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In the previous module 6.1, we listed several of the desirable properties of estimates,

estimators these are extremely fundamental properties one should be, one should always

look for whenever they are trying to do statistical estimation. Because if you show your

result to a statistician they will immediately challenge you by asking this question is it

unbiased, how efficient is this, is this a consistent estimate and so you have to be aware

of these potential question that an educated person who is well versed in statistics could

ask because if you project data assimilation as one of estimation of unknowns you cannot

escape analyzing properties of estimates that one has to consider as a fundamental base.

So, in this module we are going to turn to a particular method of estimation least square

estimation. We have already talked about deterministically squares so far, now we are

going to be talking about statistical  least squares. So, the whole lectures are centered

around  least  square  methods.  Until  now  we  talked  about  deterministically  square

principles  now  because  we  considered  static  deterministic  problem,  dynamic

deterministic problem everything was deterministic up until now, now we have ventured

into  the  world  of  stochastic  or  statistical  estimation  with  respect  to  model  being

stochastic with respect to observations are always stochastic. So, this theory essentially

calls for some nerding understanding of the fundamental underpinnings of stochastic or

statistical estimation.

One of the work hours of the statistical estimation methodology is again statistical least

squares.
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So, we are going to not develop the grand theory of statistical least squares, but we are

going to illustrate the fundamentals of statistical least squares using simple examples that

are relevant to data assimilation. Again let us start with let us z be an observation let us z

be a linear function of the unknown x v be a noise, v be such that its mean is 0, its

covariance is R is known R is SPD. R is a covariance matrix in statistics the inverse of

the covariance matrix is called the information matrix. For example; let us consider the

following let  sigma square be the variance.  If the sigma square is large what does it

mean? Their under variable can find itself in a large domain; that means, the uncertainty

is  large.  When sigma square  is  small  means  what,  the  variance  is  very small  if  the

variance is very small there is a very small variation that the underlying random variable

encounters. So, we know pretty much the values much more confidently than when the

variance is large.

So, the inverse of the variance if sigma square is large 1 over sigma square is very small,

a sigma square is small one over sigma square is large therefore, the inverse of variance

is call information, they are inversely related to each other one is the reciprocal of the

other.  So,  larger  variance  means  less  information  and  smaller  variance  means  more

information the covariance matrix inverse of a covariance matrix we simply do not say

inverse of a covariance matrix another name for it is information matrix. So, if R is SPD

information matrix exists. x is an unknown x could be random for example, as we have

already  said,  the  unknown could  itself  be  a  random variable  for  example,  a  climate



variable has a natural variability so climate variables are random variables. I am going to

make observations of this underlying climate variables v is the observation noise. So, x is

a random variable v is another add on noise coming from observations. So, there are two

components in here I am going to assume that the observation noise and the underlying

intrinsic variation x are uncorrelated that is a very standard assumption and it is also very

valid assumption.

The climate does not change because I am trying to measure the nature. So, v depends on

the instruments I use, but the climate itself has an underlying variability for example, el

nino comes once in several years in some form of a cycle while we cannot pin down the

exact  period of the cycle  we know roughly what  happens in here.  So,  we know the

overall behavior become pin down the values of period. So, the period with which el

nino occurs is the random variable. So, el nino phenomena has a natural variation a el

nino varies naturally the associated climate also varies naturally. So, x is unknown, x is

endowed with a natural variability, x is a random variable, v is an additional randomness

that I am introducing into by virtue of measuring about our gaining information about x.

So, when you have multiple random variables in statistics one of the things that we have

to  worry  about  what  is  the  relation  between these  two random phenomena  simplest

possible assumption is also very valid assumption x and v are uncorrelated.

