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From Gauss to Kalman-Linear Minimum Variance Estimation

So,  far  we  have  reviewed  principles  of  statistical  estimation. We covered  the  basic

properties  of  estimates  unbiasedness consistency efficiency, then we looked into  two

types of estimation problems namely; one within the Fishers framework, wherever there

is no prior one of the another is the Bayesian framework, where there is prior in both the

case, there are observation.

So, the ultimate challenge to us is, if somebody gives you only observation, what do you

do? If  somebody gives you observation and some prior information or prior believe,

what do you do in the both, the context we have developed least square based estimation

methodology. We have talked about deterministic squares, we talked about statistically

squares. We also talked about Bayesian least squares.

Please  understand  the  primary  theme  that  unifies  the  whole  presentation  of  solving

inverse problems, static deterministic, dynamic deterministic, static stochastic, dynamic

stochastic, all the possible combination, the method that unifies them is the least square

method. So, with that knowledge of statistical methods of estimation now, I am going to

provide another thought process is within the framework of estimation theory, which is

called sequential linear minimum variance estimation.

Please understand. So, far we insisted on simple least squares both within Bayesian and

non Bayesian context. Now, these are slightly a different perspective for formulating the

estimation problem, linear minimum variance estimation, the importance of this linear

minimum variance  estimation, the importance of sequential  linear  minimum variance

estimation comes from the fact that Kalman originally used this framework to be able to

derive the, now famous equation called form Kalman filter equation.

So, by doing this linear minimum variance estimation derivation, we are going to relate

that to the Bayesian least square estimation, we are going to show the Bayesian least

squares estimation that we discussed in the previous lecture and the linear minimum



variance estimation, that we are going to do now are two different facets of the same

problem Bible and we will build a bridge to go one to from one to the other, both ways

thereby establishing a broader way to be able to look at estimation principles, that are

used within the context of general dynamical data assimilation.

So, it is in that spirit,  we call  this module from Gauss to Kalman, why? Gauss least

squares why? Kalman linear minimum variance estimation and. So, we will first develop

the linear minimum variance estimation, per se starting from fundamentals then we will

try  to  build  the  bridge  between  the  Gaussian  least  squares  and the  linear  minimum

variance  estimation  there by establishing the dual  aspects  of the estimation problem,

estimation methodology that is the goal of this chapter.

Once we do this  we are in,  we would have in principle  completed,  the fundamental

principles that underlie the derivation of Kalman filter equations, this we are going to, do

not within the context of conserving the dynamics, but a very general discussion and it is

this generality of the discussion is very attractive and that is what we are going to pursue.
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Linear minimum variance estimate is something similar to the Gauss Markov theorem.

Gauss Markov theorem essentially relates to least square estimates. Let Z be equal to H x

plus v, the assumptions are the noise remains 0. The covariance of the noise is sigma v,

sigma v is SPD, X is random. I have a prior distribution, the prior has a mean mx the



covariance of this is sigma x, that is SPD x and v are not correlated. So, these are the

basic assumptions that one has to be able to formulate our estimation problem.

Again  you  can  see  there  is  a  Bayesian  undercurrent  of  Bayesian  assumptions  X  is

random, X has a prior Z is observation. So, prior gives some information observation,

gives some other information. We have two pieces of information. Whenever you have

two pieces of information, we would like to be able to combine it optimally, the Bayesian

framework essentially concentrates on that, we have already seen that.

Now, we are going to be looking at another way of doing the estimation Bayesian like

estimation, but within the framework of linearity an unbiasedness and minimum variance

and that is the theme of this, first part of this discussion. So, I have an estimator which is

phi, phi of Z, gives you the estimate. Estimate is x hat 

In the Bayesian framework we concocted a cost function and then we had used that cost

function defined what is called the Bayesian cost; and we tried to minimize the structure

of  the  estimator  that  minimizes  the  Bayesian  cost.  Here, we are  going to  do totally

differently, we are going to insist that this estimate x hat is linear in the observation. This

x  hat  is  going  to  be  unbiased  estimate, this  x  hat  also  simultaneously  possess  the

minimum variance property.

Earlier, when we did the Bayesian estimation we showed that the gundy, the conditional

Bayesian cost can be minimized by choosing the estimator to be the posterior conditional

mean and after choosing that we then demonstrated that estimate is unbiased and it is

also minimum variance. So, we first optimize the cost and then study the properties the

optimal estimate as being opt as being unbiased and of minimum variance.

Here, we are going to start by explicitly talking about the structure of the estimate. So, let

just, let the estimate x hat be dependent linearly on Z well x hat. So, phi of Z is equal to

AZ plus b is such functions are not called linear, they are called affine in. So, if b is 0, is

linear, if b is not 0, it is a linear term plus a constant term that is called affine function,

but we called such a structure for simplicity linear. So, the estimate has a linear structure

and I would like this estimate to be unbiased and minimum variance.

