

describes the underlying natural variability. So, given this stationary distribution that is

behind the realization of Z k; Z bar is the mean of Z; Z tilde is the enamel Z minus Z bar;

expected value of Z bar is 0. The covariance of Z is given by expected value of Z bar Z

bar transpose and that I am going to call it C. So, C is a m by m matrix Z as C matrix

talks about the covariance of the observations from different locations it is assumed that

both the mean and the covariance of the observations are known.

(Refer Slide Time: 09:27)

So, let us go back. In this case, I have a grid with 16 points, I have 5 observations, I am

now talking about observation vector. So, let us fix the time. So, I do not have to worry

about k, let us fix the time k to be noon January 1st. So, at noon January 1st, I am getting

five observations Z is equal to Z 1 Z 2 up to Z 5. This will have a mean Z bar this will

have a covariance matrix C, the covariance matrix C will consist of C i j i runs from 1 to

5, j runs from 1 to 5. What is the meaning of C i j, C i j is the correlation between the

scalar variable at location i to the location j. So, it  is assumed that this correlation is

known that is a key to the methodology.

So, the whole question is we assume the distribution stationary, we may not be able to

get a handle on the stationary distribution, but what is that one can do, I should be able to



estimate Z bar and C. How do you estimate Z bar and the covariance C. So, let us look at

the station. So, let us take the time series of observations, so Z 1. So, if I now consider

the time if I bring in the time now Z becomes Z k Z k is equal to Z k 1, Z k 2 and Z k 5,

therefore, if I consider station one I am going to have a time series of that measurement

over a long period of time.

So, for example,  I am trying to measure the temperature in downtown Paris at noon

every day, so that time series is known. So, once that time series is known. So, what is

that we are going to assume I am going to fix the location downtown Paris, I am going to

fix a particular instance time namely noon of a given day. So, every day in downtown

Paris, I am going to measure the temperature, and there is a record of it and that time

series  is  made available  to  me that  time series  it  is  a  long time series.  Likewise  so

downtown Paris  is  only one observation  station  and I  picked for  an example  in  this

illustration there are five such spatial observation towers or observation locations. From

each location, at each instant of the day, at each hour of the day, there is going to be

measurements of the scalar variable of interest. So, these sensors are going to spit out the

values of the observed quantity and I am assuming I have already recorded, so that is the

fundamental assumption.

So, given a long time series  of observation from each of these locations,  I  can now

compute the mean. So, I can say downtown Paris, what is the mean, so what is that I

need to consider. What is the main temperature in downtown Paris on noon January 1st

what is the mean temperature in downtown Paris noon January second. So, day-by-day

by processing the data, I should be able to compute the mean. Once I compute the mean,

if I have time series, I should be able to compute an anomaly. Once they compute an

anomaly, I can compute the variance of the measurements at a given location, this I can

do for every location. So, I will have m locations, for a given time I will have m means, I

will  have  m  anomalies,  I  will  have  series  of  anomalies.  Using  the  time  series  of

anomalies, I can also now compute the covariance.

So, how do I compute the covariance? Let us say C i j, C i j is equal to let us consider I

am I am fixing the time right now. So, time case k is fixed. So, I have an anomaly at

station I i have a time series of that with respect to k. So, Z i tilde the k is the anomaly at

the k instant in time at the i-th station Z i tilde these are scalars I do not have to have

even written like this,  I  simply can square the anomaly  once again I  can square the



anomaly. I can square the anomaly, I can sum this anomaly over k is equal to 1 to n, I can

compute by this. And this will give me, this is not i j this is i i, so that is the variance at a

given  station.  Now  I  would  like  to  be  able  to  compute  the  elements  C  i  j  this  is

essentially equal to Z i tilde a time k, Z j k tilde the product of the anomalies at station I

and j, I am going to have to sum this up over k is equal to 1 to n over n. So, this is an

estimate of the covariance between station I and station j,  this  is the variance of the

station I these two together decides the elements of the covariance matrix.

So, what is the fundamental assumption, there are two key assumptions there are here. I

am assuming the scalar field variable of interest such as pressure temperature whatever it

is  has  a  natural  variability.  This  natural  variability  can  be  captured  by  a  stationary

distribution.  Why  stationarity  in  distribution  analysis  of  non-stationary  stochastic

processes are extremely difficult there are very few results in the analysis for the analysis

and quantification of properties of non-stationary stochastic processes. The only thing we

know  is  to  be  able  to  pin  down  analyze  characterize  the  properties  of  stationary

stochastic processes.

