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So,  far  we  have  been  talking  about  Data  Assimilation  in  Deterministic  model;

deterministic static; deterministic dynamics with respect to deterministic models, what is

the  basis?  The  models  perfect,  the  model  can  be  static  or  dynamic;  to  do  data

assimilation,  I  need  observations;  when  we  did  the  static  deterministic  model  even

though we recognize that observations in general are corrupted by noise to make things

simple; we assume as if the observations did not have any noise.

But  when  they  came  to  the  dynamic  data  assimilation,  deterministic  perfect  model

assumption;  we assumed the observations  are  noisy. And we knew the observational

covariance;  so with this  we have pretty much completed data assimilation into static

deterministic and dynamic deterministic models.

The next topic is a model can be stochastic; the model can be static and dynamic model

can  also  be  stochastic.  So,  what  does  it  mean?  I  am going to  now start  with  static

stochastic model; dynamic stochastic model stochasticity randomness; where does the

randomness  comes  into  being  randomness?  Essentially  comes  from one  observation

noise.

Another one randomness comes from model may have a random forcing function; what

is the reason? Why we consider model forcing? Some time models are approximations of

reality. The model captures pretty much good aspect of the physics, but still there are

some leftover processes; that I have accounted for the left over unaccounted terms is

called the model errors; it is not if we know what the error we are committing; we would

have always taken that into account, it  is not acceptable for one to know that I have

committed the error and not correct the error. 

So,  when  somebody  says  this  is  the  model  that  essentially  gives  the  complete

understanding of the model at that time, but whatever be the model, you may want to

account for unaccounted terms that is called the model error.



One way to simplify the incorporation of model errors is; to assume the model errors are

random.  So,  addition  of  a  randomized  version  of  model  errors  makes  the  model

stochastic,  considering  the  observation  noise  makes  the  observation  also  random  or

stochastic. So, we are going to move into a newer realm; where the stochasticity in the

observation,  as  well  as  stochasticity  in  the  model  errors  both  could  be  part  of  our

analysis.

So when we were going from deterministic stochastic, the principles of data assimilation

has to depend on statistical probabilistic ideas. I am assuming the readers are familiar

with basic fundamental concepts of from probability theory. So, under that assumption; I

am now going to build some of the basic tools from statistical estimation theory that one

needs to be able to perform data assimilation into static and dynamic stochastic models. 

So, that gives raise to the mathematical background that underlie statistical estimation

theory. Please remember from the first lecture; data assimilation can be thought of as a

regression data assimilation, can be thought of as estimation. So, estimation within the

deterministic context is what we finished talking about estimation within the stochastic

context is what we are moving into.

So,  the  first  topic  in  module  6  is  called  principles  of  statistical  estimation;  it  is  the

preparatory  work  that  we  need  to  do  to  gain,  an  understanding  of  the  fundamental

principles  involved  in  statistical  theory.  So,  this  is  the  part  of  the  mathematical

requirement; please go back, we have already talked about final and electro space matrix

theory;  multi-variated  calculus  optimization  theory,  matrix  methods  optimization

algorithms.

Now I am going to be talking about statistical estimation algorithm. So, you may see this

course is heavy in mathematics; why this is heavy in mathematics? Because that is what

the definition is all about, if you do not understand the mathematics; we may not be able

to get like crux of the algorithm; that underlie the data assimilation process itself. It is

very easy to be able to use the algorithms there somebody developed, but in addition to

be able to use the algorithm that somebody develops.

If you want to be able to venture into the new world of being able to develop newer

methods, you need to understand the models the algorithms and the models, the data and

the process of bringing; the model to data which is essentially an engineering process in



my view and this engineering process involves lots of mathematical preliminaries and

that is why our approach is quite mathematical.

(Refer Slide Time: 06:17)

So, with that preamble I would like to be able to describe the fundamental principles of

statistical estimation. So, I am going to pose the estimation problem; let x be an unknown

vector  to  be  estimated;  x  is  called  that  state  or  the  true  state.  I  want  to  know  the

temperature in the city of Bangalore this afternoon at 3 o’clock, I want to be able to

estimate that the unknown the true temperature; not known, I would like to be able to

estimate this oftentimes; x is not directly observable; the state of system may or may not

be directly observable.

But  function  of  the  state  may  be  directly  observable;  therefore,  z  is  called  the

observation. The observation is related to the true state by a function z is equal h of x; we

already know that we have utilize this term it again. So, R n is a model space; x is the

model state, z is an observation vector. We have the observation space which is R; R m h

is  the  map  from the  model  space  the  observation  space;  h  essentially  refers  to  the

measurement system if h is linear, z is equal to h of x.

If h is non-linear; you simply have z is equal to h of x that is what we have. These are

very familiar territory for us because we have used this several times over.
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The problem knowing z; I want to be able to best, I want to get a best estimate x hat of x.

So, z we know z is a related to h, but h z is related to x; x is not directly observable, a

function of x is observable. So, knowingly z; I would like to be able to estimate x where

does a stochastic, stochasticity comes into play. 

There is an additive observation noise; we are going to assume this noise is mean 0

Gaussians, the known covariance. I will also like to be able to generalize what we have

been doing; so far we have been thinking about x as a state deterministic, but the state

itself could be random. Therefore, we are having an observation z; z is random in 2 ways

because the unknown itself is random, if the unknown is fixed random is fixed that is

called static model.

If the unknown x is fixed, but it is random; what I mean by fixed? By random it is a

random variable, its value can be different based on a particular distribution. We just do

not  know what  is  the  distribution  based  on  which  the  values  of  x  is  selected.  The

distribution is the distribution that mother nature chooses. So, x the unknown is random;

the state is random, the noise is random; so z is random. So, given a random observation

I would like to be able to recover the x.

So, x hat is the estimate of the unknown x because x and v are random; I am going to

simplify  maters,  assume  x  and  v  are  uncorrelated.  So,  x  are  random  variable  that

represents the natural variation for example, this year in some parts of the world; the



temperature is warmer than usual in the winter. In some parts of the world, it is better

than normal and these variations are related to a phenomenon called El Nino and El Nino

occurs; with some rhythm over time.

So, many of the weather variables around the world have a natural variation associated

with them. So, that is what the distribution of x is all about, so x could be the temperature

in a specific region of the world that I want to estimate. And x is the random variable is

subjected to certain natural variability controlled my other events that happens around

the world; z’s are observations in addition to the underlying natural variability, there is

also an observational error.