Now, please understand, we only know Z, what is  A? Is A matrix? What is size of A?

The left hands dimensional vector Z is m dimensional vector. So, A belongs to r n by m



B belongs to r m. So, in A and B are two unknowns. So, we are going to simply require

let x hat be A Z plus B. There are two parameters  A and B. I would like to be able to

written A and B, I would like to determine A and B, such that you have properly chosen

x hat becomes unbiased you have properly chosen x hat in addition to being unbiased, it

is also minimum variance.

So,  we are  going to  determine  two parameters,  such that  the  resulting  estimate  will

satisfy two conditions,  one being unbiased another, being minimum variance straight

away.
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So, let x hat be the error in the estimate 2, we seek to minimize the mean square error.

So, x hat transpose X is given by X minus x hat transpose X minus x hat X. This is an

inner product that is a scalar.

Therefore the transpose of a scalars, it is the trace of a scalar, is itself. So, I am going to

express this as a trace of that quantity, because a scalar is a one by one matrix I can think

of a scalar and the trace of a scalar is itself. We also know trace of A B, the trace of A B

is equal to trace of B A therefore, the third line comes from the second line expectation

operators trace operator, they commute one can readily see.

So, expectation of the trace is simply the trace of the expectation of this term inside there

is  an  outer  product  that  is  that  is  X tilde  times  X  tilde  transpose  and  s  that  is  the



covariance of the error we are going to call it P therefore, that is equal to trace of P where

P is called the covariance of the error, it is this quantity the covariance of P is what we

seek to minimize.

So,  when  we  talk  about  minimum  variance  we  are  going  to  be  talking  about  the

following X is the unknown x hat is the estimate X minus x hat is equal to X tilde I

would like to be able to minimize the sum of the variances of the individual components

of X tilde, that quantity is related to trace of p. So, that is the quant that is the target that

we are going to be working towards.
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So, now having explained, what is that we are looking for. Now, we are going to go back

to the expression. Now, please remember x hat is the estimate x hat is the estimate x hat

is equal to B plus AC, let m be the mean of the estimator.

So, m is equal to E of x hat E of x hat is equal to the expectation of B plus AC, B is a

constant, Z is equal to H x plus B. So, I can substitute Z is equal to H x plus V A being a

constant H being a constant I can pull them out if X is m, because we have already made

assumptions about, we have already made assumptions about the mean of X being m,

that curve, the mean of X being m therefore,  m which is the mean of the unknown,

because unknown is a random vector, unknown as a mean m and such A mean by virtue

of my estimate being linear in Z must be B plus A H times m.



So, m must be equal to B plus A H times m and if that is equal, it is unbiased. So, this is

where the unbiasedness comes in. What is the unbiasedness condition? E of x hat is

equal to m. M is the unknown I am trying to estimate, m is the mean, we are going to

estimate x hat is the estimator. So, unbiasedness essentially requires E of x hat is equal to

m. So, that is what we start with and. So, unbiasedness condition leads to m must be

equal to B plus A H times m. So, that essentially tells you B must be equal to I minus A

H times m.

If I substitute this value of B in here. I get a new structure for x hat X hat is equal to I

minus A H times m plus A Z, which can also be written as m plus A times Z minus H r

look at the structure. This looks truck, we look at the structure, we saw the structure of

the Bayesian framework already; that means, the estimate is equal to the prior plus A

times Z minus y. 

So,  Z minus is  the innovation  A is  the weight.  So,  I  had two unknowns, I  have the

element, I have decided what must be the structure of B in order that the estimate is

unbiased by substituting the condition for unbiasedness. The estimate done by as the

structure the unbiased estimate must be given by this m plus A times Z minus H m.

And therefore, the covariance of P, the covariance P of x hat is equal to X minus x hat

times  X minus  x  hat  transpose  the  expected  value  that  of  X minus.  So,  I  know X

structure  of  X  hat.  So,  I  can  compute  explicitly.  What  is  X minus  X hat?  So,  if  I

substitute to this structure in here, I get the error structure to be this. So, that is the

expression for the estimation error it is this matrix whose expected value is P. So, let us

compute  that  matrix  explicitly  by  substituting  star  in  here,  we  have  two  terms  you

multiply the two terms and simplify you get as a result there are four terms that affect the

inner product x minus X x hat transpose x minus x hat.

Again Z is equal to H x plus V. So, Z minus H m is equal to H of X minus m plus V,

again there are lots of algebra in here. So, if I substitute this expression in here for Z

minus.
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The P is equal to expected value of the product X minus x hat times X minus x hat there

is m I am sorry, I am sorry, there is a parenthesis that is missing. So, I can substitute all

the four terms in here, in the, I can substitute all the four terms from the previous page in

here. So, I have now sum of four expected values, in here sum of four expected values in

here the, first term you can readily see is sigma X, the second term you can readily see is

minus sigma X times H transpose, A transpose the third term is minus eight times, H

times sigma X the fourth term, becomes ad A transpose where for simplicity the, in for

simplicity notation d denotes H times sigma X plus H transpose plus sigma V, yes there

is a kind of simplification.

