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A classification of forecast error

In the last couple of lectures, we saw the role of data assimilation and it is importance to

predictive science, prediction is forecast. We also saw yesterday, that not all the process

is can be predicted accurately, some can be done rather precisely, in many cases forecast

will not be perfect in imperfect forecast is said to have errors. So, we I am going to talk

today's lecture with a good classification of forecast errors, because this classification

will help us. 

How do we attack the problem of correcting forecast errors using data assimilation and

will also tell us what kind of errors need, what type of tools to be able to correct them in

order  to  be  able  to  make  the  forecast  better.  So,  today's  emphasis  is  going to  be  a

classification of forecast errors and I would like to remind the reader that forecasting is

fundamental aim of data assimilation and forecast errors are inherent in every forecast, in

order to be able to correct the error. We need to have handle on the classification of

errors.
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To do that, I am going to start with the relation between the truth and the observation.



The truth is the true state of the Mother Nature, observations are data, obtained through

sensing the Mother  Nature’s true state.  So,  let  us assume x star  is  a vector  with the

unknown true state of the system under observation for example, today's temperature in

the city of London that is the true state of the Mother Nature, but we are going to observe

the true state. So, Z is called the observation. Observation in general is a m vector, true

state is n vector, the observation and the true state are related through a fundamental

mathematical expression Z is equal to H of x star and v plus v. Here, v is the observation

noise in the non-linear case, Z is equal to H of x star plus v H is a non-linear function.

So, observation may be related linearly to the true state or observation can be related to

the  two state  non-linearly. In  either  case there  are  going to  be  errors  correcting  the

observation. We are assuming the errors are additive in nature that is a simple way of

dealing  with  observational  errors  and  this  aspect  of  considering  observational  errors

being an addictive process has been around ever since the days of Gauss that we talked

about in the last class. So, you can readily see if you want to know the true state of

Mother Nature, you can only sense it through devices, the device output, the Z, the input

to the devices are the x stars. 

So, Z contains information about the true state of Mother Nature x star, but it is corrected

by additive noise. So, we say Z contains the information modulo the observation noise v.

This observation noise is in general unavoidable, it is also unobservable in what sense we

may not, we will not be able to separate H of x star or H of x star from Z. If we are able

to x separate H of x star from Z. We are able to have a filter, that will filter out the noise

in general, such filtering is not easy to develop, because we may not know very precisely

all the properties of the noise. We generally assume it is Gaussian distributed. It is also

white and so on. 

So, if want to know the true state of Mother Nature, you have to observe her evolution

observation contains the secrets about Mother Nature and that is not unusual, when you

feel not too well, you go to the doctor, the doctor wants to be able estimate your true

state of the physical system, the true state of the physical system are obtained by making

observation,  blood  pressure  temperature,  various  kinds  of  tests  and  so,  on.  So,

observations are indicators  of the underlying true state of any system beat human or

nature.
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Now let us pull the other one, we are talked about model, what are the model? Models

represent  abstraction  of  reality,  models  represent  our  understanding  of  how  Mother

Nature works. It reflects  our cumulative understanding of the working of the system,

interesting model stems from must be stems from not systems. I am sorry, stems from the

fact that the forecast product are generated from model state our solutions. So, to do

forecast,  models  are  necessary,  models  represent  our  understanding  of  the  Mother

Nature,  our  understanding,  the  Mother  Nature  sometimes  closer  to  being  perfect

sometimes may not be perfect, a model and it is solution in general depend on number of

factors pertinent to the behaviour of the system being modelled. We have already talked

about the role of parameters in models and so, on. 

So, now, here comes the two facets, the reality as it is our sense of our sensing of reality

in  terms  of  observation,  models  represent  our  understanding  of  our  reality, probably

words and that is probably the gap between the two. It is this gap between the actual

reality and our understanding of how reality works leads to forecast errors, if the model

is perfect the forecasts are perfect. If the model and the reality, if there is a gap that gap

reflects  in  the  form of  forecast  errors.  Now, I  would  like  to  be  able  to  classify  the

presence of this gap between our understanding of reality and actual reality itself. 



