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In this lecture we are going to be talking about the elements of Bayesian estimation.

Bayesian estimation is the centerpiece of stochastic methods for data assimilation. We

have already seen stochastically squares, we have already seen the notion of maximum

likelihood, we did not elaborate on these techniques too much because it will take us too

far from the main goal of dealing with data assimilation. Yet the fundamental principles

of status statistical estimation are the foundations on which statistical methods for data

assimilations are built that is why a good nodding under a good understanding of the

fundamental principles of statistical estimation is very useful, and in my view is also

necessary to be able to appreciate all the nuances relating to the techniques for dynamic

stochastic dynamic data assimilation.

In the process we are going to  start  with the description  of the  Bayesian estimation

schemes  or  Bayesian  estimation  methods.  So,  I  am  going  to  develop  the  Bayesian

framework.
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Please remember Bayesian framework is an alternative to the Fishers framework. In the

Bayesian  framework  let  x  be  an  unknown vector  is  random.  This  random unknown

vector is supposed to follow a probability distribution called p x which is known as the

prior distribution. Prior distribution essentially is a summary of our understanding about

the unknown so what is key here. I only know the probability distribution from which x

is drawn I just do not know what is the actual realization of x that mother nature has

picked.  So,  when  you  say  x  is  unknown  we  do  not  know  the  actual  value  or  the

realization of x, but we know where the x come from the x comes from the probability

distribution called prior distribution x is drawn from that probability distribution.

z again R m is an observation about x z contains information about the chosen x. So,

given x z has a conditional distribution which is probability of z given x. Let x hat be

equal to phi of z. So, phi is an estimator x as z is the data the estimator operates on the

data give us an estimate we have already seen the notion of an estimator and an estimate.

So, if x hat is the estimate, if x is the value that mother nature has picked from prior

distribution  the  difference  between what  the mother  nature  has  picked and whatever

estimate, estimate is something we create from the knowledge of the observation about x.

More often they not x hat and I am and x may not be equal. So, there is an error x tilde is

the error in the estimate.

We are going to now associate a cost function c, c is a mapping c is a functional it maps

R n to R, the cost function is defined over the set of all errors, c x hat is called the cost

associated with the error. This is nothing new we have already talked about f of x within

the context of static deterministic inverse problems. In that case we said z is given H of x

is the model predicted observation z minus H of x is called the residue, residue error they

are similar connotations. So, when I talked about z minus H x inverse z minus H x that is

the essentially sum of squared errors that is a cost function, f is a cost function that maps

R n to R. So, f of x is simply sum of the squared error sum of the square of the residuals

are errors.

Likewise in this case c x, c x tilde is the cost associated with the error x tilde. We would

like to impose some special conditions on this functional c. If I know z is equal to H of x

and if I have f of x is equal to z minus H of x transpose times z minus H of x we already

know it is quadratic. So, this f of x is quadratic we already know quadratic functions

have unique minimum they have a convexity property. So, we did not have to worry too



much about further  constraining f  of x because f of x automatically  by virtue of the

definition in that case had all the quad properties, but in here we may not know right now

what the form of the error is I am simply trying to define a function that captures the cost

associated with the error therefore, to be consistent with what can be done we would like

to impose conditions which are as follows, if the error is 0 the cost is 0 that makes lot of

sense, much like in f x if z is equal in H of x f of x is 0.

So, you can think of 0 as being the minimum of the cost then there is no error there

should be no cost associated with it, there is no penalty associated with it. Secondly, if a

is a vector b is a vector, if the norm of a is less than the norm of b c of a is less than c of

b, norm of a less than norm of b means the length of the vector a is less than the length of

the vector b. So, if a is one error, b is another error if the norm of a is less than norm of b

means a is smaller the two errors; if a is smaller of the two errors the cost associated with

a must be less than or equal to the cost associated with b what does it tell you it tells you

some kind of a monotonicity property. The cost function increases with the length of the

error vector which is also a very nice and a desirable property. So, you can see the cost

function is such that it is 0 at the origin when you go away from the origin in the space

that represents the error, when you go away the length of the error increases as the length

of the error increases the cost function does not decrease it either increases or remains

the same. So, that is the condition. So, you can see we are trying to already develop a

bowel like shape far for the cost function c.
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Why is that we are looking for such a bowl shape thing cost, in the optimization parlance

cost we would like to be able to minimize. If we would like to be able to minimize the

function should be endowed with the unique minimum that is why we would like to be

able to require c to satisfy some simple condition that will guarantee the behavior of the

function around 0, where 0 my estimate being equal to the unknown my estimate is equal

to not the unknown; the estimate of the unknown is equal to the true value. So, here are

some examples of cost function. So, x minus x hat is the error x minus x hat transpose x

minus x hat is also equal to x tilde transpose x tilde. So, this is the quadratic function. So,

this is called sum of squared error that is one way to be able to concoct the form of c. So,

that is a simple quadratic form that we are already used to.

The next one is weighted sum of squared errors the first one there is no weight in the

second one we are adding a weight W. So, this is simply weighted sum of squared errors

which is sum, which is also called the energy norm the square of the energy norm of the

error. So, we are very familiar with the first one as well as the second one.

