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Maximum Likelihood Method

In  module  6.1, we talked  about  two schools  of  estimation  one  is  the  Fisher  school

another  is  the  Bayesian  school. Fisher  invented  this  notion  of  maximum  likelihood

estimation technique for point estimation of unknown constant vector or unknown scalar.

We  generally  will  not  be  using  maximum  likelihood  estimation  techniques  in  the

parlance, in our discussion of data assimilation we have not used we largely depend on

least  squares, but I believe because of the underlying importance of this at  least  one

should  have  a  nodding  understanding  of  what  is  maximum  likelihood  estimation

technique. Once we talk about the some of the basic aspects of maximum likelihood

techniques  which belongs to  the Fisher  school  then we will  talk  about  the Bayesian

estimation techniques in the next module 6.4.

So, 6.1, 2, 3 and 4 together contain an expose a of the basic idea of statistical least square

principles illustrations some of the fundamental theorem, intrinsic properties of estimate,

Gauss Markov theorem and there is also a couple of other fundamental theorem that

comes out in the base in estimation. Once you understand these basic estimation you now

know  how  to  evaluate  the  goodness  of  the  estimate  once  we  do  a  data  simulation

procedure.  That  is  the  reason  for  us  to  be  able  to  be,  for  us  to  include  all  these

fundamental results from statistical estimation theory statistical estimation theory. These

are no less important than tools from multivariate calculus tools from matrix theory tools

from linear algebra and so on and so forth.

So, a quick expose of maximum likelihood method.
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Let us z be equal to again Hx plus v or z is equal to h x plus v linear non-linear. Assume

x could be a random v is always random u x is random, v and x are uncorrelated. In the

Fishers case we assume x is an unknown constant. So, there is no prior distribution as in

the case of  Bayes x is an unknown constant given x z is random. So, given x z has a

distribution that distribution is called the conditional distribution.

Conditional  distribution  essentially  relates  to  the  properties  of  the  observation

conditioned on the unknown nature plays a game with us. She picks a value of x and

keeps it constant we do not know what x is, we are going to make our nature is teasing us

we make measurements on the nature. So, the measurements are going to be providing

information about x, but the measurements are random. So, z is a random vector it has an

underlying distribution, but z the properties of z is conditioned on the value that mother

nature has already chosen, but did not care to tell you our aim is to be able to uncover

what mother nature had picked. So, the information of x is to be gleaned from z gained

from  the  conditional  distribution  of  z  given  x.  So,  that  is  what  is  the  conditional

distribution.  So,  conditional  distribution  is  always  the  new  information  that  arises

because we are able to make observations about the system.

This p x of z has two ways of looking at  it  as a dual interpretation. If given x as a

function of z is called a conditional distribution, but Fisher turned the table around for a

given z. So, what is that he asked I am I have observed something observations given to



you given z; what is the most likelihood value of x that mother nature must have picked

that  I  observe  z.  So,  let  me  talk  about  the  differences  here  what  is  the  conditional

distribution the right hand side means given x mother nature has already picked, yes, but

she did not tell you, but z exhibits randomness.

So, the randomness of z conditioned on the value of x is p z that is a function for a given

x distribution over z that is the conditional distribution, but Fisher asked the turned the

table around what is that he said yes I know mother nature has picked x, but she did not

tell me I can, but I have the ability to make observations on mother nature which is going

to give me a z I have got an z, z is ready to react. So, he asked the following question,

what is the most probable value of the unknown x that the mother  nature  should have

picked  that  will  exhibit  in  my viewing the  observation  z.  That  is  the  difference  the

quantities  are  same,  but  if  you turn  the table  around one is  a  function  of  x  another

function  of  z, one  is  called  a  likelihood  function  another  is  called  the  conditional

distribution.  That  is  the  fundamental  difference.  And  this  difference  is  an  enormous

difference that led Fisher to be able to concoct a new class of methods called maximum

likelihood method.