Now, define the residual. This, sounds very familiar  sound very familiar to us that is

what we have deal in deterministic least squares. So, I can now consider the weighted

sum of squared residuals the weighted sum of squared residual is f of x is equal to r x

transpose R inverse r x, R is the noise covariance which is also called the energy norm

square of r x where the weight is R inverse. The explicit expression is given by z minus

H x transpose R inverse z minus H x I have stuck in a factor half, I have already argued

that  many  of  the  arguments  do  not  change  the  only  convenience  for  half  is  that  it

simplifies a little bit of an algebra.
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We can compute the gradient of that we already know we have, we should be already

masters of this we may have by now we have seen this term several times over. So, this

is  the expression for the variance,  this  is  the expression for  the Hessian if  I  set  the

variance to 0 and solve the equation 1 I get the estimate least square estimate like this.

If  I  assume  z  to  be  deterministic  x  hat  LS  the  least  square  estimate  it  is  also  be

deterministic, but in our case z is random z is random because x is random z is random, z

inherits randomness from two sources, the two sources are uncorrelated therefore, x hat

LS is random. So, this estimate is a random vector it has its own underlying sampling

distribution the estimator, the estimate has a distribution. So, I would like to be able to

ask myself  the following question under  what  condition this  least  square estimate  is

unbiased and so on. We would like to be able to analyze the properties of this estimate.
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So, first question is this band biased is this estimate unbiased. So, I am going to discuss

unbiasness. Please from the previous slide this is the expression for the estimate,  but

please remember x is equal z is equal to H x plus V. So, if I substitute this z in here and

simplify simple algebra leads you to this. So, if I took the expected sides left hand side is

this, right hand side is this, the expected value of v is 0. So, the expected value of the

estimate is equal to the unknown and hence the estimators are unbiased. So, what does it

mean? The least square estimate is unbiased in this case.

I would like to be able to compute the covariance of the estimates the covariance of the

estimate z of x LS being a vector. The covariance consists of the outer product, this is the

column that is a row we have to consider a matrix expected value of the matrix, expected

value  of  the  matrix  is  a  expected  value  of  every  element  of  the  matrix,  but  in  this

particular case from this equation I do know the expression for x hat LS. So, expression

for x hat LS is equal to x plus this. So, using this relation in here as well as in here we

can readily see these two factors relate to this I am going to talk about the expected value

is it is very easy for me to draw these things and tell you, but I would like you I would

like  to  emphasize  that  you  should  do  all  the  verify  all  these  algebra  that  is  very

fundamental.

Now look at this now, this term is not random, this term is not random, this term consists

of the covariance of the nice vector and we all know the covariance of the nice vector is



R. This R will can get cancelled with one R inverse. Once it gets cancelled with the R

inverse the other term also gets cancelled living behind H transpose R inverse H inverse.

That is the expression for the least square least covariance of the square estimate.

Now, I would like to go back to the previous slide. If you look at equation 2, the Hessian

I want to emphasize the Hessian of the f of x is equal to H transpose R inverse H now let

us come back in here the covariance of the estimate is H transpose R inverse H inverse.

So, you can readily see the covariance of the least square estimate sorry the covariance

of the least square estimate is simply inverse of the Hessian of the objective function it is

a beautiful property its one of the one of the most one of the most beautiful property that

relates the gradient the Hessian the estimates, the variance of the estimate and so on.

Therefore, what is the conclusion the conclusion is the least square estimate in this setup

is unbiased, I can also compute its variance, the variance is related to the inverse of the

Hessian of the objective function that the least square estimate tries to minimize.
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Please remember we have already talked about the relation between projections and least

square estimates. So, relation to projections I would like to bring to our attention. So,

what is z hat? So, let we can think of it like this now, this is the span of H we have

already talked about it in our deterministic methods, this is z if I project this this is the

orthogonal projection, if I project this that is an oblique projection. So, I in the case of

orthogonal projections we had in the case of oblique projection just be this, I could also



get an oblique projection like this there is only one orthogonal projection all the other

projections are oblique. Oblique projection occurs when there is a weighted least squares

orthogonal  projection  comes  in  only when you do ordinarily  squares.  These  are  our

weighted least squares so we are going to get oblique projections in here. Therefore, z

hat whichever projections you have z hat is always is equal to H of x LS, x LS the

formula for that is already known you substitute that formula this is the expression for

the projection of z onto the span of H. I am going to concoct a matrix that matrix is the

projection matrix P which is given by this expression.