There are couple of other ways in which one can design the cost function this must be

tilde. So, if x tilde is such that its norm is less than or equal to epsilon, epsilon is sum.

So, epsilon is greater than 0 epsilon is pre specified and epsilon is small, given an epsilon

greater than 0, but small if x tilde is the error if the norm of the error is less than the

chosen epsilon we will say the cost is 0. If the norm of the error is greater than epsilon

we will say the cost is 1. So, how does this one look like functional pictorially? Let this

be is 0, let this be 0, so in a small neighborhood around the origin there are two epsilon.

So, let me try to, let me try to I think up I want to refine this picture a little bit better

sorry.

So, let us try to give a description of this. So, let us try to see let this be the norm of x

tilde, if the norm of x tilde this let this be 0, let this be epsilon, if the norm of x tilde lies

between 0 and epsilon the cost is 0 otherwise it jumps to 1, it jumps to 1. So, this is how

the cost function this is called uniform cost function. This is in the case where the error is

a vector. The last one is suppose we are dealing with a scalar case x is a scalar x hat is a

scalar. So, x tilde is a scalar. In this case one can think of what is called an absolute error,

in this case this is simply the absolute value of x tilde. So, the cost could be simply the

absolute value of the scalar variable which happens to be the error in the estimate.



So, there are four, there are four different ways of picking the cost function each one of

the way in which we pick has a different interpretation of the optimal estimate. All these

things are used in decision making, two of them are already known to us quadratic the

uniform cost, an absolute error cost are add on versions of the cost function.

(Refer Slide Time: 13:30)

So, what are the general forms of functions that will satisfy or that could be used as a

cost  function?  One  possibility  is  to  require  c  symmetric,  c  symmetric  and  also  c  is

convex. What is symmetry means? It is symmetric with respect to the vertical axis. So,

for example, if you say x square x square is a symmetric function minus x and x have the

same value, have the same value which is x square.

So, x square is  a symmetric  function therefore,  if  y is  equal  to x square there is  an

example of a symmetric function and that is exactly what this symmetry refers to the cost

function for x tilde is the same as cost function for minus x tilde symmetry you can

readily see. So, if x tilde is a vector if we change the sign of each component of that you

get a point which is the reflection of that and c has the same value at these two points x

tilde and x minus tilde.

Convexity, what does convexity means? The picture will help you your function c is said

to be convex if I consider two points x and y it has a value c x and c y, if I consider a

constant a if I took a times x sorry if I consider a point if I consider a point in between x

and y there exists an a in the interval 0 to 1 such that this point can be written as a times



x plus 1 minus a times 1. This is called convex combination of the two endpoints. In fact,

every point in the line segment from x to y can be obtained in this particular form by

changing a in the interval 0 to 1.

So, let us take let us draw a vertical line this is the point. So, let us call this point as z, z

is the point which is equal to a x plus 1 minus a times y for sum a in the interval 0 to 1.

So, let us call this z this point the value of this point is c of z, but the value of this point is

equal to a times c x plus 1 minus a times c y and what is that, it is it lies on the chord that

joins the point c x to c y. So, this is point, this is the chord this is the point on the curve.

So,  what  does  this  inequality  says  this  inequality  says?  The  value  the  function  or

intermediary point in between x and y is always less than or equal to the value along the

chord; that means, the function lies below the chord, the function c x lies below the

chord. Such a function is called convex functions. We have already alluded to convexity

when we did optimization I am just trying to reinforce and remind you of some of the

properties.

So, in general what are the desirable properties of cost function, we would expect the

cost function to be symmetric what does it mean. The valley penalty or the costs for x

and minus x are the same and the function c is naturally  convex. Quadratic  function

especially the parabola is an example of a convex function convex functions generally

have unique minimum therefore, some of these conditions essentially help you to be able

to  guarantee  that  the  cost  function  is  well  defined  it  is  the  unique  minimum.  The

guarantee of unique minimum is important because when we are trying to use the cost

function in our estimation we would like to be able to get best estimates best in the sense

of minimizing some associated cost function. So, we want to be able to choose our c

appropriately so that we can make meaningful decisions when it comes to, when it comes

to deciding algorithms for appropriate ways to estimate they are not.
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So, now I am going to state the general Bayesian problem. We already know we are

given the prior this is the conditional distribution, we are also given a cost function and

the observation look at this now or what are all the given data. The prior, the conditional

distribution the observation and the choice of the c function we already know c function

can be chosen in one of many ways. I am going to now concoct what is called the base

cost function b x hat. Please remember x hat is the estimate so this is the cost associated

with estimate x hat b for Bayesian this is going to be equal to the expected value of c of x

tilde, given x hat there is an associated x tilde the error associated with it. So, given x hat

I can compute x tilde I have evaluated the cost we already know the estimate is a random

variable  x  tilde  is  a  random  variable  therefore,  c  of  x  tilde  is  also  random  I  am

considering e the expected value of the cost function. This expected value of the cost

function can now be written explicitly by this integral.