So, in here Z k is the observation vector at time k is set to arise out of under assumption

you said to arise out of a stationary distribution. Stationarity is fundamental to anything

that we can do computationally that is the fundamental key. So, it is the limitation that

that is imposed are not because we wanted, but because if it is not stationary there are too

many things we know how to do analytical. So, stationarity assumption is fundamental in

almost all of the time series analysis. And likewise here I am assuming that I am having a

parallel time series at each of the m locations, one for each stations. From each of these

parallel  time  series  I  can  now compute  the  statistics  the  individual  mean,  the  mean

vector,  the  individual  variances,  the  covariances,  these  two  together  summarize  the

vector Z bar and the matrix a, and that can be done if you give me a long series of time

series at various stations.

So, we assume that we have availability of Z bar and C at m stations, so that is what

exactly is I am what I described is now reinforced in the slide. Let me quickly reinforce

that. So, computational the spatial covariance C is the computation of spatial covariance

among m observation stations. Z is the time series of the field variable,  Z bar is the

vector  of  means.  So,  I  am  now  doing  instead  of  doing  individual  stations,  I  am

collectively doing for all stations Z k is the vector, Z bar is a vector, I am trying to take



the average of capital  T number of observations. Z tilde k is the vector of anomalies

earlier I talked about the individual anomaly, now I can collect them in the vector. So, it

is a vector anomaly.

If the vector of anomaly is known, I can now compute the covariance matrix as Z tilde

times Z tilde transpose the summation over k 1 over k. This C is symmetric positive

definite that is the assumption. Why, if the number of samples is large, if the number of

samples has been collected over a long period of time, I think one can readily see this

covariance the covariance is always symmetric. If the number of data is small it may not

be possible definite; if the number of data is large that the reason to believe that C so

computed would indeed be symmetric and positive definite as well. So, I am going to

make an assumption that C is symmetric and positive with given.

So, what  the C captures  that  is  important  thing that  is  the fundamental  idea of both

Kolmogorov and Wiener; and they propose this in nineteen early 41-42. The matrix C

captures  the  natural  variation  in  the  observation  natural  spatial  variations.  Please

remember this is not related to the observation error covariance, I should have said error

here, observational error covariance. Observational error covariance is R; in this case, R

is zero because we have assumed the observations are perfect. So, this spatial covariance

essentially captures the natural spatial variability of the field variable of interest in the

region covered by in the geographical region covered by the m observation stations that

is the fundamental idea, that is a starting point.

Now, let me go back and talk about why are we interested in this correlation. Please

understand our ultimate aim is to predict; to predict, I need to assimilate. To predict there

are only two kinds of things you can bank onto be able to generate a prediction one is

causality, another is correlation. So, if you are trying to use models to predict, the models

represent  the  causal  relation  that  exists  and  that  helps  you  describe  the  underlying

physical process. For example, the dynamical system that relates to the motion of the

earth around the sun the dynamical system that relates to the motion of the moon around

the earth. This combined dynamical system we have understood very well and using it

we are able to predict the lunar and solar eclipses to very high degree of precision. So,

this dynamical system essentially kept has captured the causality principle that underlie

the motion of the moon around the earth and the earth around the sun.



So, likewise every model be it static, be it dynamic, be it realistic, be it stochastic, all

models in some sense encapsulate some form of this causality principle, momentum is

conserved,  energy is  conserved,  these are  all  causality  principle.  In the case of  time

series,  I  derive  empirical  models  autoregressive  moving  average  models  they  are

empirical models. These empirical models in time series as essentially derived out of

correlation. So, what is that we do we look at a time series, you compute this temporal

correlation. We see how the temporal correlation decays with time. If it decays fast, the

process  has  less  memory;  if  it  decays  very  slowly,  the  process  has  long  memory.

Mathematicians have already analyzed properties of several different types of time series

models and they have catalogued and have created an album if you wish of correlation

structures of various models.

So, given a time series data, you compute the correlation structure of the given time

series and compare it against the album, and look at which one looks closest, it may not

be one, it could be a subset of two or three. You narrow down the window, and then try to

use each one of these models to be able to distinguish which model is better. So, what is

the underlying theme to be able to predict either you need causality or correlation, this

approach to optimal interpolation rests on our ability to predict based on correlation.