So, Fisher in  1920 Fishers principle given z what is the value of x that will minimize

what is the value of z. I think there is maximize, maximize sorry it is the maximum

likelihood  I  have  said  it  correctly  that  is  maximize  the  probability  of  observing the

sampled z given x that is the basic idea here .
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So, the maximum likelihood method. So, we that is the underlying principle of Fishers

strategy maximum likelihood ML method, without loss of generality I can start with the

with the with a non-linear observation with a non-linear case let z be equal to h x plus v,

v has this property means 0 x and v uncorrelated the I am sorry this must be R,  I will

correct that, v is mean 0 x and v are uncorrelated the covariance of v is R. I am sorry in

this particular case I is not R, I am going to change this I am sorry in here I am assuming

this is sigma. Therefore, v is normal with 0 and sigma as the covariance. Therefore, you

h of x is deterministic  v is random, z is random. If v has a distribution  0  mean and

variance covariance sigma z has a distribution whose mean is the h of x and covariance

sigma, that is the conditional distribution. So, one of the basic canons of Fisher’s theory

is that I should know the conditional distribution in its exact form.

So, given x I should know the distribution of observation z a are conditioned on x. So,

this is the conditional distribution that Fishers method rests on. So, we need to have that

distribution up.

So, this distribution has x and x is unknown so what is that we are looking for. Now

please remember I can relate p to L. So, looking at L as the likelihood what am I looking

for let x hat be any estimate let x hat ML be the maximum likelihood estimate and how

do  I  define  the  maximum  likelihood  estimate.  Maximum  likelihood  estimate  is  an

estimate that maximizes the likelihood of observing z given that estimate compared to



any other estimate. So, the likelihood  of  the probability the probability observing. So,

what does the left hand side say. The probability of observing a sample z when you set

the parameter to be x hat ML is larger than the probability of observing z for any other

estimate x hat, among all the estimate the maximum likelihood estimate gives you the

most probable value of the unknown based on which you will observe what is being

observed.

So, this inequality essentially underlies the definition of maximum likelihood estimation

technique. In other words I am interested in a x hat ML that satisfies this property please

remember  L and  p  the  conditional  distributions  are  related  as  we  have  seen  in  the

previous slide. If L must be greater than this logarithm is an increasing function. So, if I

took  the  logarithm  of  both  sides  the  inequality  must  be  preserved.  So,  the  natural

logarithm of the likelihood of the left hand side must be greater than equal to the natural

logarithm of the likelihood on the right hand side.

I am not going to derive this Roth’s book gives a beautiful definition the book by Melsa

and Cohn gives a very good very good derivation of this a necessary condition for this to

happen is that the gradient of the log of the likelihood function, please understand the log

of the likelihood function is essentially p of z of x. So, this is also equal to log of p z of x.

Log of p z of x I have to compute the derivative with respect to x that derivative is given

by  1 over L times the gradient with respect to x that must be 0 that comes from the

maximization property of the likelihood function. This necessary condition is extremely

simple to be able to look at why this is necessary for this inequality holder good.
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Now, I am going to illustrate this fundamental principle using a very simple example. So,

let us pretend I want to be able to estimate an unknown mu, mu is a constant, but mu is

not observable z is observable z is equal to h times mu plus v. In this case I am I am

assuming mu is not even a vector, mu could be just a real number. So, I am assuming n is

equal to 1, I have m observations. So, H is m by 1 it is simply a vector which is simply a

vector, I am assuming h to be all ones therefore, I have z 1, z 2, z m is equal to 1 1 1 1

times mu plus v 1, v 2, v m. So, each z i is equal to mu plus vi that is the observation

there are m such observation. So, z i is equal to mu plus v i for i is equal to 1 to m.

I am going to assume my v is such that my v, I think that is I should have this is not

right, this is equal to R equal to this. So, we go from here to here to here, the covariance

of v is equal to R which is equal to sigma square i. So, H mu is a constant v is a random

vector. So, if I add a constant to a random vector its essentially shifts the mean.  So, the

distribution of z is given by normal with mu h mu sigma square i. So, everything is right,

but this should not be here I am sorry I will correct this later, I hope that is clear now.

So, the likelihood function is given by this, this likelihood function is given by this. So, I

know the functional form the functional form of the like dual function is normal with H

mu is a mu sigma square I as the variance. This is the explicit form of the function please

understand the variable to be estimated is not x s we call it mu because it is an unknown

constant. So, this is a multivariate  Gaussian distribution, this is the expression for the



multivariate  Gaussian  distribution, this  is  the  function  which  is  this  is  called  the

likelihood function. When considered as if given mu when consider the function of z is

called a conditional distribution function given z consider the function of mu is called the

likelihood function.