Please remember c of x tilde is equal to c of x minus x hat, x hat depends on z depends

on  z  observation  x  has  its  own  prior  information.  So,  there  are  two  sources  of

randomness the prior one from the prior and from the observation. So, I would like to be

able to integrate this cost function with respect to the joint distribution between x and z,

x  has  prior  z  has  a  conditional  distribution  x  is  a  random variable  z  is  the  random

variable if I have two random variables are random vectors I can consider the marginal

distribution as well as I can consider the joint distribution. Here this base cost function is

simply expected value of the costs associated with the error in the estimation it is simply



given by this double integral one with respect to x another with respect to z where the

probability is the joint distribution of x and z.

Please recall the joint distribution p x z can be written in this form using conditional

probability, it can also be written in this form both ways are meaningful it is using these

two we generally derive what is called the Bayes rule in elementary course on statistics.

So, if I now replace the joint distribution by the product form the one of the product form

I get  a  new formulation  for  the Bayes  cost  function.  So,  b  x hat  now becomes if  I

substitute this in here I can absorb one of the integration in another quantity which is

called  Bayesian  cost  associated  with  the  estimate  given  in  the  observation,  please

understand please recall the estimate is a function of the observation. So, I can rewrite

this p of z as p x z, p of z then I can associate this p x of z with this. So, this integral with

respect to n which is the internal integral I am going to denote it by b x hat given z and

then if I plug this in here I get a new form I get a new form therefore, b x hat has this

particular form and this form is very useful and this is one of the forms that we are going

to concentrate on.

Now, I am interested in minimizing. So, please remember minimize the Bayes bayes

cost. So, I would like to be able to minimize b x hat, b x hat from star is equal to the

integral of b x hat conditioner and z times p of z, p of z in the region of interest is always

greater than or equal to 0 it is that is a probability density function. So, if I want to be

able to minimize b x of b x hat it is enough to be able to minimize b x hat of z because if

I  minimize  this  double  star,  I  am taking  your  linear  combinations,  I  am taking  the

weighted linear combinations of b x hat slash are given z with b z. So, if double star is

minimum naturally it implies the minimum of star therefore, minimizing the Bayes cost

function reduces to minimizing the conditional Bayes cost function conditioning on the

fact that I have been given a set of observation z.

So, what is the basic idea here let me look back at it. Mother nature has picked x from

the probability p of x I am going to observe and gain information about the chosen x. So,

from the perspective of the estimator everything starts with z. So, everything given z is

what we are going to be working at given z I am going to create an estimate x hat, given

x hat I am going to have an error given the error I have I am going to have a Bayes cost

function conditioned on the given observation which is given by double star. If I make

double star the minimum that automatically minimizes the Bayes cost function b x hat



because  p  of  z  is  0  therefore,  without  loss  of  generality  we  could  minimize  the

conditional Bayes cost and that is one of the important conclusion that comes out of this

analysis.
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Now, we are going to do with that as the background that is a very general principle. We

are going to do what is called Bayesian least square estimators. Please look at this now.

We are combining least squares with Bayes. What is the difference? In the statistical least

squares that we saw in the previous talk we are simply given the observation using the

observation, we are going to be able to estimate they are known we were not given any

information about the unknown. So, that is what is called statistically squares. What is

the  difference  between  that  statistically  squares  and  basically  squares?  Within  the

Bayesian framework we always have two pieces of information one is the prior another

is  the  new  information  coming  from  the  observation  given  through  the  conditional

distribution. So, I have two pieces of information. So, we are slightly richer within the

Bayesian setup than compared to your simple statistically squares.

So, we are going to be able to revisit the design of least square estimation techniques

within the context of the availability of prior information. So, all the notations, concepts,

carry over I am now going to define some new quantity, x is the unknown z is given to us

from the previous slide we can see, we are all we are now interested in analyzing the

problem conditioned on the given set of observation because that is what the basis for the



estimation techniques. So, given z I am going to talk about the conditional expectation of

x given z that is an important quantity. I am going to denote that quantity by mu.

Now, please understand z is  random. So, even though we are going to condition the

expectation of x with respect to z conditional expectation is in general a random variable.

So, mu is denoting the conditional expectation I want to remind you that mu in general is

random. This mu as given by the conditional  expectation is can be evaluated by the

standard conditional expectation formula which is integral x times p of x given z d x. So,

mu is a function of the observation, observations are random. So, mu is random.

Now, I would like to be able to choose c of x to be the weighted sum of squares the

weighted sum of squares. If I assume the way to be identity I get the simple sum of

squares. So, it is a reasonably good way to start with this weighted version. Now b of x

hat, please remember from the previous slide is equal to expected value of c of x tilde

this  is c of x tilde sorry that must be c of x tilde.  So, c of x tilde is x minus x hat

transpose W x minus x hat.

Now, what do we do? There are two terms in here, there are two terms in here, so I add

and subtract mu to this I add and subtract mu to this why; there is going to be a purpose

for this they are going to get an important conclusion out of this. So, if we multiply and

simplify I get one form like this another form like this and a third one yet another one is

like this. So, I get sum of three expectations. It is a very simple idea, is a very simple

idea. I am trying to compute the conditional expectation and I am going to compute the

Bayesian cost I have inserted the conditional expectation into the Bayesian cost and I am

going to see the role of conditional expectation in trying to minimize the Bayesian cost,

that is the purpose.