So, what does it mean if two quantity especially separator is positively correlated means

what, if the variable in one of the stations increase, there is a likelihood the other station

will also increase because there is a positive correlation. If there is a negative correlated,

if one increase of other will decrease. So, I can infer from the increase or decrease of a

particular quantity in a given station and knowing the correlation, I should be able to

predict  what  will  happen  at  the  other  station  that  is  the  fundamental  principle  that

underlie predictive science based on correlation.

So, fundamentally ultimately the aim of data assimilation is to predict, data assimilation

essentially tries to help you to fit the model to data fitting model to data is essentially

model calibration. So, the forecast generate from calibrated models are better than the

one  generated  from  uncalibrated  model  that  is  why  we  do  data  assimilation.  The

alternative to that is to be able to understand spatial and temporal correlation structure,

Wiener’s theory applies both to temporal correlation analysis as involved in time series

analysis as well as spatial correlation analysis as would be of interest in any geophysical



science. So, the matrix C captures the natural variability of the variable of interest in the

chosen geographical domain.

(Refer Slide Time: 25:08)

Now, so I have please go back to my original picture here.  I have a grid; I have an

observation stations. So, the C is the covariance among the observation stations, but my

interest  are  in  computational  grid.  For  example,  if  I  have established an observation

network,  the  observation  network  is  going  to  be  fixed  in  spatial  distribution.

Computational grid depending on the computing power, I can change the computational

grid as well. If I have a larger computing power, I can have a smaller grid size and a

larger grid number. If I have a smaller computing power, I may have a closed grid and a

smaller number of total numbers of grid point. So, computational grid there is no fixed

value for that,  it  depends on what else I am interested what kind of processors I am

interested in analysis and so on.

So, now what is that we would like to be able to do, we would like to be able to transfer

the knowledge from observation network to the computational network that has been the

theme in the successive error correction, we have been talking about in the last lecture as

well iterative methods. So, the theme is very similar except that this is this new idea is

rooted deeply in the correlation structure. So, if I have values in the observation network,

please recall  our ability  to transfer information from observation network to the grid

network. This is R m, this is R m, this is Z, this is H, this is H transpose, this is H



transpose.  So,  I  can  go  from one  network  to  another  network  by  this  interpolation

scheme.

So, what is that we have done, from the observation stations, we can also think of having

a time series of values at  the grid point using this interpolation.  So, if I have a time

series, so let us fix a particular time noon January 1st, I have m-stations I have h matrix

that can interpolate between the computational grid and the observation network. Yes,

you may say hey if you interpolate it is not the interpolation is incur error, yes, it may I

am cognizant of that, but I want the reader to appreciate that I have the ability to lift the

information from one network with other network through H and H transpose.

So, let us pretend now I have a corresponding time series of the same physical very field

variable of interest at each one of the n grid points the time series the is a saying. In other

words at noon I have an observation station at noon I have interpolated value along the

grid noon of today 2 o clock of today, 5 o clock of today every day. So, by hour by hour,

I have a time series going over let us say 50 years of day, I can do that. Again I want you

to  recognize,  while  the  observation  network  is  fixed  the  computational  grid  may be

changing. So, if I fix the computational grid and if the computational get embeds the

observation network, there is one way to be able to lift it from the observation network to

the computational grid.

So, once I have the same time series at the computational grid, I have a vector x from the

vector Z. This vector x belongs to R n, vector Z belongs to R m. If I have a time series on

the grid, I can compute its expected value then I can compute the anomaly. The anomaly

is  such that  its  mean is  0.  Now, comes the important  thing.  Let  D be a  matrix  that

captures the cross correlation between the grid and the observation network. So, x tilde is

a vector that is defined on the grid, so x tilde is a vector belonging to R n; Z tilde is a

vector belonging to R m. So, if I multiply x tilde by Z tilde transpose, you can think of

this as this is the column that the row there is an outer product matrix, this matrix is

going to be R n m.