So, there are two variables mu and z, mu and z. So, whether you are going to consider

this a conditional distribution or a likelihood function the maximum likelihood estimate

tries to find the optimal value for mu optimal in the sense of trying to maximize this

distribution, this likelihood function. I hope that is clear now.
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So, I can compute the derivative. So, let us go back now. So, given this I can solve two

problems one is to be able to estimate mu sorry, one is to be able to estimate mu I can

also formulate this problem as one of estimating sigma square. Please go back mu is

known and the noise it covariance is not known. So, there are a number of estimation

problem associated with it. So, if you are interested in estimating mu you consider the

derivative  of  the  likelihood  function  with  respect  to  mu whichever  variable  you are

interested in estimating you have to, we are interested in maximizing the likelihood with

respect to that particular parameter. So, if you are interested in estimating mu you have to

make the log of the likelihood function maximum with respect to mu; that means that

derivative of the log of the likelihood function with respect  to mu must be 0 at  the

maximum.



If you are trying to estimate sigma square again the same principle you have to compute

the derivative of the max derivative of the likelihood function of the sigma square at the

maximum, I am sorry at the maximum the derivative must be 0 standard principles and

optimization. So, you can see as early as 1920 he has mixed several ideas condition the

conditional distribution interpreters likelihood function, maximizing likelihood function,

maximization  as  an  optimization  problem.  So,  you  can  see  the  role  of  optimization

embedded in estimation theory least squares least, best maximum likelihood, maximum,

best. So, optimization theory and estimation theory are inseparable every estimation that

every estimation problem.

We are going to solve we are going to solve it as an optimization problem that is why if

data simulation is estimation the estimation is posed as an optimization problem you can

see the intrinsic  interest  in  optimization  intrinsic  role  played by optimization in data

simulation. So, I could compute, I am killing two birds in one stroke I am computing, so

I am assuming the unknowns are to be estimated x are equal to a vector mu and sigma

square. So, I am computing gradiant with respect to these two values. Please remember L

is a scalar function if I am going to differentiate a scalar function with respect to vector

variable the gradient is a vector the vector has two components given the expression for

the likelihood function as given at the bottom of page 4, I could compute these derivative

explicitly the derivatives.

The derivatives the derivative of L with respect to mu is given by this, the derivative of

the derivative of the log of L with respect to mu is given by this, the derivative of the log

of L with respect to sigma square is given by this. These are interesting exercise I would

like you, I would strongly urge you to do this exercise. Now please understand at the

maximum I am these derivative must vanish so it must be equal to 0; that means, this

component the first component must be 0, the second component must be 0, the first

component being 0 gives raise to a function form of the estimator. Please look at this

now if this must be 0; that means, that m.

So, let us look at this now, 1 over sigma square summation z i minus mu must be equal to

0,  this  is  a  fraction  a  fraction  is  0  only  when  the  numerator  is  0.  Therefore,  if  the

numerator is to be 0 summation z i minus mu must be equal to 0 this essentially tells you

summation z i must be equal to summation mu the summation is over i, i running from 1



to m. So, this is equal to m times mu therefore, mu must be equal to 1 over m times

summation z i. What is that? That the average value.

Tada, we have now rediscovered a formula that we already knew what is that we knew

from least square estimation when we did a statistical estimation theory average is the

best least square estimate, average is also best in the sense of maximum likelihood. So,

mu hat ML is the maximum likelihood estimate that is also z hat. So, average has very

beautiful property of being optimal simultaneously from the least square sense from the

maximum likelihood sense.

Again can I can equating the second term to 0 and simplifying you can readily get an

estimate for the variance.  So, sigma square hat ML is the estimate for the maximum

likelihood estimate for the variance this is the expression for the variance and I think this

is this expression is not correct. This is not back, this is unbiased, this is unbiased and I

think I am sorry I should be able to erase this, that is right.
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So, both the estimates I had given you here. Now I would like to talk about another

related  property.  So,  you  that  is  what  is  called  Cramer-Rao  Bound  in  the  sense  of

optimality intrinsic optimality of the maximum likelihood estimate. This is the likelihood

function this is the log of the likelihood function, so the likelihood function you know

what the Hessian of the log of the likelihood function with respect to x, we can compute

that  Hessian  exist.  The yellow facts  is  called  the information  matrix  the information



matrix  is  essentially  negative of the expected value of the Hessian of the log of the

likelihood, it can be shown that this information matrix is also equal to the outer product.