We have already seen this in the case of deterministic case I am trying to redo them

within  the  context  of  statistic  least  squares  to  see the  relation  between least  squares

whether it is statistical or deterministic. It can be verified this matrix P is idempotent

what does it mean P square is equal to P please verify that. This matrix is not symmetric

P is equal not equal to P, P transpose please again verify that. So, any idempotent matrix

that is not symmetric gives rise to an oblique projection that is the basic theory we have

not proved that theory we are not proved that theorem, I would like to if you are a person

who wants to know more and more of fundamentals what is the fundamental result in

here, any orthogonal projection matrix must be idempotent and symmetric, any oblique

projection matrix as an operator must be idempotent, but not symmetric.

What  is  the  intrinsic  relation  between  projection  operators  and  matrices  with  these

properties these are produced in an advanced book on matrix analysis, matrix theory?

There are number of books we have alluded to especially the book by Horn and Johnson

is one of my favorites it has very nice proofs of these basic facts from operator theory as

well  as  projection  theory.  When  R  inverses  I  P is  equal  to  P transpose  it  becomes

symmetric it becomes orthogonal projection. So, this is something we have already come

across within the context of deterministic I wanted simply inform ourselves of the fact

that the same properties also carry over to the statistical control path.
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Now, I  am  going  to  make  some  further  simplification.  Until  now  we  assumed  the

covariance of v, the covariance of v is equal to R. In general R is a speedy, so R is a

symmetric matrix in general it can have nonzero of diagonal elements now I am going to

come  to  a  very  special  case  I  am  going  to  consider  the  noise  component  v  are

uncorrelated. So, what does it mean? v has v 1, v 2, v m; the covariance of v i with

respect to v j if it equal to 0 for i not equal to j. What does it mean? All the elements here

are 0 all the elements under here are 0.

Further I am going to assume the variance of each of the, is equal to sigma square; that

means, they all  have the common variants.  In this case my R becomes sigma square

times i, sigma square times i is an identity matrix multiplied by sigma square and the

means it is the matrix where off diagonal elements are 0 all the diagonal elements are

same. And this makes sense why is that? I am going to measure observations at different

places and collate them into a vector. The observational errors of different places when I

am measuring from as they are uncorrelated I am using the same instrument at every

price so they have common variants. So, that is the physical import of this assumption.

So, in this case R is equal to sigma square i.

In  this  case  my  expression  for  x  LS  if  I  substitute  this  becomes  this.  Now, please

remember now in this case there is no sigma square there is no R because it magically

goes away that is that is the nature of the expressions in here. The covariance of this is



simply the inverse of the Hessian which is given by this. H transpose H you remember

that that is the hesh that is the Gramian, H transpose H is symmetric if I do an eigen

decomposition  of  H  transpose  H,  I  get  this  Q  is  the  matrix  of  columns  of  the

eigenvectors.

H transpose H is equal to Q lambda Q transpose Q, Q transpose Q transpose of I is I,

lambda is the diagonal element with n eigenvalues. I know I am going little faster, but I

am sure we have come across this several times. So, I do not want to overly repeat what

we have already done, we have come across these things in context of the discussion of

decomposition and the same ideas come over here because this is the Gramian. So, given

this, if H transpose H is equal to this its inverse is equal to the inverse of the right hand

side we already know inverse of the product is the product of the inverses. In the case of

Q, Q is an orthogonal matrix transpose is the inverse. I am combining all those results to

get this. This is a very special formula for the H transpose H inverse, why am I interested

in the H transpose H inverse because H transpose H inverse is a matrix that relates to the

covariance or the yeah the least square estimate least square estimate.

Now, if I consider a covariance matrix the diagonal elements of the covariance matrix are

all variances of the different components. So, I am now going to compute the trace of the

covariance of the estimate. Please remember we already talked to the trace the trace of a

matrix is equal to sum of the diagonal elements, when the matrix is the covariance matrix

diagonal elements are all related to variance. So, to trace of the covariance matrix gives

you the total variance in the components of the estimate. So, trace of the covariance of x

hat LS is equal to the total variance in all the elements of the estimated vector x hat L, of

x hat LS. Now, we already know that is equal to sigma square this. This is a constant that

multiplies by trace. So, that comes out from the definition of trace. 