But I think it is a worthwhile exercise. So, if you did that I ultimately get what I want.

This is the structure of the covariance of the estimate. Now, look at the structure, this

structure has sigma X, which is known. It has H, which is known. It has d. Let us look at

the structure of d d depends on H sigma X and sigma V everything is known. So, in this

every quantity, other than A is known. A is a matrix, now you can also see one more in

this term. A is quadratic, in A quadratic, in A, in these two terms. It is linear in A.

So, you can think of P is some form of a quadratic function in the elements of the matrix

A is unknown, let us go back. So, what is that, we want to be able to get their meaning A

linear, minimum variance estimation, we also wanted to have a linear. So, that essentially

said my estimator, must be a linear function of the observation. So, we can cut that, let x



hat  be  A  A Z plus  b. We forced unbiasedness  that  gave raise  to  that, gave  raise  to

condition and B in terms of A which we substituted.

We carried through the analysis we computed the expression for the covariance of the

estimate the covariance, of the estimate it is a quadratic function, in the elements of the A

matrix, which is yet to be decided. So, we still have not decided what A should be. So,

every parameter  is the form of a control, we have it  is like a knob, I can change to

enable, what I want to do? We use B to force unbiasedness. Please, go back. I want my

estimate to be linear unbiased linearity by assumption by structure A is Z plus B.

Unbiasedness  B  has  been  expressed  in  terms  of  any  other  quantity  and  we  have

eliminated B we have done. So, the only one remaining condition is minimum variance

to be able to attain minimum variance, what are we going to be doing? We are going to

be using the tool, the unknown, the elements of the matrix A. So, I am going to fine tune

the element of the matrix. Here such that the trace of P becomes minimum y trace of P. P

is a matrix the diagonal elements in the matrix are variances.

So, the total variance sum of all the variances in the components of the estimate is equal

to the trace of P.
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So, what is the rest of the problem? The rest of the problem is a mathematical problem,

of trying to minimize the trace of P, which is the total radiance, but with respect to what?

With respect to yet to be decided free parameter A.

Now, what is the trace of A? Trace of A is essentially sum of all the diagonal elements, P

I I. Now, please remember A has n square elements. So, we are going to be minimizing a

scalar quantity called trace of P, that depends on the elements of a there are n square of

them. So, in principle, we have to do a minimization over n square variables that is the

computational problem of interest, in here to simplify this compute.

So, what is that one can do? One can now, that we have expression for the trace, we can

compute the derivative of the trace with respect to each element compute the condition

and collate all the conditions and build the matrix A, that is one way, the another way

would be an easier  way, would  be  to  determine  A, not  element  by element,  but  by

column, by  column or  row by row, that  way we can  simplify, the  structure  of  this

minimization problem there are several different ways, in which one can minimize, I am

going to talk about one particular form of minimization.

Please recall, we have already learned how to minimize a quadratic function. We are, we

have gained a good experience in the minimization of quadratic functions. So, given our

understanding and knowledge about the minimization of quadratic forms, I am going to

use the tool of minimization of quadratic forms to be able to determine, the elements

with the optimal A to that end, I am now going to consider an i th element i th element of

P.

Now, please understand this expression in slide, five gives you the entire matrix. So, if I

want to consider the ith element. Please remember, P is the sum of 1 2 3 4 matrices. So,

the i th element of P, which is a P i th diagonal element of P, which is P i, is the sum of

the corresponding i th element in the every matrix on the right hand side, that is the basic

idea here. So, pii is equal to i th element of sigma X. Now, let us look at the second. Let

us look, at the second term, the second term is ad a transpose.

So, let us look at this. Now, the second term is Ad I am sorry, the second term is Ad a

transpose, I would like to be able to consider the  i th element of i th element of this a

little reflection reveals this, i th element of this matrix is given by the product of the i th

row of a times d times the transpose of the i th of A.



Please understand A is A matrix, d is A matrix and a transpose is the matrix. This is A d,

a transpose, this is going to be given by the product matrix. So, I am interested in the i.

This is P i i in order to get this P i I. What is that I do, I take the i th row of a i take the i

th, the column of a transpose.

So, I do a quadratic form, which is given by this expression therefore, P i i is simply the

sum of i i th element of sigma X, the quadratic form with the i th row of a likewise, you

can also readily see for the third term, for the third term and the fourth term. We can

express them as A i star A i star, look at this now, A i star bi star. Suppose, b i star a i

star transpose where b i star is the i th row of the n by m matrix sigma X Ht.