So, given the observation z; I would like to be able to have a realization in estimate of

the realization of x; that is x hat. So, v is the noise is normally distributed here v is 0; the

covariance of v is r. So, x is the unknown I assume x in general could be random, so if

you look into the statistical  literature,  this  stochastic  estimation problem;  there are  2

competing schools of thoughts, one is the Fisher school; another is the Bayesian school.

Within the Fisher’s school x; is assumed to be a deterministic constant and it is mu, but

unknown Fisher developed a method called maximum likelihood estimation technique.

To estimate mu and Fisher’s technique lies; Fisher’s technique; one can call it as a point

estimation because mu is a point. In a vector space of dimension n; because n is the

dimension of the state vector x. So, I am interested in estimating an unknown value; the

vector mu and mu is a deterministic constant. So, Fisher formulated this problem as a

point  estimation  problem  and  he  developed  a  method  of;  what  is  called  maximum

likelihood estimate.

As  opposed  to  Fisher’s  approach,  there  is  called  the  Bayesian  approach  within  the

context of Bayesian; approach x is considered to be a random, x is sit to have a prior

distribution. The prior distribution captures the natural variability of x, so if x denotes the

temperature distribution around the world; the temperature distribution around the world

is subjected to climatic conditions. The climatic conditions itself vary in some rhythmic

fashion therefore, we can predict to some degree of accuracy the natural variability in x.

And this natural variability is captured as prior distribution; now given z, so there is a

particular; they also prior distribution relates our belief as to what x would be? X access

z is the actual state. So, for example, in this current year we know we are under the grip



of El Nino; so we know under El Nino, what kind of temperature variations could take

place? Even though, we have a prediction from the base in the prior; which are climatic

data, we make an actual measurement z. 

So, z contain some new information x; the prior contain some old information, I would

like to be able to combine them the prior and the new information to get what is called

the posterior distribution, E is random in this case mu is expected value of x expectation

is taken with respect to the prior distribution.

So, you can think of x being a constant and x being random; these are 2 complementary

points of view as an existing statistical estimation theory.

(Refer Slide Time: 14:45)

So, given a function H and assumptions about x and v as; we had done, I would like to be

able to now concoct a function phi, which is R m to R n; what is R m z belongs to? R m.

Please remember that z belongs to R m z contains information what is R n? R n x is in R

n. So, I would like to be able to transfer the information from z to x z; is not x is not

known, I want to transfer information from z to x, this information transferred. 

I am going to represent through a function phi that maps from R m to Rn; so phi of z is

equal x hat. So, phi is the process by which I by; I analyze the observation the output is x

bar.  So,  you  can  think  of  it  like  this  phi  is  the  process  into  which  you  give  the

observation outcomes H hat as an estimate of the unknown.



So, if phi generates x hat which is the estimate of x based on z phi is called an estimator.

So, estimator is a map from the observation space into the model space. So, what are the

examples? Given the reflectivity from the radar that is z, I would like to be able to find

the  amount  of  rain.  So,  the  state  of  the  system  is  rain  but  the  measurement  is  a

reflectivity which is z in this case z is random. 

So, phi of z is a function of a random variable; so x hat is random. So, the estimate x hat

is the random variable, the goal is to be able to obtain probabilistic characterization of

the estimate. What are the probabilistic characterization estimate? So, there are 2 things;

first we need to be able to concoct a way to design phi that is output x hat in estimate of

the unknown x. 

Once it puts out an estimate, we have to talk up an H hat is random; we need to be able

to  talk  about  the  probabilistic  characteristics  of  x  hat,  a  complete  probability

characterization involves knowing the entire distribution of x bar. Sometimes is often

difficult to get that in lieu of that; sometimes we will be contented with knowing what is

the mean? What is the covariance?

So, the problem of characterizing the properties of x hat is the problem that is associated

with  statistical  estimation.  If  phi  is  a  linear  function  of  z,  then  x  called  the  linear

estimate; otherwise it is non-linear. So, estimate can be either linear or non-linear, so

what is the summary of that? I have a unknown x, which could be random; there is a

natural variability, there is a prior distribution; I make observations.

Observations are also corrupted by noise; I know the distribution of the observation. I

want to be able to combine the distribution prior with the given distribution to be able to

get  the property;  the probabilistic  characterization  of x hat.  So,  I  want to  be able  to

design  an  estimator;  an  estimator  could  be  either  a  linear  estimator  or  a  non-linear

estimator.
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So,  in  Fisher’s  approach  x  is  fixed  constant;  so  x  is  equal  to  H  x  plus  v;  v  is  in

randomized v; v is Gaussian random. Therefore, the probability density function of z

given, x is again a normal distribution. The mean of z is normal distribution which H x as

the mean and R is the covariance.

So, if x is deterministic; the randomness in z comes precisely from the randomness in v

and H x is added to be v is 0 mean and a covariance.  Or if you add a deterministic

quantity to a random quantity, it simply shifts the mean without changing the covariance

and that is essentially the analysis that we have given in this discussion. In this case,

there are 2 approaches to estimation; one is called the maximum likelihood estimation. 

Another is the least square estimation in the Bayesian approach; b x p of x has a; is

called  the  prior  distribution;  its  belief  that  we  had  about  the  unknown  the  natural

variability. I would like you to think of it as a information; that we have an climate that is

a  prior  information;  then  at  when  you  start  taking  actual  observation,  the  actual

observation as a conditional distribution.

So, given x; given a particular realization of x, the observation has a distribution that is

called the conditional distribution; generally that is known prior is given. So, I can now

compute the joint distribution p of x of z by simple rule unconditional probability is

conditional of z with respect with given x times p of x or it can be written as conditional

of x with given z; with respect to p z; by equating these two, we can now see p x of z is



given by the product of p z given x times p x by p z; p z is the dense probability; density

observation.

It can be expressed as the integral of the joint density, which is p x z with respect to x. If

you integrate the joint density with respect x; you get p z; so this relation has come to be

called the Bayes rule. So, what is the Bayes rule? Say if you give me the prior, if you

also tell me the conditional distribution of the observation; I can combine them to get this

and this is what is called the posterior. 

So, what does it mean? I am updating the prior; prior is the belief before I came into the

game when I started playing the game, I got observation. The observation gives me some

new information; the new information helps me to revise my old belief, so the new belief

is called the posterior. So, the old belief changes to a new belief by virtue of getting new

information  through  observations;  when  pxz,  the  posterior  is  computed  within  the

Bayesian setup. 