So, now I am going to utilize this formula to substitute for this. So, this becomes this,

there are lots of matrix algebra in here and we also have seen trace of ABC is equal to

trace of CAB is equal to trace of BCA. The trace is invariant under the circular shift of

the product, so because of that I get this. Q Q transpose is I, therefore,  this quantity

becomes a trace of lambda inverse trained a trace of lambda inverse is simply sum of 1

over lambda I times sigma square beautiful, beautiful. So, that the total variance in the

estimate is simply sigma square times sum of the reciprocals is their eigenvalues of the

gramian H transpose H. It is a absolutely beautiful result.



So, what does it tell you? If H transpose H is nearly singular one of the eigenvalues is

going to be close to 0, when one of the eigenvalues is going to be close to 0, one over the

smallest eigenvalue that is exploded on your face; that means, the covariance estimate is

large. So, what does it tell you? You remember the condition number we talked about is

something  similar  to  that.  When  is  the  condition  number  goes  large,  the  condition

number please remember is the ratio of the largest eigenvalue to the smallest eigenvalue

is the smallest eigen value while remaining positive is very close to 0 that is going to

explode on your face that is exactly what is happening in here, that is exactly what is

happening in here.

The condition number the gramian H transpose H is very large another interpretation in

the context of statistical least squares is that, the covariance of the least square estimate

can explode on your face if the matrix H is ill conditioned or nearly ill conditioned that is

that is exactly the conclusion coming from the last line of the slide.

(Refer Slide Time: 21:58)

Now I am going to talk about, I can do all the estimates I am assuming my covariance,

noise covariance is sigma square I until now I assume my I know my sigma square what

happens if sigma square is not known. So, I could estimate that. Statisticians are very

clever people they will relax every possible assumption what if that is known how did

not we how to estimate this, what if that is not known how to estimate this. So, they will

talk  about  every  possible  combinations  of  knowns  and  unknowns  in  the  context  of



estimation problem as we have seen in the previous exercise. So, the whole question is

this can I use this framework to be able to estimate the observation noise covariance.

Let me post the problem like this we have already seen you we use satellite observations,

we generally do not know what is the covariance of satellite observations. So, is there a

way to formulate your estimation problems such that using which I can at least hope to

estimate the variance of satellite observations or radar observations; that is one way to

think of this problem as a motivational fashion. So, I would like to be able to estimate I

would like to be able to estimate sigma square sigma square is related or by this.

Now, to be able to do this estimation I am going to go back to my residual, residue e

which is there on the estimate e is equal to I sometimes I call it R sometime I call it e

depending on the context  I do not think that should bother you. I  can call  the same

quantity by different names at different places depending on convenience, I hope it does

not throw you out of the board. So, z minus H of LS, this is the model counterpart this is

actual observation the difference is the error. I can express this error as I minus P times z

where P is the projection matrix which we have already talked about in the last slide.

I can substitute for z as H x plus v and if I do the multiplication it turns out that this error

is equal to I minus P times v and why this is I minus P times v because of the algebra that

is given in here. So, because of this algebra it turns out that this product while it should

have 4 terms essentially the product of I minus P of the H x becomes 0 because of the

argument in here I am going to leave it to you to enjoy the argument. So, the expected

value of this error is 0; that means, this error is an is unbiased it is the covariance of this

error I am interested in estimating.
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Therefore I want to be able to estimate sigma square sorry, I want to be able to estimate

sigma square in order to able in order to estimate sigma square E is the error vector e

transpose e, what is that? That is the sum of the square errors. I want you to remember

two things now E e transpose is e matrix because E is a column vector, but e transpose e

is a scalar. I want you to distinguish two things E e transpose e is simply sum of squared

errors.