So, let us consider one of the terms x minus mu transpose W mu minus x hat let us look

at this now, x minus mu transpose that is that is the term with the with the with the

coefficient 2, x minus mu transpose W mu minus x hat.
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X hat is a function of the observation therefore, this expected, this expectation from basic

probability theory sorry yeah; from basic probability theory it is very well known that

this expectation can be expressed as iterated conditional expectations. So, what is the

basic idea?
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First I could consider the conditional expectation of this quantity x minus mu transpose

W mu minus x transpose given z if you calculate this conditional expectation it  will

becomes  a  function  of  z  and  then  you take  another  expectation  with  respect  to  the



distribution of z to be able to get rid of the randomness with respect to c as well. So, the

inside one is given z the outside one is expectation with respect to z.

Now,  let  us  look  at  the  conditional  expectation  the  inside  factor.  So,  this  is  the

conditional expectation which is inside. If z is given since x hat is a function of z mu

minus x hat is a known quantity given z. So, again the basic properties of conditional

expectation wheels that I should be able to take this out of the expectation operator. So, it

came here. W is also a non random quantity that also can be moved here therefore, by

pulling these two quantities by pulling these two quantities, I can express this quantity is

equal to this quantity. Please remember what is that we have used in here; x minus mu

transpose W mu minus x hat is also equal to mu minus x hat transpose W x minus mu

because W is a symmetric matrix and this quadratic form is a scalar, therefore, these two

are essentially the same and we have used this particular fact in trying to go from there to

answer to the right hand side.

Now, expectation is a linear operator expectation of a sum is the sum of the expectations.

Given  z  mu  is  already  known  therefore,  this  expectation  now  can  be  written  as

expectation of x given z minus mu, but from the definition this is mu itself therefore, mu

minus mu is 0 therefore, the cross term if you go back to the previous one this is the

cross term this I would like to call this a cross term cross term is 0. If this cross term is 0

now I can further simplify, my Bayesian cost is essentially sum of only two terms, sum

of only two terms.
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Now you see why we introduced the conditional mean into each of the expressions and

what is the outcome of that mathematical, simplification namely the third term with the

coefficient two vanishes identically and that is one of the simplification that results from

this manipulation.

Now, please understand I would like to be able to minimize b of x hat. To be able to

minimize means I should have a free variable the only free variable I have is z is given to

you x is unknown to you. So, what is the only chance you have; your only choice is the

estimator phi. So, once you choose an estimator I got an estimate. So, the only control

you have is to change the estimate. So, the choice the control is the choice of x hat.

Now, if you look at this expression the first term this is the second term; the first term

does not have x hat as a part of it,  first term independent is independent of x hat. If

somebody does not depend on x hat I cannot change anything. The second term on the

other  hand  depends  on  x  hat  the  first  term  is  a  quadratic  form  expectation  of  the

quadratic form and W is a symmetric positive definite matrix therefore, the quality form

is always positive the first term is expectation of a positive quantity which is going to be

greater than 0 unless x is equal to mu. The second term and we do not know whether x is

equal to mu or not mu is my estimate mu is the conditional expectation of my estimate x

is the unknown that mother nature has picked. So, it more often than not the first term

will not be equal to 0.



Look at the second term mu is what I deliver it is the conditional expectation of x hat, x

hat is my estimator. So, the second term is also a positive definite quadratic form the

positive definite quantity form is 0 only when the vector is 0 and by changing x hat I can

affect only the second term. Therefore, by picking x hat is equal to mu, x hat is equal to

mu is called the posterior mean; why x hat is equal to mu is called for it is something that

is done after observations are given that is posterior therefore, it is called conditional

mean if you want to call  a conditional mean. So, if I choose the second term is 0, I

cannot change the first term therefore, b x hat is minimum when x is when x hat is equal

to mu.

So that means, what is the optimum estimate the optimum estimate x hat is mu. What is

mu? Mu is the conditional expectation. So, conditional expectation is an optimal estimate

within the Bayesian framework. Why this is called least squares? The function c we have

chosen let us go back to this is a least square Bayesed function is the sum of squared

errors. So, this is the sum of squared errors. So, the least square comes in here. How

Bayesian comes in here? They are posterior I am sorry we have prior and conditional

expectation. So, we have combined everything in a beautiful way namely mean square

quadratic cost given prior, given posterior we have combine all of them together to come

to an important conclusion that the Bayes cost function is minimum when the estimate is

equal to the condition of main.

The estimate is equal to condition of main, therefore, we are now going to give you a

special estimator which is called x tilde MS, x tilde MS is called the means Bayesian

mean square estimate it is like x hat LS for the least square estimate. So, X hat MS is

equal to the conditional expectation of x with respect to z. And what is the expression for

this conditional expectation? It is the integral over R n of the expected value of x with

respect to the conditional distribution of x with respect to z. The conditional expectation

of x with respect to z we already know from Bayes theorem this is equal to p of x given z

and p of x given z by simple application of the Bayes rule is given by p of z given x

times p of x divided by p of z. So, this is the characterization of the optimal estimate

within  the  context  of  the  Bayesian  framework,  I  have  prior,  I  have  conditional

distribution, I have the mean.

