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Relation between FSM and 4DVAR

In the previous couple of lectures we covered two distinct methods for assimilating data

into dynamic deterministic models. The first one was called the 4-D Var or join first

order of join method, second one is called forward sensitive method. A careful analysis

of the details of these two methods would immediately reveal that the both the methods

rests on considering first order variation or first variation that is why it is called the

adjoint method is called first order of joint, the forward sensitive method is also called

first order for forward sensitive method.

So, when you say first order there is also a corresponding second order, there is a second

order  adjoint  method  there  is  also  a  second  order  forward  sensitivity  method.  The

question may arise who uses first order when do you use second order. If the model and

the observations are very strongly non-linear for starter methods may not be as accurate

as a second order methods, but, so second order methods are generally preferred when

the models are very strongly non-linear or highly non-linear, but second order methods

are computationally more demanding than the first order method. So, one way to be able

to use the first order method in the context of strongly non-linear system is to be able to

repeatedly apply the first order in a iterative fashion effectively it is equivalent to doing a

second order. So, either you do second order one shot or first order repeatedly I think the

effect would in mathematically be very similar to each other.

So, having seen different versions of different types of data assimilation algorithms 4-D

Var and FSM I think it is time for us to be able to find the relation, the intrinsic relation

between the FSM and 4-D Var.  It  is we are going to now demonstrate  that both the

methods talk about different aspects of the same fundamental philosophy the gradient of

the J function using adjoint method that we computed is called adjoint sensitivity. We are

going to now relate the adjoint sensitivity to the forward sensitivity at and that is the

topic examining the relation between FSM and 4-D Var.



(Refer Slide Time: 02:57)

So, FSM verses 4-D Var to start with; FSM needs backward adjoint model with forecast

errors is forcing you can see the backward error you remember the f k which is the

normalized forecast error viewed from the model space which are the forcing for the

linear backward dynamics.

The structure of that dynamics is that is the linear dynamics is the matrix it involves

matrix vector multiplication, so we would like to call it linear vector recurrence. So, I

have to run the model forward and run the adjoint backward this forward backward loop

is repeated several times and is also combined with a minimization procedure. So, that is

the overall structure of the 4-D Var.

In the case of forward sensitivity we run the model forward, we also run the forward

sensitivity dynamics the U k dynamics and the V k dynamics. The difference here is that

these are linear matrix recurrences as opposed to matrix vector recurrence that is the

difference.  Linear  vector  recurrence  is  cheaper  computationally  matrix  recurrence  is

computationally a little bit more demanding it is, its much more demanding in fact, but

the advantage here is that I do not need any adjoint we considered simple problems, but

writing an adjoint  and developing an adjoint  is considered to be not an easy task in

general.

So, the advantage FSM is that it doesnt require an adjoint. The disadvantage of the FSM

is that it requires solution of the matrix recurrence. Another advantage of the FSM is that



using forward sensitivity I can express the adjoint sensitivity I can I can decompose the

adjoint sensitivity to ah an explicit as a function of forward sensitivities and for cash

errors. In the case of 4-D Var our aim is simply to be able to get the adjoint sensitivity

what  is  the adjoint  sensitivity  the adjoint  sensitivity  is  essentially  delta  J  by delta  x

naught that is the adjoint sensitivity because my aim is to be able to minimize J of x

naught, in order to minimize J of x naught we have to compute the gradient with respect

to x naught and this sensitivity is the one that we computed using 4-D Var or adjoint

method.  So,  in  this  parlance  this  is  called  adjoint  sensitivity,  as opposed to  forward

sensitivities U k and V k and here.

So, what is the fine structure of the adjoint sensitivity? We should be able to express the

adjoint sensitivity using U k and V k and forecast errors. So, it is this ability to express

the  adjoint  sensitivity  as  a  function  of  the  product  of  forward  sensitivities  and  the

forecast error relates to the fine structure of the adjoint sensitivity and this has lots of

advantages that we will talk about in a minute.