So, expected value of the sum of square errors is given by this because we have already

derived expression for e in the previous slide e is equal to I minus P times v. I plug in that

value in here I am sorry, I plug in that value in here sorry yeah right this is the right

place; I plug in that value in here. I minus P, P is the projection, projection operators

idempotent. So, I minus P times I minus P is I minus P, I want you to verify I minus P is

idempotent because P is idempotent. v transpose I minus P v is a scalar therefore, a scalar

is a quadratic form in v that is equal to its own trace because trace of a scalar is itself that

is a mathematical trickery that we bring in to make the analysis more meaningful and H,

the trace of a product by rule by the cyclic rule that trace is essentially given by this, this

is essentially.

So, I can now ah trace of v v transpose is sigma of I want you to remember E of the v v

transpose is equal to said I sigma square i. So, if you use that particular property this

becomes this which is essentially a trace of sigma square times trace of I minus P trace of



a sum is the sum of the traces you can see. So, many facts are used trace of I is m

because I am concerned with the m by m matrix, trace of P trace of the projection matrix

is n that is that is proved in here I have attached the proof for every one of these things

therefore, sigmas. So, the expected value of sum of squared errors is sigma square times

m minus n. I am concerned with an over determined system where m is greater than n

that is the underlying assumption we have make we have made all through.

Therefore,  what  could  be  in  the  structure  of  estimator  for  sigma square,  this  is  the

resulting structure for the estimator. So, E is the error. Please remember E is the error or

the  residual  in  the  estimate.  So,  E  is  computable  E  transpose  z  is  a  scalar  that  is

computable you divide that by m minus n that hence to be an unbiased estimate that

tends to, that is a very good unbiased estimate for sigma square.

So,  look at  this  now using this  framework we not  only can assume sigma square is

known and estimate x which is unknown. After having estimated x we can also use the

same framework to be able to come to estimating sigma square. So, we can kill 2 birds in

one stroke, we can kill 2 birds in one stroke. It is a very powerful device, it is a very

powerful device. I hope you do go over this very leisurely and enjoy the moment to

understand the beauty and the structure the arguments and the power of this example.

(Refer Slide Time: 28:57)

So, now I am going to summarize everything we have seen. So, I am talking about the

world of estimators U is the world of unbiased estimate that is given in green, L is the



world of linear estimates. Some estimates are linear some estimates are non-linear, some

estimates are biased some estimates are unbiased. So, outside the green is biased outside

the red or is non-linear. The intersection of unbiased and linear is called linear unbiased

among all the linear unbiased estimate LUE, L for linear U are unbiased E for estimate. I

am interested in the best linear unbiased estimate. Best in what sense, best in the sense of

minimum  variance  a  that  is  what  Kalman  Filter  Rahsaan,  Kalman  Filter  makes

estimations which are blue, Kalman filter estimates are blue that is the reason why we

use them repeatedly.

And what gives us the power to use Kalman filters and make predictions because it is a

very beautiful underlying property called blue, blue is the best linear unbiased estimate

we have talked about unbiasedness, we have talked about linear estimate, we have talked

about also best relation efficiency linear relate the structure of the estimator unbiased is

also relate to the property of the estimate. So, far we have seen via an example properties

of least  square statistical  least  square estimate a reader can very easily recognize the

parallelism between deterministic least squares and statistical least squares, we not only

are able to estimate the unknown we are able to show that is unbiased we are able to

compute its variance.  We are also able to test the properties of the resulting estimate

against  the  standards  unbiasedness  and  consistency  and  being  able  to  estimate  the

unknown covariance and so on. That gave rise to the notion of class of all  unbiased

estimators, the class of all linear estimators.

Why we are going to be concerned with linear estimators because computationally, linear

estimators are easy to compute non-linear estimators requires more time. If I can get very

good results with linear estimators why not unbiasedness is very fundamental to any and

every estimator whenever wherever possible. So, I am interested in the intersection of

these two properties namely linear unbiased estimates LUE. Once you confine yourself

to LUE you also want to be able to next talk about the other dimension namely variance

of the estimate. If the total variance of the estimate can be minimized then it is going to

be optimal in some sense such optimal estimates are call best linear unbiased estimate.