Now, p what is p of z? p of z is the probability density of observation you can readily

see, p of z is the integral is the p of z is the marginal density with respect to d of x this is



R n. So, this is the joint density I am trying to integrate the joint density with respect to x

to get p z. This can also be written as integral over R n p z of x given times p of x d of x.

So, this is the expression for p of z and that expression is used in this denominator. So,

by  combining  this  we get  the  important  formula  for  the  optimal  Bayesian  estimate,

optimal least square Bayesian estimate and that is the structure of the optimal estimator

that comes out of this analysis.

(Refer Slide Time: 41:49)

Now, we are look at this now again least squares comes in a beautiful way. So, we are

going to be able to do the least squares either within the Bayesian concept where that is

two pieces of information prior and the observation or in official like situation where

there is no prior. I only have only one thing coming from the observation all I can do is

to be able to extract the juice out of the observation and we have already seen both in the

case of deterministic least squares also in the case of statistical least squares now we are

redoing the same least squares within the framework of Bayesian analysis.

So, having established the structure the optimal Bayesian estimate using the least square

criterion, I am now going to discuss some of the properties. This is the Bayesian estimate

they are going to the first climb is this estimate is unbiased. So, what is the main? E of x

minus,  x is unknown X hat MS is the estimate of x from the definition of unbiased

knows from the earlier discussion expected value of x minus X hat MS must be equal to

0 to verify it is equal to 0 again I use the notion of repeated conditional expectation that



is a very beautiful mathematical trick that one could use we have already used this in the

derivation of the Bayesian structure of the Bayesian estimate in the in the previous slides.

So,  I  can  express  this  expectation  as  the  iterated  expectation  with  respect  to  the

conditional expectation. I can X hat MS of the function of z, and expect this expect the

conditional expectation is again a linear operator. So, I can express this function as the

difference  of  the  conditional  expectation  of  x  with  z  and  X hat  MS,  but  if  a  little

reflection reveals this is also equal to the same as that and the difference is 0; that means,

the Bayesian estimate is automatically automatically unbiased. x tilde is equal to x minus

x hat therefore, E of x hat is equal to e E x minus the mean square is 0; that means, mean

of the error of the estimate is 0.

Now, let us come back and revisit the Bayesian cost. So, B X hat MS given z is equal to

that is a Bayes cost which we have already given is the conditional Bayesian cost given

the observation. So, going to the previous slide, I would like to be able to, I would like to

be able to see what this one is this is given by x hat minus x MS. So, what is that x MS is

the optimal estimate x hat. So, this is the, I think there should be that should be x that

should be x sorry that should be x. So, x minus x hat m s; that means, the error in the

Bayesian estimate this is the sum of the squared error in the Bayesian estimate. I am

trying to integrate this with the conditional density the posterior density with respect to x

I have assumed W is I, but, what is this? This is the random variable minus the mean

transpose times random variable minus the mean. So, that is the total variance in the

components of x tilde therefore, the Bayesian cost the conditional Bayesian cost function

is equal to the total variance and by virtue of our property of x MS, it readily follows it

readily follows that the Bayesian estimates minimizes the Bayesian cost.

The conditional Bayesian cost the conditional Bayesian cost is essentially variance and it

minimize  the  variance.  So,  this  is  also  minimum variance  estimation,  the  minimum

variance estimation. So, this would be a beautiful interpretation of what the Bayesian

estimate is all about and some of the properties associated with this Bayesian estimate. I

hope I hope the concept is clear very very nicely. Please also remember unbiasedness

when  the  estimator  is  unbiased  minimum  squared  error  is  equal  to  is  equal  to  the

minimum variance which we have already seen that is one of the reasons why we require

unbiasedness  we have alluded to  when we discussed unbiasedness.  So,  because it  is

unbiased I am the right hand side relates to the conditional variance, conditional variance



given  the  observation  the  left  hand  side  is  the  Bayesian  cost  function  given  the

observation and by virtue of the fact that the Bayesian estimate minimizes the Bayes, the

conditional Bayes cost function.

So, we already know the left hand side is minimum because X hat MS is a minimizer of

the Bayes cost function the conditional Bayes cost function. The right hand side has an

interpretation of variance that is why we can associate important  properties with this

class  of  Bayesian  estimation  namely  the  optimal  estimate  is  equal  to  a  posterior

conditional mean, it also minimizes the total variance in the estimate, total variance in

the estimate.
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So, I would like to now bring out the similarity. Until now we used only observations

using only observations in which case we said x LS is a blue and we had Gauss-Markov

theorem. So, Gauss-Markov theorem refers to optimality of the least squares estimate

when there is only one observation. Now, when there is only observation there is no

prior. When there is observation and prior within the Bayesian context X hat MS is also a

blue,  X  hat  MS  is  called  Bayes  posterior  mean.  So,  x  LS  is  the  blue  using  only

observation X hat MS is a blue using observation and prior. So, you can see the least

squares coming in both sides one with another without the use of prior. So, you can see

the parallelism between the arguments in the Bayesian context as well  as in the non

Bayesian way of estimation all within the context of the squares.