We could use this in a variety of ways, we could compute the mean, we could compute

the covariance. We can make lots of analysis with respect to different properties of x;

based on the posterior distribution. So, these are the 2 competing approaches to statistical

estimation  in  one  form.  The stochasticity  arising  purely  from observation  noise  that

known  is  fixed,  the  other  one  the  unknown  is  also  random;  the  noise  also  for  the

corrupts; the observation. 

In this case, I have a posterior; I have a conditional distribution the process of combining

a posterior with the conditional distribution is the one that gives you the prior and the

conditional distribution, when combined gives you the posterior. So, posterior is the new

belief  posterior  is  the  revised  belief;  posterior  is  the  one  that  we should use  in  our

decision process.
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So, now we talked about the need for creating estimates unknown estimates of the known

be random are deterministic.  There are several properties;  the estimate one has to be

concerned with one is called unbiasedness. Another is called the relative efficiency of the

estimate;  we  have  to  understand  what  is  called  an  efficient  estimate?  We have  to

understand what is called consistency in estimation? A consistency of the estimate, we

also need to worry about what is called sufficiency the estimate?

So, these are all the norms against which estimates are evaluated as if we can induce as

many  of  these  properties  into  the  estimate  as  possible.  Those  estimates  are  better

estimates for example, I would like to be able to have an unbiased estimate, I would like

to be able to have the efficient estimate; I would also like to have a consistent estimate.

So, while data assimilation is in a inputs; where as an estimation problem within the

context of stochastic estimation.

We need to be aware of different properties; the estimates will process and the properties

that the estimates process, depends on the design of the estimate or the function phi. So,

how do you define; design a function phi the estimator such that the estimators unbiased

efficient  consistent  and  so  on.  So,  statistical  analysis  has  been  concerned  with  the

development of this theory for well over century, there is a very well established body of

literature.



So, if you want to be able to become an expert in the area of stochastic data assimilation

problem  or  randomized  stochastic  data  assimilation;  randomized  stochastic  in  data

simulation problems. You need to be cognizant to have very many fundamental results

from this contemporary statistical literature.

So, you can see how different areas of applied mathematics are going to be involved in

trying to make this area of data simulation work.

(Refer Slide Time: 26:03)

So, I am now going to define what is called unbiased? When do I say the estimators

unbiased  unbiasedness  relates  to  the  relative  location  of  the  mean;  of  the  sampling

distribution.  So,  let  us  talk  about  that  now, so  there  are  lots  of  little  things  in  here

sampling distribution. 

So, let me first talk about the notion of a sampling distribution; suppose I have a coin, I

do not know whether the coin, I do not know the probability with which the coin falls

head or tail. Let p be the probability with which the coin falls head; so, 1 over 1 minus p

will be the probability; it falls tail I want to be able to estimate this p; what do we do? We

conduct experiments in which we do N tosses; I am doing N tosses.

When I am going to compute how many of these N tosses a head turned up. So, N H is

the number of tosses where head turned up N T; where the number of process tosses,



where the tail  turned up and that  is  equal  to  N. So, what  is  the estimate  of p? P is

essentially given by N H by N; this estimate becomes. 

So, let us assume we are picked N is equal to 1000. So, I first conduct an experiment; I

get the first estimate p 1, which is given by the estimate p 1; given by the first set up

1000 experiments. Let us conduct a second set of 1000 experiments again N remains the

same m H the number of times, it falls head in the first set of 1000 tosses and the second

set of 1000 tosses; need not be the same. 

So, let me call that as p 2 of hat; let us consider this as p L of hat. So, what is that we are

trying to do? I  am trying to fixed N as 1000; we are conducting an experiment  and

estimating the probability that the chosen coin falls head. I am doing L experiments; I

will also assume L is 100 in the first set of 1000; I compute the number of heads I get p

1.

In the second set of 1000 experiments, I count the number of heads; I get p 2 it turns out,

you can very easily see the number of even though; the total number of tosses remains

the same. The number of heads in each chunk of 1000 tosses need not be the same, but

there will be slightly different. So, p 1 in general need not be equal to p 2; in general, it

need not be equal to p L. 

So, if I now plot the value that p 1, p 2, p L; they will take different points in a real line.

This is 0, this is 1, p L; p is not in between that; so they will take different values; there

will be 100 points. Now we can divide this interval; where this lies into different bins;

we can then compute the number of times. The p hat lies in here, we can put a bar, we

can put a bar, we can put a bar, we can put a bar. So, the bar refers to the number of times

the  estimate  has  fallen  into  that  bin,  so  this  is  called  the  histogram.  The  histogram

essentially refers to the sampling distribution of the estimate p hat.

So, please remember p is that constant;  unknown p hat is the estimate of p, p hat is

random because p hat depends on the number of tosses; so p hat the estimate. So, this is

the estimator; this estimator gives you an estimate, a estimate is a random variable. If I

repeated this experiment L times; I get L different values of this estimate, because it is

random; they are distributed in a range. I can then bin this range and compute the number

of times the values of p falls in each of these. I can compute what is called the histogram;

the histograms, gives you the sampling distribution. 



The histogram is an approximation for the sampling distribution; so what is the sampling

distribution? The distribution of the estimate conditioning of the fact the unknown is x;

in this case unknown x is p x hat is p hat. So, even though the probability that the coin

falls head p is fixed unknown; its estimate varies. Estimate has a distribution that is what

is called the sampling distribution it stands to reason to x expect; that the expected value

of this random of this estimate, which is the random variable; the conditional expectation

of x hat given x is equal to x.

Then x is a constant the conditional expectation of x; x hat with respect to x. So in the

first case x is a constant, in the second case x is random. So, nature picks x from the prior

distribution, so this is the expectation with respect to the prior. The second one is the

sampling distribution that is related to the randomness arising from sampling. 

Therefore, we would expect a; my estimator x hat; to be such that the expectation with

respect to the prior of the conditional expectation of H hat; with respect to x must be

equal to E of x hat must be equal to E of x; what is the E of x? Is the mean of the original

random variable  x;  with respect  to  the  prior? So,  these are  the  2 conditions  for  un-

biasness; that is there are very natural conditions for un-biasness, if an estimate is not

biased is not unbiased; there is a bias, the difference between the expected value of x and

the x; that is called the bias or the difference between the expected of x hat and the E of x

is called the bias.