So, we are interested in blue. Blue is a key characterization of estimations and as we will

see later in when we do the Kalman filtering this notion of blue plays a very fundamental

role in the definition of filtering equations known as carbon filter equations.
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Now, I am going to bring to your attention a very fundamental theorem called Gauss-

Markov theorem. Gauss-Markov theorem relates to an inherent optimality of the least

square estimates. Thus far we talked about some of the routine properties this Gauss-

Markov  theorem  takes  the  least  square  estimates  one  step  further  and  puts  it  on  a

pedestal.  So,  what does Gauss-Markov theorem says? Among all  the linear  unbiased

estimate then the least square estimate is the best. So, it tries to attest the importance of

the least square estimate within the framework of estimation theory. So, that is what is

call optimality of least square estimates.

Least square estimates are optimal in a very natural sense the discovery of this natural

property of least squares is call Gauss-Markov theorem. Gauss lived in 1700s, Markov

lived in early 1900s. Markov is a Russian mathematician, Gauss is a famous German

mathematician. So, in their honor I believe it is call Gauss-Markov theorem. So, let us try

to formulate the basic aspects of the time of the Gauss-Markov theorem.

Let x be an unknown to be estimated. Let us pick a mu a vector a vector of the same size

as x and let us concoct a function phi of x which is mu transpose x. Mu is a vector of x, x

is a variable. So, mu transpose x is a linear function with an inner product. So, phi of x is

the linear function. So, this is a linear estimator phi of x is a linear function is a linear

estimator. Now, what is that we want to do? Even though mu is known even though mu

is something I picked, x is not known, components of x is not known. So, mu of mu



transpose x is essentially sum of mu i, x i. So, instead of estimating x i would like to be

able to estimate this linear combinations of the components of x which is some of mu i, x

i. So, the problem is to consider estimating phi of x. I hope that is clear now.

Ultimately  I  am  interested  in  estimating  x,  but  I  am  considering  a  special  case  of

estimating phi of x. So, you can think of phi of x as a functional. So, phi is a mapping

from R n to R, phi is a function to which if I give x it gives me mu transpose x and phi is

defined by mu. So, that is the idea here. So, what is that we are seeking? We are seeking

a linear unbiased estimate for phi of x.

Now, how is this related to estimating x? Suppose, now, you can see mu is a vector

which is  mu 1,  mu 2, mu n,  suppose if I  set  mu 1 is  1 all  the other mus are 0 mu

transpose x becomes x 1, suppose I pick picked mu 2 as one everybody else is 0 I pick x

2 and so on. So, if I know how to estimate mu transpose x, I know how to estimate every

component of x if I can estimate every component of x I can estimate x therefore, the

problem of estimating x is embedded in this problem of estimating a functional of x. So,

without loss of generality let us consider the problem of estimating a linear functional of

x. So, we all know linear function functional, functional is a mapping from a vectors

from R n to R and so on.

So, let z, so we talked about the structure of what we want to do. Let Z be the data or the

observation that has information about x. Let a transpose z be the estimator for phi of x.

So, phi of x is the so, what is that now we want to do? We do not want to we do not want.

So, there is x that is phi of x we want to be able to estimate phi of x to estimate phi of x I

need an estimator, estimator is a function of the observation. So, I am going to concoct

that a transpose z where z is the observation be an estimator for phi of x. Phi of x is a

scalar x is a vector let a be another vector, I would like to be able to consider a transpose

x to be a potential candidate for estimating the value of phi of x. I hope that is all clear

now. a is R m, Z is R m, mu is R n, x is R n. So, you can see all the relations all the

players in this game.

If a transpose z is my estimator I am sorry is the structure of my estimate I can compute

the expected value my Z has a standard formula Z is the linear function of x. So, a

transpose H x plus v I am substituting for Z in here the standard one, expectation of the

sum is the sum of the expectations, expectation of v is 0, expectation of E of x if the



unbiased estimate is x therefore, E transpose e z is a transpose Hx. So, that comes very

very very nicely that comes very nicely.