If I took the expectation of this outer product matrix that is D, so what is D, D is the n by

m  matrix  that  relates  to  the  cross  correlation  between  the  grid  variables  and  the

observation  variables.  So,  this  is  the  cross  covariance  between  grid  values  and  the

observation values variables. So, C and D are going to play a very major role in our



analysis. Now, please remember C may be fixed in time because observation network

once we establish the network we cannot change, but D can change in time, I am sorry

the comp computational grid can change in time, n can change in time therefore, D can

change in time.

So, how do you get from observation to C to D is to be able to elevate interpolate from

observation at the grid network this interpolation scheme, there are several such schemes

I have already talked about a bilinear interpolation that interpolates between grid and the

observation network. So, we can use one of these. So, what is that we have I have access

to C, now I have access to D. C is the covariance of the given field variable of interest at

the observation location; D is the cross covariance between the grid and the observation

network. So, you have there is a lot of statistical computations. So, if you have a time

series over a 100 years, if you have a time series over 100 years hour by hour, minute by

minute, your data set may be very large from that set data we have to crunch. The value

of the matrix C, you have to crunch the value of the matrix D that could be done; very

routine calculation it does not take too much time.

(Refer Slide Time: 32:26)

Here I am just trying to describe formally the notion of computing the elements of the

matrix;  I  want  to  reinforce  that  again.  So,  let  us  quick  quickly  run  through  these

calculations. Let x k be the state variable vector of the same field variable at the grid

locations  at  time  k,  we  may  have  at  times.  So,  if  Z  has  a  time  series  that  the



corresponding time series for x, once I have the time series I can compute the mean, I

can compute the anomaly, I can compute the cross product which is D that is what. So,

the  there  we  talked  about  a  concept  here  we  talked  about  algorithms.  So,  concepts

algorithms concepts algorithms algorithm for C, algorithm for D are given

(Refer Slide Time: 33:20)

Now, what is the statement of the problem? Let I am sorry there is a spelling problem

here that has to be it t. Let the observational covariance C and the cross covariance D be

known, matrix  C and matrix  D be known. So,  what  is  C and D represent  C and D

represents the stationary values of the covariance between observations and covariance

and the cross covariance between observation the grid because the underlying process of

stationary, C and D does not change in time especially C and D does not change in time

if you consider a long time series.

So, what stationarity means I want to comment on that little bit. If the regime of the

climate  has  changed,  the  underlying  distribution  would  have  changed.  So,  what  the

stationarity assumption means in practice, we are assuming the regime under which that

climate is operating has not changed statistical that is the idea. So, how do you know the

regime we are operating has changed or not that is a different question. We should have a

long time series, you should break the time series into different parts, we should calculate

different  quantities  in  different  times  and see  whether  these  statistical  quantities  has



changed over a 100 years, first hundred year, second hundred year, third hundred year,

first fifty year, second fifty year, first ten years, second ten year.

So, decadal variation,  essentially  variation,  annual variation,  so one can do statistical

tests for regime changes the regime shifts, if one has access to a reasonably long time

series. In other words, one can test the hypothesis namely if the underlying statistics is

invariant or changed. So, it all depends on how much data you have. If you do not have

much data, you cannot even do that testing. If you do not have much data, if you cannot

do that testing, just pray the lord and assume stationary. So, that is these are some of the

key things that one has to keep in one’s mind now.

So, what does C and D refers in some sense they refer the climatology and that important

thing here. C and D refers to the underlying climatology, the stationary aspects of the

climatology. Suppose a New Year dawns January 1st 2016 today. I have computed C and

D over the past years. A new observation from my observation network arises on this

new day. These Z observations available only the observation network, but I would like

to optimally compute the values induced on the grid x.

So, I hope you understand what I am talking to talking about. C and D are known, C and

D are based on past values. They represent climatology a new day dawns. A new day

brings a new observation Z. The new observation C is confined to observation location m

of them, but I would like to be able to elevate that m to n gird points how do you do that

how do you do it optimally. So that is the step into the problem given a new observations

Z and the climatological information in embedded in C and D, how to optimally compute

the induced grid value x from Z.

So, I know Z bar what is the bar Z bar is a long term average of Z because stationarity I

assume Z bar has stabilized. So, Z bar is invariant in time. So, Z tilde is equal to Z minus

Z bar, there is anomaly of Z with respect to the long term average Z bar. Similarly let x

tilde be x minus x bar, I know x bar because I have computed D with it. I do not know x,

x is the one I want to be able to determine, but instead of computing x, I am going to

compute x tilde. So, computing x is equal to computing x tilde, because if I know x tilde

I can add x tilde to x bar to get x. So, I am going to work with anomalies.