We also know biased arises in other ways for example, if you have an altimeter; if you

have been using the altimeter for a long time, the properties change. So, if the actual

voltage is 15 degrees; it may show, it may always underestimate this. There could be an

error of minus 2; so that is called bias, there the bias if the reading of the instruments that

can be corrected by calibration. You can calibrate a meter against the standard; we can

correct the bias, but in here the bias arises because of the way I estimate bias is the

property the estimator. 

So, what is the desirable attribute of an estimator? An estimator is a desirable estimator is

one;  where  the  output  of  the  estimator,  which  is  an  estimate.  The estimate  must  be

unbiased since we are considering 2 alternate cases, where x could be deterministic or

random. In the case of deterministic x; the conditional expectation of x hat given x must

be  x,  in  the  case  of  random;  this  repeated  expectation,  the  expectation  of  the  prior



expectation with respect to  prior of the conditional  expectation must  be equal  to the

expectation of x that is the mean of the prior.

So, that is the condition we should always seek to force un-biasness in the estimates.

(Refer Slide Time: 34:44)

Again a coin toss an experiment; if I want a coin, I am going back to the coin tossing

experiment even H R; T p q 1 minus p, given the results of m independent tosses. I

assume m is 1; 1000 in my illustration E f z is I am going to E f z is p variance of z is p

q;  these results  you may ask where does  it  come from? It  comes from the standard

binomial distribution, z takes the value 1; when it falls head z takes, the value 0; when it

falls tail, so one with the probability p 0 the probability q.
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So, in our rotation z; i is equal to p plus v i; z i is equal to p plus v i; z i is equal to p plus

v i; v i is equal to 1 minus p with the probability p; it  is equal to minus p with the

probability q. Therefore, the expectation value of v i is 0; based on this calculation, the

variation of the variance of v i is p q; as it should be and the x value of z i is p; the

variance of z i is p q; that is what comes out of this.

So, we calculate the properties of v and then we calculate the properties of z, these are

simple calculation that comes from fundamental analysis.

(Refer Slide Time: 36:09)



Now, I am going to talk about estimation of the sample mean. Now that we have seen 2

different  formulations  of  the  estimation  problem,  the  Fisher’s  formulation  and  the

Bayesian formulation and we have also seen the definition of what unbiasness and what

is the measure of bias is all about. We are going to illustrate the concept of bias; using a

simple coin tossing experiment.

So, example thirteen point 2 point one thirteen point 2 point one is taken from our book

Lakshmivarahan  Lewis  and  Dhall  Dynamic  Data  Assimilation  published  in  2006;

consider  a  coin  tossing  experiment  the  events  are  coin  fast  falling  head  or  tail  the

probability of head is p the probability tail is q 1 minus p.

They are assuming p is a constant; so we are following the Fisher’s framework given the

results of m; independent tosses of a coin. In the previous illustration, I used m is equal

to 1000; we would like. So, the estimate we would like to be able to get an estimate of p;

the observations are z, z is equal to 1, when it falls head z is equal to 0. When it falls tail,

the probability of head is p; probability of tail is q.

Therefore, the expected value of E z expected value of z is p; the variance of z is p q

anybody who has done basic probability theory and statistics should be able to recognize

that. This is a simple example of a binomial Bernoulli random variable; which is taking 2

values head or tail. So, we are going to rewrite this in our notation observations are z; z

is equal to p plus v i; p is the unknown v i is the noise. The unknown p is to be estimated

the observations is the sum of the value of the unknown p plus the noise v i.

In order to be able to make sure the z matches with the previous description; we are

going to concoct a noise v i is equal to 1 minus p with probability p; v i is equal to minus

p, with the probability q. With this; first we are going to compute the expectation and the

variance of v i.  The expectation and the variance of v i;  expectation of v i is 0, the

variance of v i is p q.

Once I know the mean and the variance of v i since z i is a sum of a constant plus a

random variable adding p 2; v i simply shifts the mean. So, the mean of E i; z i is p, the

variance of z i is p q. So, this is the fundamental  result that comes from probability

theory; if you add a constant to a random variable, the distribution of the sum is the same

as the distribution of the original random variable except that the variance remains the

same, but the mean is shifted that is the basic idea in here 



So,  I  am  now  going  to  talk  about  estimate  problem,  I  am  going  to  perform  m

experiments; m could be 1; 1000 z are the results of the tossing coin in the i th toss.

Please remember; z i takes values 0 or 1; so, the sum of z i; i running from 1 m is equal

to the total number of times the head came the total number of head divided by m is an

estimate of the unknown. The estimate is characterized by p hat; this p hat is the random

variable;  p hat has an underlying distribution,  that distribution is called the sampling

distribution.

It can now be verified E of p hat is equal to expectation of the sum; is the sum of the

expectations. Therefore, E of p hat is equal to the average of the expectations of the i

random variable, z i running from 1 to m; the average of each z i is p as it was shown in

the previous slide. So, the average of the expected value, of the estimate is equal to the

true value; that means, this estimate p hat is unbiased.

Unbiased variance of p hat variance of the sum is equal to sum of the variances is; if the

random variables are independent in this particular that is the result, that comes from

basic statistics and probability theory. And here, we are concerned with the sum of the

results  of  independent  tosses.  The  tosses  are  independent  therefore;  there  is  no

correlation between 2 successive results of the 2 successive tosses.

Therefore, the variance of p hat is given by expected value average minus; this is the

random variable, which is the average of the; which is the estimate; this is equal to p hat.

As you can see p hat minus p whole square expected value of that;  this  from basic

probability theory relating to the properties of expectation, expectation of the sum is sum

of the expectations.

So, this reduces to 1 over m square times; the sum of the variances of the individual

term. The variance of each individual term is p q; I am adding m times. So, m times p q

divided by m square that leads to p q divided by m. Therefore, the distribution of p hat,

there should be a smaller p; the distribution of p hat has the mean p; p is the unknown to

be estimated and the variance of p hat I think we should put within parenthesis.

The variance of p hat is equal to p q by m, in the limit it goes to 0. So, p hat is called an

unbiased estimate and so in this case p hat is an unbiased estimate. As you can readily

see the estimate has no bias; therefore, the estimate p hat as given in here is unbiased. So,

that is an important attribute of this particular estimate. So, you can think of z as a set of



all observations, so I would like to go back to the structure of the estimator. So, what is

that we have the observations are z 1, z 2, z m; that is the vector that is given to us; that

is z p hat is equal to a function phi the estimator of z.