(Refer Slide Time: 39:18)

Now, a transpose z is an unbiased estimate only f phi x is equal to mu transpose x is

equal to expected value of a transpose z is equal to a transpose Hx. Please remember for

the unbiased estimate it must be equal to the value I am seeking therefore, if I were to

relate  these two quantities  that  essentially  tell  you mu transpose must  be equal  to  a

transpose H or H transpose a must be equal to mu. So, that provides the relation between

the a vector that I use in the estimator and the mu vector I use in the definition of the

functional to be estimated. So, the a and mu are cannot be 2 distinct they must be related

through H, H is a function that relates the state to the observation I hope that is clear.

Since,  it  is  unbiased  estimator  we already  know the  mean  square  value  is  equal  to

variance. Please remember in one of the earlier lecture we have already said that if the

estimate is  unbiased means square error is  equal  to the variance.  So, minimizing the

mean square error is equal to minimizing the variance.  Therefore,  I am not going to

compute the variance of the estimate a transpose z. The variance of the estimate is equal

to expected value of the error square. I am again going to substitute for z which is given

by this.

We already know a transpose z expected value is a transpose Hx. So, if you simplify this

you get this a is a constant, v is the is a random vector, a transpose z so we can write like



this a transpose v square is equal to a transpose v transpose I am sorry a transpose one

second; times a times a transpose v here a transpose v times v transpose a because the

symmetry the inner product or symmetric therefore, this can be written as a transpose v v

transpose a. If I took the expectations I get what is this. So, to go from here to here this is

the simple algebra. So, like this I would like you to do all the basic algebra to see which

steps come from the previous one why and how and the variance of v is R. So, this is a

transpose Ra, a transpose Ra, R is a matrix a transpose Ra is a quadratic form. So, a

transpose is this, this is the matrix that is the vector. So, this is a scalar. So, the variance

of a scalar is a scalar everything matches. So, I have computed an expression for the

variance of the estimate which is a transpose a, the variance of the estimators a transpose

Ra.

Yes, I know I am going a little faster, but what I am trying to tell is nothing unknown to

you except for the algebra. So, I would like you to be able to go through these algebra

and unconvinced yourself in my regular class where I teach a student I also do not go

over this algebra in the class because it is a part of the folklore of the course where you

need to struggle learn to do many of the matrix manipulations and these exercises these

simplifications are very educative I hope you will pursue that.

(Refer Slide Time: 43:16)

Now, what is that, what do you want to do? We want to be able to get the best estimate,

best estimate is in the sense it minimizes the variance of the estimate. So, what is the



estimate? The estimate is mu transpose x, I am sorry the estimate is a transpose z. What

is the functional being estimated? Mu transpose x. What is the variance of the estimate?

The variance of the estimate we have already seen is given by a transpose Ra.

Now, I would like to minimize this  variance with respect to a,  a is the variable  you

remember a is a vector I picked to make to design my estimator which is a transpose z z

is given a is something I picked now I am going to take responsibility in how to pick a

what are the conditions for the choice of a that is where we are coming to. So, I need to

be able to minimize this quadratic function a with this quadratic function with respect to

a, but a is not a free variable. Please remember the unbiasedness requires a and mu to be

related H transpose a must be mu therefore, I am not interested in minimizing a for any a

I am interested in minimizing a transpose Ra under the condition that H transpose a is

mu.  So,  this  is  the  constraint,  this  is  an  equality  constraint.  So,  I  am interested  in

minimizing something with equally constraints, now how many times we have seen this

constraints minimization the equality constraint what is the rule Lagrangian multiplier.

Now,  you  know  the  importance  of  multivariate  calculus  optimization  theory.  So,

formulate this as a Lagrangian problem, a is a free variable with respect to which I am

going to do the minimization lambda is a vector with respect to which I am going to

build my constraint into my Lagrangian function. So, this is the Lagrangian function.

Compute the gradient of the Lagrangian function with respect to a, compute the gradient

of the Lagrangian function of lambda equate them to 0, solve them simultaneously the

solution process is given here ultimately the minimizing a is given by a is equal to R

inverse H, H transpose R inverse H inverse mu, wow. Look at this now. I want to go back

I know there is lot of lot of side steps there is involved, z is equal to Hx plus v, I do not

want to estimate x by I want to estimate a functional of x which is mu transpose x.