So,  thus  far  we  have  talked  about  the  Bayesian  context  with  the  least  square  cost

function. Please remember you could have considered the Bayesian cost function with

any choice of cost function and we have already given four choices for the cost function

the first to relate to the least squares, the third one uniform cost is something else and the

fourth one the absolute cost is something else. So, you can readily see if I changed the

form of the cost function the form of the estimate also will correspondingly change; that

means,  we  will  get  a  variety  of  different  types  of  Bayesian  estimates  one  for  each

possible  choice  of  the  cost  function  that  goes  to  show the  richness  of  the  Bayesian

formulation.
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Of course even in the case when there is no prior we could have considered very many

different types of cost functions. Since we are trying to estimate, since we are trying to

seek optimal estimates we are chose the least square criteria because least square criteria

has very nice properties with respect to with respect to minimum existence of unique

minimum and so on.

So, I am going to quickly illustrate some of these using simple example. Let z be equal to

x plus v let us z be equal to x plus v because x is an unknown v is the noise, v has 0 mean

sigma square v as the variance x is a random variable its mean is m of x and sigma

square x is the variance of x we are assuming x and v are uncorrelated x and v are not in

correlated I am sorry it must be uncorrelated. That means, x v transpose must be equal to



0. So, that must be a v transpose yeah because I am going to get the, in this case I do not

have to worry about the transfer sorry because I am assuming x and v are essentially

scalar  variables  that  is  correct;  x v the expectation  of the product  must  be 0 that  is

correct.

Now, z is the sum of two random variables therefore, an x and v are uncorrelated, I know

x and v are both normal the sum of two normals sum of two uncorrelated normals is also

a normal variable. So, z is a normal variable whose distribution is given by this where

sigma is equal to sum of the variances. So, if you add two random variables not only the

mean changes, but also the variance changes. Here the mean of the sum is the sum of the

means the variance of the sum is the sum of the variances this happens because in the

simple  case  z  is  the  sum of  x  and  v  x  and  v  are  both  Gaussian  and  x  and  v  are

uncorrelated. If they are all correlated the expression for the variance will be different we

are considering only the simplest possible case. So, what is that we have? We have all the

information now, so I would like to be able to compute the posterior using Bayes rule.

Please recall the conditional distribution is given by, so if you are given x z I would like

you to realize this x is z is equal to x plus v. So, if x is given x is fixed z is random

because of v and v has 0 mean therefore, conditional distribution of z given x is normal

with x is the mean and sigma square v as the variance. So, that is the formula that is

given in here. The prior x is already given to us with a mean m x and sigma square x as

the variance therefore, the posterior using Bayes rule is given by this ratio. I am now

going to substitute p x z p x and p z we already know everything. So, we can substitute

the  form  of  the  normal  functions  we  know  the  functional  form  of  normal  random

variables if you substitute for each of the normal random variable as the normal density

and simplify you get the following expression which is beta times beta is a constant that

depends on pi and variances, one can explicitly compute that and they and the exponent

of the exponential is given by this sum of three terms. I would like you to be able to

substitute and do the simplification and I think is a very good exercise.
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Now, if you look at the term in the, under the bracket that is the term that term can be

rewritten this is the method of perfecting the square I can express this as x squared times

this  two x  times  this  that  is  a  constant  times  that.  So,  this  becomes  this  by  simple

simplification up by routine simplification.

Now I have an x squared term I have a 2 x term I would like to be able to express it as x

minus  sum  whole  square  plus  sum  constant.  So,  I  can  rewrite  this  by  method  of

perfecting the square to that end we are going to define a new quantity called sigma e

square I am defining one over sigma e squared to be in other words the information this

is the reciprocal of the variance that is the information, this is the reciprocal the variance

of  the  noise,  this  is  the  reciprocal  of  the  variance  of  the  prior.  So,  the  sum of  the

reciprocal is the reciprocal of sigma square e which can be rewritten I like this. I can also

concoct a quantity called X hat MS divided by sigma square e which is given by this

quantity using 2 and 3, using 2 and 3,
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we can express the right hand side of 1. Please remember, 1 has a right hand side with

three terms by using a perfect square and using the definitions in 2 and 3 the right hand

side of 1 now the right hand side of 1; that is the important thing. The right hand side of

1 becomes this quantity this quantity can be expressed as simply by 1 over sigma square

e x minus X hat MS, X hat MS has been defined in the previous page; sigma square e has

been defined in 2. So, 2 and 3 gives you the basic definitions. So, with that in place I can

indeed rewrite p x the posterior density the posterior density p x z p of x given z as this

particular form where alpha is a constant, as alpha is a constant.

Alpha is a constant that can again be explicitly expressed, but in this particular case we

already know this is the density function and alpha can be expressed in explicit form

using the data that we have used earlier. We would like to leave the explicit computation,

so the constant beta alpha as an exercise. So, if you now look at this expression it follows

that  that  X MS, X hat  MS is  the mean please  go back what  is  the standard normal

distribution p of x is equal to 1 over square root of 2 pi sigma exponential minus x minus

m squared divided by 2 sigma square.