In this case, the function phi is essentially the average of the components of z i is equal

to 1 to m. So, this estimator which is given by the average is an unbiased estimator. So,

that  is  the  fundamental  concept  of  un-biasness  and  is;  so  un-biasness  is  one  of  the

properties of this particular estimator.
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Why un-biasness? We are often interested in mean square errors in the estimate x hat of

x. Let us go back to x being the unknown, x hat being the estimate of that. So, what if x

is  a  constant?  Even estimate  the  expected  value  of  the square of  the  difference;  the

expected value of the square of the difference is called the mean square error; the error in

the estimate. 

So, now I can add and subtract E of x hat to this expression inside; then I can combine

this 2 and combine this 2 that becomes a plus b whole square; that becomes a square plus

b square plus 2 E a b. So, you get the result of three terms; again we have used the sum

of the expectation; the expectation of the sum is the sum of the expectations.

Now, I am assuming x is a constant to start with. So, x bars are random variable; if I took

the  expected  value  of  x  bar  with  respect,  with  the  sampling  distribution;  this  also



becomes a constant. So, this minus x is a constant, so the mean square error in x hat is

given by E of x hat minus x whole square; that is what we have been discussing. Now

since E x hat minus x is a constant; if you look at this particular term; in this particular

term the second factors are constant.

I can take that second factor out as a common, as a factor out if I took that out; in here

we are left  with E of x hat minus E x hat.  If  I distribute that E operator in sign,  it

becomes E x hat minus E x hat that is 0; therefore, this term with the coefficient 2 in this

expression becomes 0. Therefore, the mean square error now is simply the sum of these 2

terms; this term as well as that term. The first term is called the variance of x hat that

comes from the fundamental definition of a variance is expected value. The expected

value of the random variable minus is expected value whole square.

So,  the  first  term is  the  variance;  the  second term as  you can  readily  see  from the

definition of bias. If E x hat is minus is equal to x is unbiased in this particular case; what

is that we have? This is we have and when x is a constant; E x hat minus x is a constant.

So, expected value of a constant is itself therefore, we get that term equal to the second

term equal to the square of the bias.

So, now you can see the impact of bias on the mean square error. So, bias is something

Bias  Square is  always positive;  so mean square error in the estimate is  equal  to the

variance of the estimate plus the square of the bias. Since bias is always positive, the

minimum value of the mean square error happens; when the bias is 0. And the minimum

value of the bias possible is equal to the variance of the estimate.

Therefore, when the bias is 0; the minimum squared error is equal to the variance of the

estimate. Therefore, minimizing the mean square error is equivalent to minimizing the

mean  square  error.  When  there  is  no  bias  is  equivalent  to  minimizing  the  variance

because mean square error becomes the variance is the biases 0; this is one of the reasons

why we are always looking for unbiased estimate minimum variance.

Estimation is one class of estimation that we will deal with and that relates to derivations

in Kalman filters means; minimizing the mean square error. There is another criteria that

comes; from again estimation theory therefore, mean square error criterion is one thing,

minimum variance error criterion another thing; these 2 criteria coincide when the bias is



0 and so these 2 problems become one and the same. If the bias is 0 and that is one of the

reasons why we are always motivated to find estimates with bias 0 or unbiased estimates.
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Now, I am going to go to; so far we have talked about the role of bias, un-biasness and

some of the reasons for seeking un-biasness and when the bias is 0; we also saw mean

square error is equal to the variance.

Now, I am going to go to the next attribute of the estimate called relative efficiency. Let

x a hat and x b hat be 2 estimates of the unknown x; we say x; x a hat is more efficient.

We say x a hat is more efficient than x b; if the variance of the estimate x a is less than

the variance of x x hat b. So, x hat a is one estimate; x hat b is another estimate, suppose

somebody gives you 2 estimates of the same unknown; how do we compare?

First we compute the variance of these estimates; please remember these estimates are

random variables a random variable has a distribution; hence it has a variance. So, each

of  the estimates  being random has  an associated  variance,  the one estimate  with the

lesser variance is said to be more efficient than the other. The ratio; the variance of x b to

variance  of x a;  is  called  the relative  efficiency of  the  2 estimates  in  a  coin tossing

experiment.

Let us assume; I have one estimate which is p hat, I think it is smaller p hat. So, what is p

hat? p hat if you remember is equal to 1 over m times summation z i is equal to 1 pm. So,



this is going to be my first estimate x hat a; my second x, my x hat b is the H of that is

one observation. So, what is that I am going to do? Now I am picking 2 estimates; one is

the average of the observations arising from m tosses. Second one is 1 observation itself;

so you can see the differences in the sample size used in this estimator.

It is a simple exercise to show that the variance of p hat is p q by m, but the variance of z

i is essentially p q. So, for every m greater than 2 for every m greater than or equal to 2;

this inequality variance of p hat is less than variance of z i any one observation; that

means,  the mean is  more efficient  than the single observation;  I  think this  is  a  very

fundamental result.

So, if you are trying to estimate more the merrier; you have more observations, you take

the mean of a large number of observations.  If  the number of observations becomes

large,  there  is  a  theorem called  central  limit  theorem.  Even though the  average  is  a

random variable  as  the  number  of  samples  becomes  larger  and  larger;  the  sampling

distribution becomes a delta distribution centered around the known p. 

And that is the very well known result and that result is borne by at least the essence of

the  result  is  borne  by  this  example.  Therefore,  they  are  always  whenever  there  are

different  possible  choices  for  designing  estimators,  we  are  going  to  be  looking  for

estimators that gives you estimate; which are unbiased and more efficient. More efficient

means the variance of the estimate is small; if the variance of the estimate is small, the

confidence of the estimate is larger; that is why relative efficiency matters.
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So, the question is this; if one is more efficient than the other, it behaves us to ask a

question; is there a most efficient estimate? I want to think about this. Now, if there is a

possibility of improving the variance of the estimate, there is a fundamental interest in

asking  a  question;  is  there  a  most  efficient  estimator?  Or  is  there  most  efficient

estimator? The answer is yes.

One of the theoretical  ways in  which one can establish  this  most  efficient  estimator

estimate  is  by  resorting  to  a  technique  called  maximum  likelihood.  Estimate  this

maximum  likelihood  estimation  technique  was  essentially  introduced  by  Fisher.  So,

Fisher  assumed;  I  have  an  unknown  x,  which  is  a  deterministic  constant.  I  have

observations; the observations are going to give you estimate and I would like to have an

estimate; which is unbiased, which is relatively more efficient.