To estimate this I picked an estimator to be a transpose z. This estimator is unbiased, this

estimator has a variance which is a transpose Ra I am interest. So, this estimator is linear

I am sorry this estimator is linear it is also unbiased therefore, it is already LUE. I want

to be able to introduce a B to that I want to make it a blue to make it a blue I have to

minimize this with respect to a, but the unbiasedness requires a and mu to be a related H

transpose a must be equal to mu therefore, this is the constraint this is the function to be

minimized.  So,  I  combine  the  two,  I  minimize  this  with  this  as  a  constraint  using



Lagrangian multiplier technique with a little bit of algebra and simplification I have now

found a formula for the optimal a.

What is this value? The a that I you should use in my estimator is not coming out of the

blue sky, but it is going to be decided by this structure which is given by star. Now, let us

look at the structure star it depends on R the covariance matrix of the noise it depends on

H which is the linear map between the model space in the observation space. It also

depends on mu, what is mu? Mu is the coefficient of the functional that we originally

started that we originally started with. So, we have solved the problem. If I pick my a to

be this and use that a in my a transpose z the resulting estimator is not only is not only is

not only linear it is unbiased it is also minimum variance it is also minimum variance.

(Refer Slide Time: 48:04)

So, linear unbiased minimum variance estimate of phi of x mu transpose x is equal to is

given by this expression. So, you can readily see this is the least square estimate, the H

transpose R inverse H inverse H transpose R inverse z that is the least square estimate.

So,  it  is  mu transpose times  the least  square estimate.  So,  mu transpose z sorry mu

transpose z that is the structure of that is the structure of the estimate that comes out.

So, if I pick mu to these 1 1 0 0 0 I get the best estimate of x 1, if I picked 0 1 0 0 0 I pick

x 2 and so on. So, I can by this formulation can estimate any component of x, I can

estimate all components of x each of the component of x will be, it will be I can estimate



use m and the properties of the estimate is blue. So, that is the basic idea of, that is the

basic idea of the setup, that is the basic idea of the set up.

(Refer Slide Time: 49:30)

So,  I  would  like  to  take  you  through  some of  the  slides.  So,  in  the  Gauss-Markov

theorem we have we have established linearity, we have establish unbiasedness we have

also now established it being the best, being the best.

Now, I am going to further embellish this with some other claims some extensions if the

noise.  So,  until  I  good until  now I  only  assume the  noise  v  has  a  mean  0  and  the

covariance R, we did not explicitly invoke to the Gaussian nature of v. So, until now all

the analysis depends on the fact that v has a mean 0 and the covariance R it need not this

will be Gaussian. So, in addition if somebody tells you v is indeed Gaussian as in this

case there is a further extension of this Gauss-Markov theorem and that Gauss-Markov

theorem is the extension is called Rao-Blackwell theorem.

The  Rao-Blackwell  theorem  essentially  tells  you  the  least  square  estimate  with  the

Gaussian noise is the best among all estimates, linear and non-linear. If v is not Gaussian

there exists there exists non-linear estimates whose variance is smaller than the linear

estimate these are all deeper results from statistical estimation theory, these results can be

gleaned from the book by Dr Rao, C R Rao we referred to in the previous talk. So, I

believe I had given you, a reasonably good picture of the properties of statistical least



squares as supposed to deterministic least squares that we saw within the context of,

within the context of deterministic static estimation theory.
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My favorite book on this topic is again Melsa and Cohn is the same book that I had

already referred to earlier. Decision and Estimation Theory by McGraw Hill is a small

little book no more than 200 pages, but its beautifully written it has an engineering flavor

and whenever I have trouble with these I always fall back on Melsa and Cohn or Melsa

and stage in Melsa these are the two books and we also refer to many of these things in

our chapter 14 of our book on data assimilation. So, with these two you should be able to

get  a  rather  complete  picture of  the basic  elements  and properties  of statistical  least

square estimation and its underlying properties.

Thank you.