(Refer Slide Time: 06:42)

So, again consider the non-linear problem I have a deterministic model. Again x naught

is  the  initial  condition  alpha  is  the  parameter  I  have  the  observation  non-linear

observation I have a white Gaussian noise. In order to make things simple I am only

going to consider in this lecture the case of single observation at time k is equal to N. So,

if I can do the comparison for a single observation similar analysis apply for multiple



observation ah. So, it is without loss of generality to get to the crux of the matter it is

enough if you consider one observation.

(Refer Slide Time: 07:25)

So, if I have only one observation J c has only one term. So, this is the forecast error time

N, this  is  the forecast  error  time  N, this  is  sum of  squared errors  weighted  by  R N

inverse. We have already seen from 4-D Var method the derivative of J c with respect to

x k is given by this and we are going to call this as eta N.

This is related to f of N I am simply using another term we could have called it f of

capital N as well. So, eta N is the normalized forecast error viewed from the model space

which you have already seen.  I  am now going to  consider the first.  So,  I  have now

completed the derivative of J with respect to x k.



(Refer Slide Time: 08:30)

Now, I am going to consider the first variation. So, recall the first variation delta J is

given by the gradient times the x of N and the gradient with respect to x of N is eta N

that  is  what  we have  seen  in  from the  slide  previous  slide  equation  4.  So,  the  first

variation is essentially the inner product of is essentially inner product of eta N sorry is

essentially inner product of eta N, the delta x N. From the forward sensitive equation we

already know please recall delta x N is equal to u N delta x naught plus V N delta alpha.

Now, substitute 6 and 5 the delta x N in here that gives raise to delta c is equal to, delta

of J c is equal to this term as well as some of these two terms because from 6 delta x and

consists of two parts one from arising from the change in the initial condition, another of

change in the parameters. So, this term accounts for the change in the initial condition,

this  term accounts  for  the  change in  parameter.  Now I  am going to  use  the  adjoint

property, please  remember  the  adjoint  property, x  I  am sorry  (Refer  Time:  10:04) a

slightly different fashion there are several ways of stating this I would I would like to

state it in a slightly different fashion. So, what is the adjoint property? x comma y the

inner product is equal to x comma a transpose y that is the basic adjoint relation.

So, using this adjoint relation applying to 6, I get 7. So, the U N from here goes to this V

N from here goes to that therefore, from basic first principles you can readily see this

essentially is the gradient of J with respect x naught and this essentially is a gradient of g

with respect to alpha. So, you multiply the gradient with respect to x naught, delta x



naught gives you the adjoint sensitivity. So, this is the joint sensitivity we are looking

for. This is the sensitivity of this with respect to the parameters. In our 4-D Var we never

considered this part this is simply the sensitivity of the cost function with respect to the

parameter. So, from h we now know how the gradient of the J function with respect x

naught an alpha are structured.

You can readily see the sensitivity is the product of U N transpose and eta N. What is eta

N? Eta N is simply the model error the normalized model error viewed from the model

space. The numeral is a forecaster I am sorry not a model error I misspoke, it is the

normalized forecast error viewed from the model space you are going to multiply that by

the  transpose  of  the  forward  sensitivity. So,  you  can  readily  see  that  the  adjoint

sensitivity is the product of transpose of the forward sensitivity times the forecast error.

Likewise the adjoint sensitivity with respond to the parameter is also the product of the

transpose of the forward sensitivity times the forecast error.

(Refer Slide Time: 12:22)

Now, please  remember  that  from  8 we already  know that  U N transpose  is  simply

product of the is simply the product of the Jacobians along the trajectory eta N is the, eta

N is  the forecast  error  at  time N.  We already know transpose of the  product  as the

product  of  the  transpose  taken in  the  reverse  order. So,  this  is  the  transpose  of  the

products eta N is a forecast error.



(Refer Slide Time: 13:58)

Now, you can see the adjoint sensitivity with respect to the initial condition it is a path

property. Why it is a path property? It is a product of the Jacobian along the trajectory

starting from x naught x 1, x 2, x N minus 1 times the forecast error at time N.

So, it is a product of the transposes of the model Jacobian transpose evaluated along the

trajectory and the normalized forecast error viewed from the model space. So, you can

this is what we call  the fine structure, this  is what is called the fine structure of the

adjoint  sensitivity. So,  left  hand side of  the  adjoint  sensitivity, right  hand side is  an

expression for the forward sensitivity we are able to relate the forward sensitivity and the

adjoint sensitivity using this relation in 9. So, that is an important connection between 4-

D Var and FSM.