In fact, I want to have an estimate which is most efficient; that means, there is nothing

else which is more; which is nothing else, which is more efficient than the one that is

given by maximum likelihood estimate. So, that is the theory developed by Fisher well

over 100 years; well over several decades ago.

Question 2; could be happen that the biased estimate may be more efficient than the

unbiased estimate. Again the answer is yes; now look at this now bias is one attribute of

the estimate efficiency is another attribute of the estimate, these are 2 different attributes.



So, we need to ask ourselves when we tried to design estimates to estimate the unknowns

in a data simulation problem; we need to be aware of the following question.

What are the underlying properties of the estimate? So, generate is an unbiased because

there exists another estimate, which is more efficient than this. What is it take to be able

to generate the most efficient estimate? Is the most efficient estimate is always a linear

estimate, is it a non-linear estimate is that; is there a possibility that a biased and a biased

estimate will be more efficient than an unbiased estimate?

So,  these  are  all  the  class  of  question  that  statisticians  have  worked  around  and

undeveloped  a  beautiful  theory.  I  am  trying  to  provide  a  snapshot  of  some  of  the

fundamental  underpinnings  of this  theory, because of  its  intrinsic  interest  in  intrinsic

relation between estimation theory and data assimilation theory.
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Now, we come to the next property; which is called consistency. Consistency is again

another fundamental attribute; please recall that we have seen x star; I am sorry x hat is a

random  variable.  If  x  hat  is  a  random  variable,  there  is  going  to  be  a  probability

distribution  which  is  called  the  sampling  distribution  of  x  hat.  Let  us  assume  the

sampling distribution comes like this; so this is a sampling distribution we talked about

the  method of  generating  sampling  distribution  in  the  context  of  coin tossing  in  the

previous slides. So, what is that we are looking for?



Let this be the x; that is unknown x hat is an estimate, the x the estimate is random; we

would like to ask what is the following question; so, this is x I would like to consider an

epsilon strip plus or minus epsilon, this is x minus epsilon; this point is x plus epsilon. If

you consider this trip; if you integrate the probability density from x minus epsilon to x

plus epsilon, that is going to be a total probability mass under this curve. 

So, the probability that the absolute value of the difference between x hat and x; that is

the probability that I have pictured here and well I should not say; this is epsilon may be,

I think there is a bad notation. I will change my notation; a little bit please forgive me,

this is not epsilon because let us assume this is x minus delta and x plus delta you know;

I will go back to epsilon; sorry you know I am that is right; sorry I will go back to

epsilon that is right.

So, x hat could be x could lie in between x plus epsilon and x minus epsilon; that is

correct  my  original  statements  are  right,  that  is  correct  this  probability.  So,  the

probability within the hatched area is 1 minus the probability outside the hatched area;

probability outside the hatched area. Now hatched area outside the hatched idea; so I

would like to ask in the following question; what is the probability that my estimate x hat

will lie outside of an epsilon band around x a? 

That is the question; that probability is given by 1 minus; the probability that it will lie

inside. If this probability where to tend to 0, that will happen only when the probability

of the hatched area is closer to 1. If the probability of the hatched area is closer to; is

becoming closer to 1 means what the probability distribution becomes more and more

peaked, it was originally like this; then becomes like this, then it becomes like this, then

it becomes like this.

So, we are looking for a thin narrow region around the unknown within which the entire

sampling distribution the probability mass resides. So, that outside of this thin strip; the

probability  mass is 0;  that  is what exactly  this,  the relation tells  you. As m tends to

infinity;  what  is  the  m?  M is  the  number  of  samples.  As  I  increase  the  number  of

samples, my estimate x hat as a random variable; finds itself in an epsilon strip around

the x with probability 1. 

What does it mean? The probability of my estimate lying outside the epsilon band; that

means, x hat minus x is greater than epsilon, it goes to 0. If the sampling distribution



satisfies  this  property;  that  is  what  is  called  consistent  estimate;  that  means,  as  the

number of samples increases my estimate becomes closer and closer and closer to the

truth and the probability of it being not equal to the truth, goes to 0 continuously. As the

number of samples goes to infinity; that means, my estimator becomes more and more

closer to the truth.

In the probabilistic language, this is the very special connotation or a special name, this

is called convergence in probability. So, what does it mean? The estimate x hat; which is

a function of the number of samples in the limit as m goes to infinity;  as m goes to

infinity lies in a region which is very small; that means, it lies this the probability of this

goes to 0.

The limit; the probability is 0, if my estimate I had; is satisfies this property it is called

consistent. So, consistent estimators are very natural choices convey; so this is called

convergence. In probability of x hat; x in the probabilistic language; so consistency of

our estimate is another fundamental attribute. So, we have seen three attributes biasness

or un-biasness relative efficiency. Efficiency most efficient estimate and then the third

one is called consistency.

So,  what  are  we looking for?  We are  looking for  consistent  unbiased  most  efficient

estimate  is  what  we  are  looking  for;  that  is  the  ultimate  goal  from  a  statistical

perspective.
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Sufficiency  is  another  criterion  we  are  not  going  to  go  about  too  much  into  the

discussion. Sufficiency is a little bit more technical conditions, under which your chosen

random sample has enough information to obtain. They are quite estimate; that is the

relate to the sufficiency; in other words that is the chosen sample that is used to estimate

has sufficient information to provide you good estimate.

Under what condition such sufficiency can be guaranteed is a very technical condition. I

am not going to go into the details, one of the most thorough discussion of all these

attributes,  biasness,  un-biasness,  relative  efficiency, maximum efficiency, consistency,

sufficiency all these properties are discussed in great detail in one of the classic books on

statistical analysis by Professor C.R Rao; published in 1973; is a classic book Linear

Statistical Inference and Applications and in my view anybody who wants to do data

simulation; especially in the statistical arena should have a copy of this book in their

personal library. It is a bible with respect to most of the fundamental statistical principles

and their applications.
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Now, I am going to continue the example; let mu be the unknown, but constant we are

simply concerned with the coin tossing experiment. Again mu is there known z i is equal

to mu plus v i; in this particular case we are assuming v i is normal; I think it should be

normal v i has a normal distribution v i’s are independent, identically distributed; what

does it mean? 