Let me probably, I am, I would like to spend a couple of minutes on that, please let us go

back. So, the third term is I am sorry, the third term is the third, it is time sigma X times

sigma X. So, let us consider the third term times sigma X. So, I would like to be able to

consider the matrix as A b where b is equal to now, I would like to do the other way, I

am sorry once again.

So, let us consider the term sigma X H transpose, a transpose. So, let us look at these two

terms and I am sorry, let us look at the two terms. There are two terms, I will erase this

part. So, if you go back, I have two terms sigma X A H. So, let me write that down in

here sigma X plus one term and if I go back there is sigma X H transpose a transpose

sigma X , H transpose, A transpose.

In here this is not X, this is H sorry. This is H sigma X symmetric. So, you can see these

two matrices are transposes of each other therefore, if I consider the i th element of this

matrix, I can infer the i th element of that matrix very easily, which is the transpose of

this. How do I compute the i th element of this matrix? So, this is A, let this matrix be,

let this matrix be , H sigma X. So, this is A. So, in order to control the i th element, what

is that, I now need to do?

I need to take the i th row of this, I need to control the j th column of that j th column, i

th row that is that is essentially it or if I want to have the i th element, I need to consider

both i and j are equal. So, so that is the basic thing. So, in here I need to be able to

consider this i, this is i therefore, i th element therefore, i th element of sigma X is given

by the product of i th row and the i th column of the product H sigma X the i th column

of H sigma X is the.



So, sigma. So, let us look at this now, H sigma X is one matrix, sigma X H transpose is

another matrix, both come in here, we also know, these two are in transpose of each

other. So, what does it mean the i th row of this is the i th column of that i the row i, i

row becomes the i th column of this therefore, we can readily convince ourselves A i star

bi star transpose minus bi star Ai star transpose are the i th element of the matrix A H

sigma X and sigma X A transpose H therefore, the entire Pi is given by this expression, I

want you to understand that this is how the extract the i th element of the matrix P. It is a

sum of all the P is, that gives you the transpose.

So, what is the idea here, if I want to minimize the sum, it is enough, if I minimize the

individual term. So, if I minimize the individual terms, I can, in other words, we are

going to minimize, the individual terms P i i to be able to minimize, the trace therefore,

this P i in here, can be written as a quadratic form, please remember Ai star is A, is a row

vector Ai star transpose is the column vector d is a matrix, this is minus 2 bi transpose Ai

and this  is  a constant  sigma Xii,  where is  the two comes,  from these two terms are

scalars. They are both equal, they are transposes of each other, they are scalars therefore,

these two terms are combined two times bi transpose Ai star plus sigma X i i.

So, how does this looks like this term essentially looks like X transpose AX minus b

transpose, X plus C that is the quadratic function X is replaced by. So, X is used in place

of A i star. So, you can see the relation between X and A i star, the A i star is the i th row .

So, X is a vector. In this case X is equal to Ai star transpose, because X is a column

vector, A i star is the row vector.

So, with this association between X and Ai star, you can readily see, this is the quadratic

function. So, I would like to be able to rewrite this in the form of a quadratic function,

which is y transpose d y minus 2 b y plus C y i is the A i th row of that. So, y transpose is

the column vector. So, y transpose d y is what we are concerned with; we also did know

the associations.

So, this one is A, whose structure is very well known to us. Now, I am going to minimize

P i i, the expression on the right hand side given by star with respect to y.
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So, minimize Pii with respect to y that is a standard quadratic form, if you compute the

gradient and the gradient in this case is given by 2 dy minus 2 b therefore, the optimal y

is given by d inverse b i change the notation back to A. So, this is going to be equal to Ai

star transpose is it going to be equal to d inverse bi star and please remember b is related

to sigma X H.

Therefore, I can now construct a matrix A 1 star transpose A 2 star transpose, A m star

transpose each of these have d inverse, as a common factor common factor and I have V

included all the b s therefore, this matrix is equivalent to product of this matrix times,

that matrix this expression provides optimal value of a optimal A. So, A 1 star is the first

row of A A 2 star is the second row of A A m star is the m th row of A.

Therefore, if I consider the transposes, this matrix now becomes a transpose. So, instead

of expressing A, we are trying to express it in terms of a transpose, that is a convenient

thing, therfore the previous expression, look at this now the previous expression at the

bottom of slide 7.
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Now, can be succinctly  denoted by A inverse.  I  am sorry, A transpose is  equal  to d

inverse H X now, A i take the transpose of both sides, remember sigma X is a symmetric

matrix d is a symmetric matrix. So, A is given by this d, we already know d is a symbol

that represents sum of two.

The sum of two matrices therefore, A, the optimal A takes this particular structure, that is

very important. So, we have already used the quantity minimization principle, to be able

to determine A, that minimizes the trace of A. So, let me summarize, where we are right

now, we started with a linear structure, we required it to be unbiased, we eliminated b,

then we looked at the resulting structure of the, for the estimation error. We compute an

expression for the covariance of the estimation error, then we computed an expression

for the total  sum of the variances of the individual  components of the forecast error,

which relates to a case of P. P is the covariance of the forecast error.