To at Z bar be the observation anomaly on a new day, let x bar I am sorry that is a bar I

am sorry Z tilde be the observation anomaly on a given new day. Let x tilde be the



corresponding induced anomaly in the grid, my job is to be able to optimally determine x

tilde from Z tilde knowing C and D. Please understand the background x bar is known,

we can recover x once x tilde is computed. So, we are simply going to concentrate on

computing the x tilde anomaly.

(Refer Slide Time: 38:57)

So,  what  is  the  optimal  interpolation  approach  please  understand  this  is  one  of  the

earliest  known  methods  in  predictive  science.  The  basic  idea  of  this  opt  optimal

interpolation  is  to  express  the  analysis  increment.  What  is  the  analysis  increment,  x

minus x bar. So, x tilde i what is x tilde i, x tilde i is the new increment at the location at

the grid point i  that  is  to be gained from the new observation.  I  am assuming I  can

express my x i tilde as the linear combinations of the observation increments Z tilde.

So, let me I want to make sure my Z tilde is not that is right they are Z tilde. So, Z tilde is

the vector of observation increments. I am going to compute location by location grid

location by grid location i is the ith gird location. The x i tilde is what I want to compute

now I have to concoct a model that relates the known to the unknowns x i tilde is not

known Z tilde is known. So, I am going to confine my attention to the class of recovery

process  to  a  class  of  estimators,  where  x  i  tilde  is  expressed  simply  as  a  linear

combinations of the elements of Z tilde. Are you with me? So, I want you to think about

that.



So, what is that we are going to do, if I am going to have a linear combination I need to

have the weights. So, let w be the vector of weights that is going to be using the linear

combination w’s are unknown weight vector. So, given this philosophy of connecting the

known to the unknown, let the unknown be the linear combination of the known. So, I

could express this as w transpose Z tilde, therefore under what condition x tilde i will be

optimal, it will be optimal under optimal choice of w vector. So, the whole problem now

reduces to finding an optimal vector optimal weight vector w. Optimal in what sense

again we come back to least squares, both Kolmogorov and Wiener independently in

1941, they were separated geographically they did not talk to each other, but they had

come up with very similar ideas.

So, the mathematical problem now reduces to the following find a vector w belonging to

R m that minimizes the mean square error between the value of the increment at the ith

the  grid from the linear  combinations  because underlying  quantities  are  all  naturally

random I have to take the expected value. So, the objective function here is the mean of

this  square of the error. So, excise that ith component analysis  increment vector at  a

given time. So, all these things are done in a given time. If you are interested in various

time I had repeated at a given time. So, with a loss of generality I am have assume k is

fixed k the time is fixed. So, Z tilde is the vector, Z tilde i is the ith component of the

observation increment for convenience we have suppressed the time index because we

have fixed that time this is an analysis being done at a given time. So, if you have a

subroutine that can do this, I can repeatedly use this for various times.



(Refer Slide Time: 43:16)

I hope the formulation of the problem is clear now. Look at this now. I am falling back to

least squares, but I am falling back to least squares not with respect to static model or

dynamic  model.  But  based  on  correlation  structure,  cross  correlation  structure,

stationarity assumption and so on. f of w can be now written as this because is like a

minus b whole square expectation operator I can pull it into each of the term expectation

of the sum is some of the expectations. The first term is the variance of x i’s expected

expectation of the square of x i tilde is the variance. Expected value of x i tilde Z tilde

transpose  it  is  essentially  the  ith  row  of  d.  So,  that  is  denoted  by  D  I  star  please

remember D is the cross covariance between the grid and the observation location. So, I

know every grid point will be related to every observation locations.

So, here I  would like to talk about  a  particular  difference between Crosman scheme

another  scheme.  In  the  Crosman  scheme,  what  is  that  we  assume give  a  point,  the

number of observation station that I can affect the given grid point are those that are

lying within the radius of influence D that came in 1950s mid 50s. In Wiener’s time, in

nineteen early 40s, 41-42, they did not restrict the influence of one and the other. They

assumed  everybody  is  going  to  influence  everybody,  but  they  interest  they  were

measuring the influence through correlation and cross correlation. So, ith grid point has a

cross correlation with every observation station and that is given by the ith row d i star.