There is a box random number generator; out of that box, I can continuously keep asking

and it will deliver arena number. This sequence is v 1, v 2, v 3 and so on; these are

independent, the same sense that if I am trying to toss a coin, the results of the tossing a

coin  are  also  independent.  So,  that  is  what  is  I  did  up;  what  is  iid  first,  i  refers  to

independent; the samples are being independent. The second i refers to the fact all these

samples are drawn from the same distribution, the distribution does not change from one

drawing to another drawing.

So, iid in independent identically distributed is one of the standard assumptions used in

estimation theory to start with. So, this is very similar to the coin tossing experiment, but

not quite the same because in the coin tossing experiment, the evens are 1 or 0; head or

tail,  but in here I am assuming there is an unknown mu; I can observe the unknown

through z i; z i is equal to mu plus v i, v i is not a discrete now is does not take 2 values. 

This v i takes; v i has a continuous distribution Gaussian 0 mean and sigma square as the

variance. So, if I have a bunch of m observations; what is the estimator? Estimator is in

this case, we call it z bar; z bar is the average of all the z i. So, this is the formula for the

estimator  and  the  estimate  is  z  bar,  by  taking  the  expectation  of  z  bar  using  the

fundamental principle, the sum of the expectations is equal to expectation of the sum;

one can readily verify E of z bar is mu, hence this estimate is unbiased.

So, this is an unbiased estimate much like the average leads unbiased estimator. In the

case  of  coin  tossing,  as  well  in  this  case;  we can  also  compute  the  variance  of  the

estimate.  Please  remember,  the  estimator  is  a  random  variable;  this  is  equal  to  the

variance of the average. The variance of the average is given by this formula by invoking

to the standard definitions of variance.

From basic probability theory, a little calculation will reveal; this variance is given by

sigma square by m. Please remember; in the case of coin tossing experiment its p q by m;

in this case sigma square by m very similar. So, you can readily see the variance of the

estimate z bar, which is the average of all the; z i is 1 over m times, the variance of a

single random variable which is sigma square.

So, as m goes to infinity; sigma square over m goes to 0; that means, the variance of the

estimate becomes closer and closer to 0; that means, the sampling distribution becomes

peaked if the sampling distribution is peaked that is called consistency. So, this estimate



the average of all the observations is simultaneously unbiased; it is also consistent. So,

this  is  the reason why we say well;  if  you want  to  estimate  something infinite  it  is

asymptotically it is going to converge to the exact value.

But  you  may  not  be  able  to  have  the;  resources  need  to  do  unbounded  number  of

experiment. So, if you have a large sample; using large sample if you take the average,

the average arising at a large sample is unbiased and also reasonably good efficiency, it is

also consistent  depending on the number of  depending.  The efficiency relates  to  the

number of samples you have, so you can see why average is a estimate.

We have also seen in our static inverse deterministic inverse problem; average is the best

least  square  estimate  for  example,  you  may  remember  the  following  experiment.

Suppose I want to estimate my weight, I make m measurements in m different scales; are

m  measurements  in  the  same  scale  at  different  parts  of  the  day.  So,  I  have  m

measurements which all the different; I would like to be able to have a best estimate of

my weight of a least square theory tells you the average gives you the best least square

estimate  of  your  weight;  given  that  you  have  m observations.  The  main  dependent

observations of you weight same thing in here; the average of the observation gives you

the estimate; which is simultaneously unbiased and it is sampling, variance goes to 0.
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So it is asymptotically very efficient, it is consistent is unbiased example 3.22; continued

in the previous example exercise; we assumed mu to be unknown. So, we estimated the

mu now I am going to consider the other part of the story.

Let us pretend mu is known, I do not know sigma square. So, let  us go back to the

problem; please in here z i is equal to mu plus v i; mu is the unknown constant, v i is the

noise with the 0 mean and sigma square is the variance.  So, I can formulate  several

different estimation problem knowings is assumed. I know sigma square estimate mu

that is what we finished. 

Now what are we going to do? We assume that I know mu, but I want to be able to

estimate sigma square; that means, I have I know an unknown, I know the observation is

unknown plus some additive noise; that additive noise has an inherent variance. I do not

know what  the  variance  of  additive  noise? My goal  is  to  be able  to  estimate  sigma

square;  what  is  sigma  square?  Sigma  square  is  the  variance  of  the  noise  in  the

measurements. I would like to be able to estimate sigma square; how does assumption

we use not?

There is one more version of the problem; mu is not known, sigma square is not known.

So, you can see there are three kinds of problem; sigma square is known, mu is not

known, mu is known; sigma square is not known. As estimate sigma square; mu is not

known, sigma square is not known, estimate both of them simultaneously. This is a very

classic example; every student in statistics generally go through this.

The aim of this exercise to be is to acquaint ourselves with the fundamental principles of

properties relating to estimators and estimates;  namely un-biasness relative efficiency,

asymptotic efficiency, consistency and so on. So, let us concoct an estimator for sigma

sigma square; if I do not know the variance, I am going to have an estimator which is

sigma square hat. So, z i these are the observations I know mu from basic probability

theories, the variance must be expected values of the square of that.

So, what am I going to do? I am going to take the average of the sum of the difference

between z i. So, z i minus mu is the error; if the sum of squared errors is the average of

the sum of the square errors you can see the least square principle; comes in here also in

the underpinnings of list square. You can see here also, but sigma square is a random

variable because z i is a random. 



So, expected value of the estimate sigma square hat is the sum of the expectations. So, by

applying that simple rule; it can be verified that the expectation of the estimate is equal

to the true value. Therefore, this estimate is unbiased; I am not going to prove this it can

also; one can also compute the variance of this sigma square, it can be shown that the

variance is 2 times sigma to the power 4 by m. 

As m goes to infinity; this variance of the estimate goes to 0, that is consistent here.

There are lots of homework problem here, I would very strongly encourage you to use

simple principles  of basic  statistics  and probability  theory to  be able  to compute the

variance of this. So, this is the random variable; it is the mean, it is the variance please

compute the variance and verify; I am heating under all the major conclusions. Some of

the derivations, I am going to leave it as an assignment for you to be able to do. I think it

is a worthwhile assignment to be able to check, whether you understand some of the

fundamental principles involved in calculating these quantities.