The covariance P is a quadric function in the elements of A, there are several different

ways to do the minimization problem, we chose a particular minimization problem the

reason for choosing what we did, because we already know how to minimize quadratic

functions. So, we fell back on what we know and know very well, we know how to

minimize quadratic forms therefore, we converted the problem of minimizing P  i, we

converted the problem minimize in the trace of P, trace of P is the sum of all the Pis.



So, what is that, we did? We minimize the individual terms in the summation. If you

minimize  the  individual  terms  in  the  summation, the  total  variance  is  going  to  be

minimum that is the line of arguments, the minimum of the individual, elements can be

obtained by appropriate choice of A. So, the choice of A that relates the minimum of the

i th element P i i relates to a row of Aby deciding each row of A for each element P i i.

We collectively got all the elements of A.

So, the optimal A is given by sigma XX transpose d inverse, once we have that, please

go  back  and  remember  what  is  the  optimal  structure, we  already  have  the  optimal

structure, is equal to m plus  A times H minus, I am sorry Z, this is  Z Z minus. So, Z

minus is known m is known. So, we have to substitute A. We substituted this value of A,

in here that led to this expression in here.

So, the optimal estimate that is linear unbiased and minimum variance is given by x hat

is equal to m plus  A matrix, which is a weight matrix and the innovation, this is the

innovation. Now, not only we have gotten the estimate, we already know the structure of

the convenience of the estimate which is P, if you go back to the previous slide.

In slide 5, we have an expression for the covariance of P and there everything is known

except  A. Now, we have optimally, we have determined the optimal value of  A. So, if

you substitute the optimal value of A, in here we also get the covariance, the covariance

is the optimal estimate substituting A in P and simplifying that is a good bit of algebra

involved, there you get the matrix  P, which is  the covariance of the linear  unbiased

estimate.

The minimum covariance, I should not say minimum covariance, the covariance and the

estimate, where the total variance is minimum, the covariance structure is it takes, this

particular form. Now, look at this. Now, there is, there are two terms one is sigma X.

What is it? Sigma X is the variance of the prior. I am subtracting from that a quantity. So,

you can think of  it, the posterior  covariance  is  less  than  the prior covariance, if  the

posterior covariance is less than the prior covariance, means what by combining, the

prior of the posterior by combining the prior on the observation, I have tried to reduce

the variance of the posterior variance, of the posterior.

Now, look at this, now sigma X is the covariance of the prior sigma V is the covariance

of the noise. So, this whole term is a symmetric matrix. It definitely, it is a symmetric



positive, definite  matrix, I  am subtracting  a  symmetric  positive  definite  matrix  from

sigma  X. So, P the trace of P is less than that trace of sigma  X. So, by lessening the

variance, if I am going to improve the quality of the posterior mean. So, I have prior

mean, I  have  observation, I  have  the  posterior  mean, posterior  mean  has  a  smaller

variance of the prior mean and that is the result of combining two pieces of information

prior and the observation.

The  structure  that  is  given  in  here  is  called  the  Kalman filter  structure; this  is  the

structure of the Kalman filter, which has originally derived by Kalman in 1960. So, it is

an, the derivation that, if we had gone through, is the very important derivation that leads

to the fundamental result in Kalman filtering techniques.
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Now, I would like to build a relation between the Bayesian least square solution and the

linear minimum variance solution and introduce a sense of duality between the two, to

that  end.  I  am going to  now recall, what  we have  done the  Bayesian  approach, the

Bayesian approach is supposed to do the calculation in what is called the state space rn.

So, in Bayesian approach, you may recall from our previous analysis, this is the structure

of the optimal estimate.

The optimal estimate is the linear combination observation Z and the prior mean and is

given in this particular form sigma E is the matrix, that weights the sum and sigma E is

given by I am sorry, this must be sigma X and this must be H transpose sigma E n by n .



This must be, I am sorry one second, I would like to correct an error here. So, this must

be equal to sigma X and this must be equal to sigma V. Let me think about it, that is

sigma V, no the other way.

I am sorry, , H is let me make a little calculations, in here H is m by n H transpose is n by

m. So, if I am going to multiply this. So, this must be sigma V, this must be sigma X.

This must be sigma X, sorry for the error. So, sigma V you can readily see from the

previous calculations, we have already done. So, sigma X is the prior covariance sigma

V is the observation covariance. So, that is the covariance of X, the mean square estimate

coming from the Bayesian.