So, the this now becomes 2 times d i star w.



Now I would like to go back to the w is a column vector I want you to understand w is a

column vector d i star is a row vector. So, d i star w I am sorry d i star w that is an inner

product, it is a scalar because one is the row another is a column vector. Now, the last

term is essentially w transpose C w you remember C the correlation among observation

locations. Now, look at this equation 9. Equation 9 relates to the ith row vector of D then

entire matrix C and the variance of the field variable at the ith grid point all of them are

known what is the only thing that is not known w. Now, please also realize this f f w in

nine is a quadratic form. So, what is the mathematical problem pick w such that this

quadratic form is the minimum how many times we have minimized quadratic form in

this class million times. So, one is quadratic variable, another linear variable another is

the constant.
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So, computing the gradient f of f w in 9, I am not going to do the arithmetic, I very

strongly encourage you to apply the principles from multivariate calculus that we have

talked about. The gradient is given by 10; the hessian is given by 2 C we have already

assumed C is SPD. So, hessian is SPD. So, if I equate the gradient to 0 given that the

hessian is  a  SPD, it  must  be a minimum because the function quadric  function is  a

convex function is a unique minimum. So, the solution of 10 is given by 12. Let us look

at that now, C is the matrix, C is the m by m matrix; W is a vector which is m by one

vector that must be equal to d i star transpose. Please remember d i star transpose is ith

the row.



Let us go back now. D is a n by m matrix. Therefore, in the matrix D if I consider the ith

row the ith row is the m vector because this is m therefore, d i star is an ith row d i star

transposes the m column vector n. So, this is of the form A x is equal to b, where A is an

SPD. Now, do you remember this is the linear system that symmetric positive definite

matrix I want to solve this, how many different methods we have seen I can solve this by

Choleskey, I can solve this by QR, I can solve this by SVD, I can solve this by iterative

scheme  such  as  Gauss-Seidel  that  ever  so  many  methods.  I  can  also  solve  this  by

gradient method; I can also solve this by conjugate gradient method.

Now, you can see the power of the mathematical tools that we have already developed

that  is  the  key  we are  looking  at  the  foundational  aspects  of  algorithms  to  do  data

assimilation,  no  matter  what  the  variety  of  assimilation  process  we are  involved  in.

Please remember this already idea is extremely different from any other ones we have

already seen yet the tools may have developed are very helpful computing the quadratic

form, compute the gradient hessian minimizing the quadratic form, solving the resulting

equation by matrix methods by direct optimization methods those are all tools in your

toolbox. In fact, I would like to remind all of you that the famous saying if hammer is the

tool, if hammer is the only tool you have every job looks like a nail, I want all of you to

write this down and put it in your study.

If you have only one tool and that too happens to be hammer what is that you can do the

hammer you can only hit. So, the famous proverb is if hammer is the only tool you have

every job looks like a nail, you can really hit the nail. So, what cannot do depends on

what you do not know what you do not have. So, larger the toolbox is better days, now

please understand our toolbox has been filled with tools which tools that can be used in

solving problems. Therefore, 12 is the solution of a symmetric positive definite system, I

can solve  this  by one of several  methods.  I  would like the reader  to  indulge in  this

process and convince oneself that I can solve twelve by one of many methods. Now, by

repeating this process for each I we can obtain analysis increment over the entire grid.

But,  now look at  this  now, if  I  want to solve this,  so for every i,  the left  hand side

remains the same only the right hand side changes, are you with me. So, we are going to

have a collection of n linear system with the same matrix C, but the right hand side is

different. What does it mean if you compute the cholesky factor for C once I can use it

repeatedly  for  every  solution  for  various  grid  points,  so  that  is  a  computational



advantage. So, we can solve this efficiently by using cholesky decomposition of C once

and repeatedly  using the cholesky factor  to solve the grid variables  at  each at  the n

locations.