(Refer Slide Time: 07:21)

To emphasis the intrinsic dependence of model solution on various factors. So, we have

already seen, if it  is a dominate model the model, the solution depends on the initial

condition parameters boundary conditions. So, the model solutions are contingent on the

value that we are saying to these variables, because these variables control the model

solution, anybody who has done anything in differential equation knows the differential

equations solution. I have a general solution you get a particular solution by specializing

the  initial  conditions, if  we  change  the  initial  condition  the  solution  changes.  So,

changing  the  initial  condition  changes  a  solution. In other  words  initial  condition

controls the evolution of the solution, change in the parameters controls the evolutions of

the solution. So, anything that can change the model solution is called a control variable.

So, control in principle refers to all the factors collectively that affects the evolution of

the model solution based static parametric module.

Let's C refers to a subset of R L; R L; L is a integer R L is a space of real vector of size n.

I am assuming C is a subset of R L; that means, any vector C belonging to script C is the

control vector of dimension, L total the real number of control in general L C is called

the control space every point in control space corresponds to one solution of the model,

if you change the control vector the model solution changes. So, ultimately the behaviour

of the forecast  depends on the value of the control  that  we use and  I would like to

quickly  remind  that  the  control  consist  of  initial  condition, boundary  condition



parameters, anything that is part of the model, if I change any one of these factors of the

solution changes, I call it control.
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In static model control represents only the physical parameters in a static model, there is

no initial condition, there is no boundary condition, it is a bunch of parameters and that is

all. So, in that case the parameters we call it alpha. Alpha is a p vector, in this case the l

is equal to p the control space is essentially a parameter space in general, I want you to

remember the parameter space is only a subset of the control space, the control space

consists of initial conditions, boundary conditions and parameters, but parameters are a

parameter set, a set is a subset of all the controls. So, in the static model there is no initial

conditions, there is no boundary conditions simply parameters.

The dynamic model, it is the control, is a union of parameters initial condition boundary

conditions. So, l is equal to p plus n plus q where is p coming from p is the number of

parameters, n is the number of initial condition, q is the number of boundary condition.

So, l is equal to p plus the n plus q in non-linear differential equation. There is a branch

called bifurcation analysis. In bifurcation analysis c represents the parameter space, the

bifurcation analysis depends on variation of the behaviour with respect to variation of

parameters  in  the  parameter  space.  So,  as  c  varies  in  script  c.  we  get  different

instantiations of the model anybody who knows differential equation knows that if the

initial  condition  changes  it  represents  a  different  model  the  parameter  changes  is



represent different model. So, each model within a class. So, for a particular choice of

the parameters, we call it an instant of that model, the instant being picked by the valves

are controlled.

The  set  c  in  a  sense  denotes  the  set  of  all  models.  So,  from a  model  now we are

considering, not one model, a class of models. So, in general in science a model does not

mean  one  model, a  model  means  a  class  of  model  when we say primitive  equation

model, primitive equation model is not one, but  it is an infinite collection of models

Barotropic Vorticity equation model is not one, but the collection model shallow water

model, likewise same thing with respect to harmonic oscillator. Harmonic oscillators are

a very generic thing, the frequency if you change it, the model changes, initial condition

changes. It changes if you add a friction, it changes if you add a forcing it changes. So,

by model we always mean infinite class. 

I have to pick from this infinite class, a particular model that can be utilized the picking

of the particular model, from the class is done by specifying the values of the control, the

control consists of parameters, initial conditions, boundary condition, whatever applies

whether it is dynamic or static.
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So, now with this as a background I am now going to define the classification of forecast

errors. Let c be in instance of the model. So, in other words I am representing a model by

the choice of control vector. So, if c is the control vector x c, let it denote the solution a c



varies x c varies. So, define z superscript M super Z super script m. So, what does this

mean x e is the model output, h is the operator Z of M is the model counterpart of the

observation Z of M, the non-linear case model counterpart of the observation. 