So,  this  is  the  estimate  and  it  is  covariance, this  formulation  is  called  state  space

formulation. When n is less than m it is useful to do the calculation, to the state space,

which is rn, because n is less than m. So, computations in the state space are smaller of

the two spaces when compared to, when you consider the observation space and the state

space. So, this is the summary of the Bayesian least square solution 16.26 16.25. These

are all expressions in chapter 16 of our textbook, which is the LLD 2006.

Now, linear minimum variance estimation is supposed to be working, the observation

space, which is the mn, the observation space formulation is used when m is less than n

in the case of linear minimum variance estimation, the structure of the estimate is given

by this. We just saw the covariance of the estimate is given by this. This is again given in

LLD.

So,  now  you  can  see  we  have  two  types  of  results, one  coming  from  state  space

formulation  within their  Bayesian least  square set  up, another  one is  the observation

space formalism that comes from linear minimum variance estimation. At the outside it

looks as though they are different, but the important part of the result is that they are

indeed the same.

So,  there  are  two different  versions  of  the  estimation  problem, the  same estimation

problem, the results are given in two different forms, which at the first side looks very

different. Now, we are going to show that one can convert one result into the other by

invoking  to  a  very  simple  matrix  identity  which  is  called  the  Sherman Morrison

Woodbury formula. We have already used the  Sherman. Sherman Morrison Woodbury



formula  in  the  context  of  recursive  least  squares, then  we  did  static  deterministic

problems.

The same to  Sherman Morrison Woodbury formula  is  the result  from matrix theory,

which are developed during the early, mid 30s and 40s is becomes very handy to see the

relation between these two formalisms, the bridge between these two states. So, I would

like  to  reinstate, one  is  the  state  spread formalism, another  is  the  observation  space

formalism, one coming from the Bayesian, another coming from the linear minimum

variance estimation.

So,  Kalman derived using the linear minimum variance estimation, people who came

after  him,  also  derived  the  Bayesian  formulation  and  then  showed  the  Bayesian

formulation and the linear minimum formulation are one of the same, they are dual to

each other in one case, you do the computations observation space, another case you

could do the computational state space by proving the equivalence between the two. It

provides us a lot of freedom to do the computation in a space, which is smaller of the

two, whichever is smaller I will adapt this formulation rather than that formulation that is

the basic idea.
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So, the bridge based on Sherman Morrison Woodbury formula is the formula in matrix

theory, we have given in the appendix b to our book, I have also talked about extensively

about  the  Sherman Morrison Woodbury formula  in  our  module  on  matrix, matrix



analysis, matrix  theory, facts  from matrix theory. So, cons start; let  us start  with the

linear minimum variance analysis. We recall D is given by this, D inverse is given by this

if I apply Sherman Morrison Woodbury formula Shermann Morrison Woodbury formula

to this.

We essentially get this Shermann Morrison Woodbury formula I am not going to , quote

the formula, it is already given in the module on matrices. So, what does it essentially

say the Shermann Morrison Woodbury formulas says the following, if I have sigma V, I

may know sigma V inverse. Suppose, I update sigma V by adding A matrix which is H

sigma X H transpose.

How do I compute the inverse of sigma V plus H sigma X H sigma trans inverse. So,

given this  the question is  how to compute  this  and that  is  given by the well  known

Sherman Woodbury formula, if you use that formula you will essentially get d to be this.

Now, I  am going to do a little  bit  of a jugglery, multiply  both sides by sigma X H

transpose. Please understand, these two are equal, these two are equal, I multiply both

the expressions on the left by this and then do a sequence of simplifications. We arrive at

this formula. So, what does that tell you sigma X H transpose, the inverse in the sum is

equal to the inverse of this sum times that. So, this is a matrix identity that gets out, that

is a result of coming, there is a result coming from application of Shermann Morrison

Woodbury formula. So, there is a lot of matrix algebra involved.

But the general steps, are should be very clear by now, yes there is a lot of checking to be

done. I hope you will take a few minutes to be able to check all the details. So, in view of

this fact that this matrix is equivalent to this matrix let us call this, now I am sorry. Let us

call this matrix; sorry I have to let us call that matrix as A let us call this matrix as b. So,

what is that, we have accomplished by using Shermann Morrison Woodbury formula, we

have essentially shown the matrix A is equal to the matrix b that is the first step.
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Now, I am going to import that relation, now look at this, now the structure where do I

get this structure, this structure comes from the linear minimum variance estimation from

Gauss to Kalman, we just talked about few minutes ago. In this I have a matrix that takes

this form, this form is the matrix A. I am going to replace that matrix by matrix b, which

is A, is equal to b that I derived in the last page. We know A is equal to b. So, we have

earned the right to be able to replace A by b.

Now, if I do the multiplication and simplify I get that to be the sum of I get this to be the

sum of  two  terms,  this  term and  this  term.  Again  I  am going  to  do  simplification,

consider the second term by A sequence of simplification. It can be shown the second

term, reduces to this by combining the simplification from here and substituting this in

here. We get the overall structure to be X transpose. I am sorry x hat is equal to given by

this.