This  method  has  come  to  be  called  this  method  has  come  to  be  called  optimal

interpolation. In the area of geophysics, there is a method called Kriging, I am sure many

of you who are in geophysical sciences could have heard of that Kriging is a method

essentially an optimal interpolation method. So, Wiener’s method have been applied to

many, many different fields of activity it has been applied under the camouflage of very,

very different names Kriging is one such name that has been applied in geology and

geophysics. Kriging is if you look at the mathematics of it, Kriging is essentially Wiener

Kolmogorov optimal interpolation the person who popularized the application of optimal

interpolation especially in atmospheric as well as oceanographic sciences is the Russian

scientists Lev Gandin. Gandin has published a book that is totally devoted to application

of  OI  to  solve  several  different  problems  of  interest  in  climatology  oceanography

atmospheric sciences and so on, and I would strongly recommend the reader to take a

look at this extremely good book by Lev Gandin.
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Now, I am going to talk very quickly about the extensions; case two noisy observations

in practice observations are noisy noise is unavoidable. Therefore, my observation Z is

equal to Z bar is the mean, Z tilde as the anomaly until now we had only Z is equal to Z



bar plus Z tilde. Now, we have a new guy coming into the table, coming to the game and

that is V, I am going to assume is Gaussian, R is SPD. I am also going to assume that the

natural variability in Z and the observation noise are in correlated, that makes sense? The

climate does not care for the instrument you use to measure. So, V essentially comes

from the measuring process the measuring process is not or it does not affect the natural

variability of a climatic system. So, the cross correlation between the natural variability

of field variable interest and the observations are zero.

(Refer Slide Time: 54:17)

In this case, I can now compute the covariance of since we have discussed many of these

things in detail I am going to hit all the major points. So, Z tilde is given by this, so its

covariance is Z tilde times Z delta transpose. There are four terms the cross terms vanish

because there is no covariance between Z and Z tilde. So, we are left with covariance of

Z tilde is C plus R. Now, look at this now what is the role of R increases the covariance;

earlier R was zero because there is no observation noise observations are perfect this is

the only difference rest of it all the same. So, wherever there are C, you replace C by C

plus R solve the problem.
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So,  again  reasonable  to  assume  the  analysis  increment  is  correlated  with  it,  it  is

reasonable to assume that the analysis increments is uncorrelated with observation noise

sorry, it is uncorrelated and that is described by this. So, I can define D, D is given by the

similar formula. I have an f w, which is the weight factor. So, the whole thing I am

simply  again  assuming  the  grid  analysis  increment  is  the  linear  combination  of  the

observation analysis increment now, how good this is the linearity assumption you can

change that, but just get the ball started Kolmogorov and the Wiener assumed that the

given increment can be expressed as a linear combination at the observed one.

So,  you  can  probably  in  a  given  situation,  you  can  try  other  combinations  of  the

dependence of X tilde and Z tilde and do the analysis, but the trouble is if the instantly

bring in non-linearity that is going to computational trouble. So, you have to worry about

is the trouble worth it; if you take the trouble and spend more money to solve the non-

linear problem is it going to improve your prediction estimates. So, these are all open

questions, I am not going to indulge in all other possibilities, it is simply to provide you a

new way of thinking about prediction.
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 So, if you consider f w and again I given all the details I would leave this as an exercise.

So, this is the quadratic form. You compute the gradient, you compute the hessian, you

can see wherever there were C is replaced by C plus R. So, except for that difference that

is not much. So, the optimal w is now obtained as a solution of this. If you set R is equal

to  0,  I  get  the  previous  equation.  So,  what  is  the  fundamental  idea  knowing  the

correlation structure of the field variable we can comma, this is lower case, we can easily

lift the information from the observation network to the computational grid that is the

that is the essence of this discussion.
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This module is contained in chapter  19 that  where we have discussed this  at  greater

length, book by Lewis Lakshmivarahan (Refer Time: 57:45) 2006. With this I hope we

have  given  you  an  opportunity  to  develop  an  appreciation  far  and  another  way  of

thinking  about  prediction,  prediction  creating  analysis,  how  to  transfer  the  new

information and combine it to the old information. I want to talk about that part a little

bit Z the new observation that is a new information, C and D old information. So, in

some sense you can think C and D as an equivalent of prior, Z has a new information

maybe basis tripping in very quickly here. There are two pieces of information I am

trying to combine them. I am trying to combine them so as to minimize the error in the

estimate  least  squares  comes  in  creeps  in  secretly. So,  base  comes  in  secretly,  least

squares comes in explicitly, you can see the commonality between various techniques

even though the basic assumptions with which these techniques are developed are totally

different.

With that, we conclude our discussion on the optimal interpolation techniques.

Thank you.