In this case m is the mean and sigma square is the variance of the random variable x. So,

if I use that analogy and use it here it readily follows the posterior mean is given by this,

the posterior  mean is  given by this  and this  formula from the previous page can be

written like this. Sigma square e by expressions in 2 and 3 can be written like this. Sigma



square v by, sigma square v by, sigma square x plus sigma square v sigma square x plus

sigma square x plus sigma square v, I would like to remind this alpha I think must be

beta sorry this alpha must be must be the same as beta. I do not want to confuse that that

alpha must be the same as that. In here we are introducing an alpha which is this ratio

and this one is one minus alpha. So, what does this tell you? This essentially tells you the

following. The best Bayesian least square estimate is the convex combination between

the prior mean and the observation.

Alpha times m x plus 1 minus alpha times z, so what does it mean? The m x is a point

here, z is the point here any point along this line has this particular form that is called the

convex combination therefore, the Bayes least square estimate is a convex combination

the prior mean and the observation that is an important conclusion that comes out of this

analysis. Yes I have not talked about the algebraic simplifications, I think it is a very

good exercise to be able to go through this algebraic simplifications.
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I can rewrite the expression in 6, again as the Bayesian estimate X hat MS the Bayesian

x X hat MS is equal to m x which is the prior mean plus z minus m x times this quantity

you can readily see that quantity is sigma square by, sigma square x by sigma square x

plus sigma square v is it comes in here. In the previous slide we call it 1 minus alpha we

simply  now call  it  a  gain  term.  So,  the  Bayesian  estimate  is  equal  to  the  Bayesian

estimate is a very beautiful structure and interpretation, the Bayesian estimate is equal to



the prior plus z minus m of x, m of x is the mean z is the new information. So, m of x; z

minus m of x gives me what is called innovation. Innovation is the information in excess

of what I already knew. So, the new estimate is equal to prior plus a constant times the

innovation.

This form is the form, that underlie the well known Kalman filter. So, you can readily see

the form of a Kalman filter coming in here. So, if I did not have any new information I

would have the second term, I would my best estimate is the prior mean, but in addition

to the prior mean if I get the new information I am going to update my belief to get the

posterior mean. So, the posterior mean which is the Bayesian optimal estimate is equal to

the mean plus a correction term, the correction term has a structure product of product of

a gain term and the innovation and that form is a very standard form which is a very

standard form. So, you can think of this in the form of a Kalman filter equation.

This form has also an adaptive property. What is the adaptive property? If sigma square,

if sigma squared x is greater than sigma square v if sigma square x is much much greater

than sigma square v what does it mean observations are more reliable than the prior. If

the prior variance is very large compared to the observation variance observations are

more reliable than the prior therefore, in the previous equation 6 observations will be

given more weight.

On the other hand if the observations are less reliable than the prior for example, sigma

square v is  much much larger  than sigma square x; that  means,  prior  is  much more

reliable  than the observation then the prior gets larger weight.  So, that is a beautiful

adaptivity property in the formula that is given in 6, also given in the Kalman filter form

and that is called the adaptive property, that is what is called the adaptive property and

that is called the adaptive property. So, by substituting this is equal to well this is the 7, is

another way of rewriting the same thing I believe we should a is a constant. So, in this

case a is equal to a is equal to the previous thing that comes in here which is sigma

square v a is equal to sigma square v by sigma square x plus sigma square v a that is the

definition of a which we have also called alpha. So, x MS can be written as a times m x

plus one minus a time z which can be written as m x plus this plus this and that and that

can be written like this. So, you can see these two forms are essentially the same form.



So, this is also called the Kalman filter representation, Kalman filter like representation k

f form. So, that is the basic idea behind the Bayesian estimation.
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We continue our illustration of the Bayesian estimate, Bayesian least square estimates.

For the vector case we have already seen the properties of the Bayesian estimate for the

simple linear case, this is an extension to a vector case. So, Z is equal to H of X plus V, Z

is a vector in R m, X is a vector in R n, all the properties we have been utilizing all the,

all these properties of matrices vectors we have been utilizing all along. v such that E of

v is 0; that means, is mean is 0; v is such that its covariance is sigma v. Please remember

we have we have utilized sometimes are we are now going to utilize sigma subscript v.

So, v is normal with 0 mean and sigma v as the covariance, x is the unknown, x has a

prior distribution expected value of x with respect to the prior distribution is m of x,

covariance of x is sigma sub subscript x.

So, x as a normal distribution the prior distribution is m of x is the vector sigma x is a

matrix. Therefore, H of x is the deterministic function of x. So, H of s random because x

is random H of x has a distribution which is H times m of x and its covariance changes H

sigma x H transpose that is a very simple exercise in probability theory. So, covariance

of H of x is equal to expected value of H of x times H of x transpose this is equal to

expected value of H x, x transpose H that is equal to H times expected value of x x

transpose H transpose. So, that is equal to H sigma x H transpose. So, that is the formula



that  comes  out  of  it  that  is  why  this  occurs.  We are  also  assuming  x  and  v  are

uncorrelated. z is the sum of H times x plus v x is normal H of x is normal v is normal x

and v are uncorrelated. So, z is normal. The mean of z is equal to H times m of x. The

covariance of z is given by this out outer product. If you do the simplification as given in

here we get the formula in 9 which is H sigma x H transpose plus sigma v. So, that is the

covariance of z.