Now, if you look back this is exactly the structure given by this, is exactly the structure

given by the Bayesian sorry, this is exactly the structure given by the Bayesian analysis.

So, what is that, we have done, we started with the linear minimum variance estimation

technique  linear  minimum variance formula,  for the optimal  estimate,  from there we

have derived the Bayesian analysis by applying a matrix identity that arises out of the

application of Shermann Morrison Woodbury formula by retracing this, we can readily

see these two formulas are equal.



Therefore linear minimum variance analysis is equivalent to the Bayesian analysis linear

minimum.  Therefore,  there  are  two  equivalent  ways  of  looking  at  Bayesian  did

assimilation  or  Bayesian  way  of  estimation, one  through  linear  minimum  variance

another through the classical Bayesian itself.
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Now, I am going to reformulate it in the form of a  Kalman filter static case, why the

Kalman filter  generally  talked  about  within  the  kind  of  dynamics,  but  Kalman filter

application is applied at a stage, where we are going to apply it at a given time. So, it is

in application, if you understand the static case, we should be able to apply it repeatedly

in time to get the Kalman filter equations within the context of dynamic models.

So, I am now going to quickly review some of the basic ideas. Let X be an unknown, but

constant. So, x hat be an unbiased estimate of X with no observation; that means, when

there is no observation that is the prior, the prior is given by minus X minus means prior

X plus means posterior, the prior has a mean X. So, the prior information consists of the

mean and the covariance the, I should say this is constant, I am sorry X is the unknown,

that is all. What it is? X is the unknown, x hat is the unbiased estimate of X, when there

is no observation Ef x hat is X, X minus is the prior covariance.

So, minus refers to the prior minus refers to X minus sigma minus r prior information or

prior statistics. So, I am given the observation again you have the standard assumptions,

the usual conditions on V, holds good namely the Xn and V are uncorrelated the linear



minimum variance approach. So, I am now going to talk about a posterior estimate X

plus the posterior estimate, is a linear function of the prior and the linear function of the

function of the observation.

So, i is a matrix, k is a matrix. I would like to be able to consider the posterior estimate X

L X plus is the posterior estimate. So, I am given two pieces of information X minus and

Z, I would like to be able to combine them to 2 to the X plus sorry, I would like to able

to combine them to get the X plus to X plus, I am going to again remain within their

linear minimum variance estimation as done by Kalman. So, I am going to insist at X

plus, is a linear function of the prior, on the observation i is equal to X bar plus K Z. So,

that is the posterior structure.

Now, prior is given, observations are given, I would like to be able to find X plus, there

are two unknowns ln K, I would like to be able to use the Ln K, such that X plus is an

unbiased estimate and also it has a minimum variance. So, you can see I am just, I am

trying to repeat what I did in the linear minimum variance estimation, but this is the

derivation that Kalman had given originally in his paper.

So, what is the difference in here? Earlier, we assumed the estimate is b plus  AX. So,

earlier, we assumed x hat is equal to b plus AZ. Now, we are assuming X plus which is

the posterior, which is equal to L X minus plus K Z. These two are equivalent, these two

in some sense are equivalent and. So, we are now going to repeat the derivation. Our aim

is  to  be able  to  guarantee  express  as  unbiased  is  also minimum variance; I  have  to

impose two conditions. The two conditions are imposed by selecting the two matrices L

and K.
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Therefore let us look at the condition for unbiasedness of this X plus is equal to L of X

minus plus K, Z X must be equal to E of X plus, E of X plus is equal to E of L X minus

plus  KZ, Z is equal to H x plus V. You substitute that you get, here you by doing the

simplification,  since  the  expected  value  of  E  is  0  that  term  goes  away  the  prior  is

unbiased. So, E of X minus is X k x X is X in this case therefore, I get the quantity, the X

must be equal to L plus K H X. So, this is essentially tells you L plus KH, X must be

identity or L must be equal to i minus K H.

So, one of the two matrices are, is expressed in terms of the other and H therefore, the

structure now becomes this, which can be written like this. So, that is the structure the

unbiased estimate. So, you can see we are running very parallel very much parallel to the

linear minimum variance estimation, in this particular context except that the structure

has been taken to be this in here; I would like to remind ourselves that.
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We are  looking  at  the  structure  of  the  estimate  that  comes  from  the  unbiasedness

condition and the linear structure linear in both Z as well as in X prior.

So, that is what the resulting structure is. So, this is the posterior error in the estimation if

I have the posterior error in the estimate.
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I can compute the posterior error covariance sorry, the posterior error covariance. Again,

we are talking about the posterior covariance;  this is the expression for the posterior



error. It is transpose, you multiply, you simplify the whole expression you get this and

you get d.