Now, I would  like  to  distinguish  between  model  counterpart  or  model  predicted

observation from the actual observation z is the actual observation, comes from the meter

that I read satellite radar voltmeter ammeter whatever is, but if I know the state, if I know

h, I can also predict what the model predicted observation at today. So, there are two

versions of the observation, the actual observation, the model predicted observation. So,

let's c star b, the c such that x of c star is x star, the true state if I assume the model is

perfect, my model includes perfect model. A perfect model has to be parameterized, let c

star be the parameter that gives me the perfect model I do not, what c star is, but I am

assuming, such that c star exists.

If your modelling is good such as c star exists, there's no question about the existence of

that. So, this is where the whole thing lies, there is a c star that corresponds to the true

state of nature the model matches the Mother Nature, but there is a c. I have picked the c

may not be c star, if the c is not equal to c star the x of c is not equal to x of c star x of c

star corresponds to the true state of nature x of c is the state predicted by the model that

corresponds to parameter c and these two in general need not to be the same and that's

where fundamentally forecast errors arise.

So, the forecast errors now, can be defined as error in the model induced by the control

vector c e of c is equal to z super m what is that that is the model counterpart of the error

this is generated by z the z without any superscript that is the true state of Mother Nature

the difference between the two is what i just talked about what the model sees what the

Mother Nature has the difference between the two is called the forecast error. So, the

forecast errors now has a description z m is a h of x c z is equal h of x star plus v. So,

there you get this following equation 4 the first term I am going to call it b of c comma c

star minus v; v is the observation noise what is this b; b is the deterministic part of the

forecast error.

So, the forecast errors consist  of two parts  one due to the unavoidable unobservable

random error v, the second one the deterministic  part, which is  which arises largely

because of my inadequate knowledge about what Mother Nature does, she uses c star I



use c you see its not equal to c star there is going to be a bias. So, you can think of b as a

bias in the in the forecast the bias is a function of c and c star.

So, this is the general framework, in other words the forecast errors always consists of

two parts a deterministic part and a random part. I also want to quickly add random part.

We cannot touch it we cannot annihilate, the random part stays with the observation. So,

what is the best you can do if you want to be able to reduce the forecast error? The only

thing that you can do is to hope to annihilate b, if you can annihilate b then you will be

left to only with the random errors which is uncontrollable. 

So,  what  is  the  basic  idea  of  forecast  error  classification  I would like  to  be able  to

understand what part of the forecast error I can control? What part of the forecast error I

cannot control? We can only deal with things that I can control over do not worry about

things  that  you  have  no  control  over.  So,  the  separation  of  the  forecast  error  into

deterministic part and the stochastic part is very helpful in trying to design schemes, for

correcting forecast errors that is the motivation for this.
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So, given e of c. Now, please go back e of c is given by equation 3. So, you can think of

e is equal to b minus v. So, given e of c. So, what is that we would like to be able to do

what is the concept of forecast error control there is c star. So, we have talked about

separation of forecast errors in the deterministic part and the random part. Now, we are

going to look at a classification of forecast errors, we know e c is the forecast error e c.



So, what is the basic idea here is c using c, I am going to generate a solution, I am going

to get a forecast. Let us say x k or I will simply say x of c x of c, but I have x star which

is the unknown to state x star is different from x c.

So, the question is how do I change x c to x star we all know x star depends on c star. So,

the only way to move x c to x star is to change c to c star and that can be done by adding

a perturbation delta c a that is what is being talked about in here. So, if you want to be

able to annihilate the error you have to be able to change the control, you have to add a

correction delta c to c and if c plus delta c is equal to c star, it will become h of c x of c

star and that will be the true system or the true state and z represents the truth. So, the

truth minus truth cancels itself and v is the uncontrollable unavoidable noise in this case

this is purely random. So, if you look at fundamentally, how do we can improve the

quality of forecast herein lies the solution.