I think it is worth remembering that z gets a randomness from two different directions

one through H another through v therefore, and H and v are uncorrelated. Therefore, the

covariance of z is the sum of the covariances one coming from x through H, H of x

another through the additive part of v therefore, the total covariance of z is given by 9 it

is a sum of these two terms that is an important thing to realize. That again comes from

basic considerations of probability calculations.
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So, E of x of, E of the conditional expectation of z with respect to x is equal to condition

expectation of H of x plus v given x. Since x is given H of x is already known. So, H of x

comes out of the expectation operator. We are left with the condition expectation of v

with the respect to x, x and v are uncorrelated therefore, E of v given x is equal to E of v

which is equal to 0 therefore, conditional expectation z with respect to x is H of x.

The covariance of z given x is sigma v because from z you must subtract H of x that is

why the conditional expectation, the conditional expectation, conditional expectation of z



with respect to H x, H of x the conditional covariance of z with respect to conditional

covariance of z given x is equal to sigma v. Therefore, I have the conditional mean, I

have the conditional covariance if I have a conditional mean as a conditional covariance

I have a conditional distribution because the conditional distribution is also normal. So,

this  is  the  conditional  distribution  of  z  given  x.  So,  that  is  the  distribution  of  the

observation  condition  on  the  fact  x  has  already been chosen by mother  nature  even

though I do not know the value of x this is the conditional distribution of the observation

given by 12.

So, now I would like to be able to do a posterior analysis.
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Posterior analysis this is the posterior distribution the posterior distribution by invoke

into the Bayes rule. So, this is essentially a statement of Bayes rule. So, each of them are

normal distributions. So, you remember that we this is exactly what we did in the scalar

case  as  well  it  is  the  ratio  of  the  numerator  the  product  of  two normal  distribution

denominator yeah another normal distribution. So, ratio of normal distributions at this

can be again expressed as constant times this complicated expression. Even though looks

complicated arithmetically is easy to simplify this now consider the exponent term again

we are going parallel  to what we did in the scalar case in the scalar case everything

where scalar quantities here we simply need to consider matrix vector quantities matrix

vector quantities.



So, we are considering the exponent the x transpose H transpose sigma v inverse H plus

sigma x inverse H times x. So, the exponent can be written like this. Look at this now,

this term is quadratic in x, this term is linear in x, the other terms do not have any x. So,

if I have a quadric term a linear term at a constant term what is the basic idea here, you

try to use the method of perfecting the square. So, you add and subtract a constant so that

I can extract a square root after that. The same principle that we did in the scalar case,

but the algebra is little bit more involved in the vector case therefore, the exponent can

be simplified the exponent in three can be simplified as 14, 14 after doing the completion

of the perfect square becomes identically equal to this, where sigma e inverse is given by

this and x MS is given by this.

So, you can verify by substituting 16 and 17 and 15, 14 and 15 are equal. Yes that is that

is the government of algebra involved in here and since our aim is to be able to indicate

all the major steps we are going to leave the algebra for the reader to verify. I think it is

absolutely essential  for anyone who wants to understand these derivations thoroughly

must go through the details of all the simplifications. So, with this we have now derived

an expression for the best Bayes in estimate, I am sorry this is the best Bayes in; this is

the best Bayes in estimate and this is its covariance.

Again that activity property that we talked about in the case of scalar case also applies in

here,  but the interpretation is a little bit more complicated because the fact there are

matrices and the operator H comes into play, but in principles all the conclusions the

adaptivity with respect to which weight is more which weight is less. For example, there

are two pieces of information the posterior mean is going to be a linear function of the

prior mean and the new information that comes from the innovation and how these two

terms  are  weighted  relatively  that  depends  on  the  relative  values  of  the  covariance

matrices for the prior and the observation the covariance of the conditional distribution

of z given x. And the similarities is very obvious and I would definitely like the reader to

be able to compare scalar expressions with vector x expressions and identify which term

becomes which term corresponds to what term in the scalar case and the corresponding

term the vector case I think it will be very beneficial for anyone everyone to do that.
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So, with that we come to the end of the discussion of the Bayesian methods. Now we can

see it is this Bayesian method that is going to be the basis for stochastic aspects of data

simulation. What is an exercise? The exercise is substituting 16 17 and 15, verify 14 and

15 are equivalent and again I have already mentioned to this is relate, this relates to the

principle of perfecting the square in the matrix vector notation algebraically it is non-

trivial please do that. 
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Again  a  reference  for  this  is  by  Melsa  and  Cohn  and  Decision  Estimation  Theory,

McGraw Hill. Also you can refer to our chapter 16 Lakshmi (Refer Time: 77:08), Lewis

Lakshmi (Refer Time: 77:10) 2006. With that we conclude the discussion, an elementary

discussion of the Bayesian least squares estimation.

Thank you.