You can readily see the parallel between what we did and what we are trying to do. I

would like to be able to choose K, such that the trace of sigma X X plus s is minimum,

the problem is similar to what we just solved. So, the K that minimizes the trace of sigma

plus is given by that this K takes this particular form and this K has a special name is

called Kalman gain. In order of Kalman, who derived the filter for the first time in 1960.

So, we substitute this K please, go back a, this is the structure. It is into the structure, we

are going to, sorry it is into the structure we are going to substitute the value of optimal

K, if you substitute the value of optimal K in here.
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And simplify, you get  the  expression for  X plus,  which  is  given here  and you also

remember the covariance sigma plus has K in it. So, I could also substitute the value of

the covariance, in this expression, because I already know. So, I am going to submit this

back in here.

If  I  did  this  and  simplify,  I  get  the  posterior  being  given  by  that  and  the  posterior

covariance is given by the posterior covariance is given by this expression and in the

traditional literature, this could be written as this is generally written as X is equal to X

minus plus K times Z minus H X minus K is called the Kalman gain, Kalman gain this is



called the innovation. This is called the innovation, this is called the posterior covariance,

this is the posterior covariance.

Again you can see the posterior covariance subtracts a matrix from the prior covariance.

So, the posterior covariance is smaller than the prior; that means, after combining the

prior and the and the new information, I have reduced the uncertainty in my estimate that

is why posterior estimate is better and this is the reason why posterior mean is optimal,

within the context of Bayes, Bayesian framework.

So,  we  have  come  to  the  end  of  discussion  from guass  to  kalman  linear  minimum

variance  estimation.  So, in the previous lecture, we talked about  the structure of the

Bayesian analysis and Bayesian optimal decision and as well as the resulting value of the

covariance  from the  Bayesian  structure, here  we  developed  the  theory  of  minimum

linear, minimum variance  estimation, we  talked  about  the  intrinsic  relation  between

linear minimum variance estimation and Bayesian estimation, we built the bridge, the

bridge depends on a result from matrix theory, which was independently developed by

mathematicians in the 30s and 40s and that is called the Sherman Marrison Woodbury

formula.

So, by using an already existing formula, we were able to build the bridge between the

state space formulation and the observation space formulation and that essentially shows

that Bayesian method can be interpreted in one of two ways either within the classical

Bayesian or within the linear minimum, very minimum variance framework and we have

now by introducing these two, we have more choices in terms of picking, which one is

better from a computational perspective, we pick one or the other depending on whether

m or n smaller of the two the.
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So, with that I think we have provided a broad overview of the fundamentals of linear

minimum variance estimation as well as a derivation of the Kalman, total equations we

very strongly urge, the reader to be able to follow through the exercises and verify all the

computations that are involved in here, I very cognizant in to the fact that there are, there

are lot of facts, one need to verify, him in a class setting, I generally would cover this

linear minimum variance estimation itself in about two and a half three classes giving all

the details.

But in this compressed video form, I am giving; I am hitting all the major steps leaving

behind the verification of the formulas as an exercise to you. So, please do continue, I

also would like to, would like to draw your attention to a particular way of looking at

what is called A 3 d var probably even though, I have not introduced them, I think it is

better to anticipate that. So, I have a prior estimate and a co variance and I have a prior

mean of the covariance  under  nominal  distribution  I  have a  prior  and it  is  and it  is

covariance Z is equal to H of X plus V. I am going to consider a function H of X, which

is a sum of two quadratic functions. 

So, please remember there are two pieces of information one coming from prior, another

coming, I am sorry, this is prior one, coming from prior one, coming from prior another

coming from observations, this comes from observations. So, you can see there are two

pieces of information, coming together I am joining them in the least square framework.



So, f of X is a sum of two quadratic forms, I can minimize f of X with respect to X and if

you did that you will essentially get the Bayesian estimation a Bayesian results.

Therefore, you  can  readily  see  the  Bayesian  framework  with  Gaussian  distribution

assumptions and the 3 d var problem are essentially, one of the same. So, it is a very

instructive exercise to pursue and you already know how to do the minimization of the

quadratic forms. So, I very strongly urge you to be able to do the minimum and find the

solution and look at the structure of the solution.
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And all  these derivations  are  further  expanded in the book by sage and melsa  1971

estimation theory and application to communication and control.

Also we delve deeply into many of these in our chapter 17 in L L Ld. So, with this we

have  now  come  to  the  end  of  discussion, that  relates  to  all  the  basic  fundamental

principles, relating to statistical estimation, starting from the properties of estimates to

statistical  least  squares, the  maximum  likelihood  estimates  to  Bayesian  estimates  to

linear  minimum variance  estimation, this  is  simply a  small  sampling of  results  from

statistical estimation theory.

The statistical estimation theory is a big ocean, I want to provide window of opportunity

to be able to look at the kind of results, that statistical estimation theory provides and

how some of these results are intrinsic to pursuing our goal in dynamic data assimilation.



Thank you. 