The only way to be able to improve the quality of forecast is to find an increment delta c

to the control, which in added to the control c will annihilate the deterministic part of the

forecast error that is the fundamental relation that one needs to bear.
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So, this can be pictorially represented like this. So, the control space c represent the

current belief about the model, c star is the unknown truth, if I use the c, I have picked a

model x of c, if I picked x f c; x f c give me the observation z of m, but c star has x star

that gives observation z. So, how do I? How do I minimize the difference between z and



z star? In order to be able to minimize the difference between z and z star  I should be

able to minimize the difference between c and c star that is where the control lies. So, I

what is the increment, I should add to the control in order to force x c closer to x star

which  will  in  turn  make  Z  closer  to  Z  M.  So,  this  pictorial  view  is  the  basis  for

classification forecast errors.

So, I see. So, look at this mathematically, now I see tend towards c star x of c will tend

towards x star, which will then imply Z of M will tend toward Z when Z of M tend

toward z means what my model reflects Mother Nature, I cannot do any difference, any

better that. So, this picture essentially tells you how one can hope to control the forecast

error largely due to the difference between the model forecast and the true state of the

system.
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So, with that as the basis and now I am going to provide the actual classification. We

have been talking about case one; in this case model is perfect, model is perfect means I

have thorough understanding of Mother Nature, but I did not pick my c to b equal to c

star, I may have a total understanding in the process, but I may not know the initial state

of the Mother Nature. So, c is not equal to c star.

So, in this case the forecast error largely due to incorrect control, the model is capable of

replicating Mother Nature, but I did not know the actual parameter, Mother Nature uses I

only. Guess it, c is my guess, c star is her choice. The difference between c and c star is



going to reflect this difference between c and c star reflects the forecast error. So, e of c

in this case be c; c star minus v almost all the standard formulations of data simulation

problem, for deterministic static and dynamic models are of this type. So, what does it be

assume? We assume my model is perfect.

Let us talk about that for a moment. Now, no modeller believes that model is not, correct

because if it is not correct we will not use it. So, if I am going to use the biotropic watch

as an equation to be able to describe the hurricane scientists know that it captures 90 95

percent of reality is very close to being perfect. If it does not, if scientist does not have

that confidence in the model they will not use it. So, much of the development in the

forecast  literature  fall  into  this  category  namely  models  are  perfect. We assume the

models to be perfect, even the perfect model if that is going be the forecast error is

largely due to the difference in control, if there is a forecast error only, because c is not

equal  to c  star. I have the ability  to be able to  change the control  thereby force the

forecast error to be purely random.

So, most of the standard formulations of data assimilation falls in the category, the well-

known 3 D-VAR, 4 D-VAR, forward sensitive  method, nudging are  all  some of  the

examples of methods used to do data assimilation fall under this category.
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Case two; this is much more difficult case the model is imperfect if them. So, is a model

is imperfect and my control is not the same. So, there is two kinds of errors one coming



from the model not being perfect, another coming from the fire control is not perfect. So,

there are two types of errors that are confounded, it is very these confounded errors are

very difficult to separate, we cannot say this part of the error is due to this part of the

error, due to this confounding is a large headache.

The forecast error is the confounding of the model error and the control error. In this case

we need much more powerful techniques and this is the most difficult case that one can

deal with this case can be handled in one of many ways depending on how one wants to

postulate the correction to the model error efficiency. In other words you have to want to

correct the model error in a particular way, the way that you would like to be able to

correct the model error will dictate the method by which you are going to correct the

forecast error.
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So, this view of data assimilation as a forecast error, correction was proposed in a paper

by Lakshmivarahan and Lewis in 2010. It is a basis for the paper forwards sensitivity

based approach to dynamic data assimilation. These three error classifications have been

the subject of this paper and the forwards sensitivity method, they had proposed is one of

the methods by which we can correct model errors as in case one, with that we have

concluded analysis of classification of forecast errors.

Thank you.