Now look at this, now L the log of the likelihood the gradient with respect to this, that is

a vector the transpose is the outer product, the expected value the outer product, this is

the expected value the matrix.

So, what is the theory here? The theory here is that the outer product matrix the outer

product matrix and the Hessian matrix are related. So, what is the fundamental result?

Again there is a ton of theory goes with it, but I want to tell you to expose you to some of

the existing results, x hat be an estimate of x then the covariance. So, if x hat is any other

estimate  if  I  have  a  maximum  likelihood  estimate  information  matrix,  what  is  the

information matrix? Information matrix is the reciprocal of the covariance matrix. So,

inverse  of  the  invariant  of  information  matrix  on  the  right  hand  side  covariance  of

estimate of any estimate. So, what does this inequality says? This essentially tells you the

covariance  of  the  maximum  likelihood  estimate  is  always  less  than  or  equal  to

covariance of any other estimate that is what this inequality is, this inequality is very

fundamental. So, what does it mean? I have two estimates one is x hat, another is x hat

ML; the I L I am sorry L inverse this I x is the information matrix please understand

information  matrix  is  the  inverse  of  the  covariance  matrix.  So,  I  inverse  x  is  the

covariance of the estimate of this.

The covariance of the estimate of this is covariance of x hat given x. So, this is the

covariance of any other estimate, this is the covariance of maximal likelihood estimate.

One of the fundamental results is that the covariance of any other estimate is greater than

or equal  to the covariance  of the covariance of the maximal  likelihood estimate  this

inequality is called Cramer-Rao inequality or Cramer-Rao bound. What is the bound?

The estimate the covariance of the maximum likelihood estimate is the lower bound on

the covariance of any other estimate. So, this is the lower bound. That is the least value

and this bound is attained by the maximal likelihood estimate. So, what does this mean?

Maximum likelihood  estimate  gives  the best  estimate  in  the sense the  covariance  of

estimate  resulting  from the  maximal  likelihood estimation  is  the  smallest  among the

possible values that estimate, the covariance estimate can take, covariance estimate can

take.



So,  when  we  are  dealing  with  when  we  are  dealing  with  linear  functions  of  the

observation z is equal to H of x plus v when you are dealing with non-linear functions of

observation h is equal to this. The linear observations are continuing or computationally

a simpler in the case of a non-linear observations we can see the non-linear function

comes in here in this case the log of the likelihood function, the log of the likelihood

function  is  a  non-linear  function maximizing this  is  not  easy, we cannot  get  explicit

expressions easily and we cannot we may not be able to solve for the 0 of the gradient of

these. So, we may have to find the maximum in the non-linear case only iteratively.

So, so log of the likelihood function computing the derivative of the log of the likelihood

function, equating the derivatives of 0, solving the resulting equation, the solution of the

resulting  equation  gives  rise  to  the  optimal  maximum likelihood  estimates,  all  these

processes are simpler in this context when there is linear observation. All these processes

are  little  bit  complex  in  the  case  of  non-linear  observations.  In  the  non-linear

observations  all  the  methodology  the  methodology  still  holds  good  except  that  the

solution process have to be applied only numerically iteratively, it gives rise to iterative

optimization.

Of course, we have already provided methods for iterative optimization, namely gradient

method,  conjugate  grading  method.  So,  we  can  use  one  of  the  very  well  known

techniques  that  we  already  covered  to  do  the  maximization  of  this  log  likelihood

function. Therefore, the theory applies to both linear as well as non-linear functions of

the state. We would like to end this talk by asking you to do a homework problem of

trying  to  compute  the  Hessian  of  the  log  likelihood  function  and  computing  the

derivative.
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So,  computing  the  first  and  second  derivative  of  the  log  likelihood  function  is  a

homework problem, is a homework problem.
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And again my favorite coverage of this is in Melsa and Cohn, 78. We also cover this in

chapter 15.

This the cover a broad and a quick overview of maximum likelihood estimates. There are

very few papers in the data assimilation literature relating to maximum likelihood, I will

not say there is none there are a couple of them. They are done within the context of



Kalman filter and under relation to other problems. Even though in our illustration we

will not invoke the maximum likelihood estimation we are largely going to be concerned

with least squares, it is better to know what are the things out there and what are the

alternate ways of thinking about the problems. That the reason I am trying to introduce to

you some of these techniques, so that it will open our windows and our eyes to other

related areas in estimation theory.

Thank you.