Especially sample moments and properties of and analyzing the properties of sampling

distributions. So, in the previous case; what is that we have seen? if mu is known; sigma

square is not known, I can estimate sigma square; I have an estimator which are unbiased

and consistent much like the estimate for me.
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Now, we are coming to the harder case; I do not know mu I want to estimate mu, I also

want to estimate sigma square. So, then mu is known sigma square is not known; the



estimator for sigma square is called sigma hat square. When mu is not known, sigma

square is not known; I am going to call it sigma bar is the estimate of mu; I am going to

call S square as the estimator for sigma square. 

So, this is the f square is the estimator for sigma square c bar is the estimator for mu that.

So, z bar is simply the average; so how do I estimate? The variance this is the sample

value; if mu had been known, I would have used mu here, but mu is not known; I am

going to use the sample mean in here. I am going to compute the difference square; some

of the square difference average value.

So, this is an estimate of the variance; when the mean is not known. This is the estimate

of the mean given a particular samples, so I do not have any truth; I simply have to rely

everywhere, but estimates whatever I have. So, from basic principles of the definition of

variance it can be real it can be verified that E of z i square is equal to sigma square plus

mu square. Because you already know z i is equal to mu plus v i; I am sorry mu plus that

is v i. 

So, from here we get this formula; we also can compute the expected value of z square.

The square of the average; it can be verified that is given by this, that is given by the

formula 4. Again, it very simple calculation from basic probability; there in statistics if

you take a good course in probability theory, a good course in basic statistics where you

will do all these computations in detail; I am assuming many of you have taken courses

of this type; if not this is a motivation for you to be able to learn some of the fundamental

principles of estimation theory. I think you can use this as an excuse to learn something

you probably have not had an occasion to learn.

So, I am doing all the basic ingredients now z bar S square E of z i square; E of z bar

square all given in 4. Now, I am going to ask myself what is going to be the mean of the

estimate of the variance. And that is given by this formula, again it will take for 5 to 10

minutes for somebody to derive this. But I would like you to go over the detail; use the

expressions and 4 to do this.

If you simplify this; it becomes this therefore, the estimate of E square E S square is

equal  to  sigma square  by  m plus  mu square.  Look at  this  now;  the  actual  value  of

expected value must be sigma square. Therefore, S square is a biased estimate and the

bias is given by minus sigma square by m. I can also compute the variance of E of f



square that is given by this; the variance is given by 2 times there minus 1; by m square

times sigma to the power 4. 

So, you have I think that is an error here. So, this will get cancelled with this; that is

correct, so this must be sigma square sorry this must be sigma square that is correct that

is right sorry for the error there is sigma square. Therefore if you consider E of S square

minus sigma square, that is equal to minus sigma square m. And please remember that

that is the bias. So, now you can really see I have an estimate which makes sense, but

there are estimates the bias estimate. 

So,  far we have seen unbiased estimate for the first  time,  we are seeing an estimate

which  is  a  very  natural  estimate.  But  it  turns  out  to  be biased;  it  is  a  variance,  the

variance is given by this expression. Now, if you let m go to infinity the bias tends to 0

the bias tends to 0 as m goes to infinity.

The variance also goes to 0; as m goes to infinity. So, what does it mean? This estimate is

asymptotically unbiased, but final sample is biased, but this is asymptotically; it becomes

consistent.  So,  consistency  and  biasness  un-biasness  with  respect  to  finite  samples

infinite samples. So, what happens? Asymptotically may not happen for a finite sample. 

So, you in statistics;  there are always 2 types of theories, finite sample statistics and

asymptotic  analysis.  The asymptotic  analysis  are rather  easy than finite  statistics,  we

generally derive conclusions for the finite sample statistics by looking at the asymptotic

analog of the finite sample statistics; to be able to judge the impact of not having infinite

number of samples.
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So, that is very clearly bought out by this example here. Again here again I have 2 kinds

of estimates, now the variance of x square from the previous page is given by this. If the

variance; let me go back the variance of sigma square is 2 sigma to the power 4 by m

sigma to the power 4 m. This is variance of hat, I believe I am sorry this is hat; so this is

one estimate of the variance, this is another estimate of the variance. This estimate of the

variance assumes the mu is known; this estimate assumes the mu not known. We already

know, when mu is not known; this estimate is biased, we know this estimate where mu is

known; the estimate is unbiased. So, the variance of the estimate is given by this; the

variance of the estimate is given by this.

This is something extraordinary the unbiased estimate has a larger variance than the bias

estimate wow that is a very nice interesting property. So, what does it mean the unbiased

estimate S square is an m; the sigma square hat is the unbiased estimate, this is the biased

estimate? So, the biased estimate is more efficient than; then there is estimate; when it

comes to the question of variance. 

So, here you have to see the choice of estimator; what are the given conditions, under

which you design the estimator, what are the knowns? What are the unknowns? All these

things matter in the design of your estimator; which spits out the value of the estimate.

So, the properties of the estimate  very much related to what  is  known? What  is  not

known? And how the estimator is designed? And we have to deal with the properties of



the  estimate  from  many  of  the  different  dimensions  biasness  efficiency,  relative

efficiency, consistency relative efficiency tells me which one is more efficient than the

other.

So, you simply cannot say unbiased estimates are the only thing that is of interest. We

have already seen; if an estimate is unbiased, the mean square error is equal to variance.

So, minimizing mean square error is equal to minimum variance that is an advantage of

unbiased estimate. But if you are interested in the overall efficiency, the estimation you

cannot rule out the possibility of introducing a small bias. In the estimate to be able to

get more efficiency; so it all depends on what you are ultimate go is when you want to be

able to estimate the unknown.

(Refer Slide Time: 84:57)

With this we come to the end of the first discussion on the design and other properties of

statistical estimation. I would like to ask the reader to verify all the relation the variance

expressions I had given. And I would like to very strongly encourage you to be able to

derive these from the basic probability theory and statistical experience you may have

had.



(Refer Slide Time: 85:27)

And the next slide provides you couple of very good references. These are some of my

favorite Melsa and Cohn; 1978 Decision Estimation Theory is a small book published by

McGraw Hill is an excellent book largely tailored to Engineering audience; especially

Electrical Engineering audience, within the context of communication theory estimation

and so on.

The book by Sage and Melsa  is  another  wonderful  book Estimation  Theory  and its

Application  to  Communication  and Control.  It  is  tailored  to  electrical  engineers  and

communication engineers; I coming from an engineering background, I particularly like

these 2 of course, the book by C. R. Rao is the ultimate Bible; when it comes to question

of  statistical  principles  and techniques.  With  this,  we conclude  our  discussion of  the

properties of estimates.

Thank you.