Now, with respect to some computational considerations matrix matrix product requires

N  cube  operations  matrix  vector  product  requires  N  square  operation.  So,  adjoint

dynamics with respect to the initial condition that we saw earlier can be written for the

sake for the case of one observation, the backward dynamics is the linear recurrence

which is called the adjoint dynamics. Since there is only one observation there is no

other forcing for this I start with lambda N is equal to eta N I simply integrate through

this de loop lambda is the vector I am interested in the matrix vector multiplication. So,

this is simply a matrix vector multiplication and when you come to the end you get the

forward sensitivity and which is I am sorry adjoint sensitivity and that is what we are



seeking for. So, this is the adjoint dynamics that gives raise to the evaluation of adjoint

sensitivity. So, this is a summary of the 4-D Var.

(Refer Slide Time: 15:11)

So, the fine structure is what we have talked about. So, I have already talked about the

fine structure with respect to the initial condition. The fine structure with respect to the

initial condition is given by 9, we also talked about how the adjoint sensitivity calculated

in 4-D Var now I am going to go to exploring the adjoint sensitivity with respect to the

parameter.

From the previous module we already know the solution for V N is given by this we

have already solved the  forward  sensitivity  this  parameters. As  an  illustration  let  us

pretend N is 4 when N is 4, V 4 is given by this expression as we saw it is a sum of the

products of the model Jacobian with respect to the state and the model Jacobian with

respect to the parameters a s are the model Jacobian with respect to the state bs are the

model Jacobian with respect to the parameters.  So, substituting this in  11 the adjoint

sensitivity with respect to the parameter takes this particular form, again you can see it is

a  product  of  matrices, product  of  matrices, product  of  matrices, the  whole  thing  is

multiplied  by  eta  4.  Again  this  is  the  gradient  this  gradient  is  a  path  property  is

determined by the product of the transposes or the forward sensitivities along the path

with eta 4.



So, that is an important consideration. This reveals the importance of the Jacobian along

the along the trajectory, along the forecast trajectory. Now we are going to express the

computation of the forward sensitivity with respect to the parameter in the form of a

pseudo code. I would like to remind you I have already in equation 10 or yeah 10 in slide

7 gives you the pseudo code for the back the pseudo code which represent the backward

recurrence in the computation of adjoint sensitivity.

(Refer Slide Time: 17:21)

Now, this represents the backward code for the computation of adjoint sensitivity with

respect to the parameter initial condition there parameter here. Because of the complexity

of the expression in 14 this program is slightly a little bit more more involved. I am not

going go over this line by line you can readily verify the correctness of this program and

this is the backward adjoint code for adjoint sensitivity computation with this parameter.

And what is the end result of this? The end result of this it computes delta alpha with

respect  to  the  parameter  alpha  that  is  the  adjoint  sensitivity  with  respect  to  the

parameters.



(Refer Slide Time: 18:08)

When I have multiple observations it is simply an extension of what we have shown

again I am going to have N different times I would like to show this for the sake of

completeness. There are N different times, N different observations each of the eta k i

which are the forecast errors normalized forecast errors viewed from the model space

each one of the time instances since the forecast errors are not at every time there are

gaps, I am now going to define eta bar k which is related to eta k eta, eta k is defined

only  at  discrete  instance  in  time eta  bar  k  is  defined at  every  instance  in  time it  is

multiplied by a delta function k k i. What does it mean? When k is equal to k i it will be

1 otherwise it will be 0. So, it is a kind of a selector function that maps the observations

at certain intervals of time to continuous observation. So, delta k is the standard delta

function.



(Refer Slide Time: 19:25)

With this standard delta function we can now express the cost function again delta c this

is the sum of all the weighted squared errors over all the observations. We have already

seen delta c is given by this the forward sensitivity part with respect to the state this is

the forward sensitivity part of the parameters. I know I am skipping some of the details,

but the details are already explicitly given. We have already seen that the move from

here to here uses the adjoint property the U k tank becomes U k bar and so on. I think a

bracket is missing in here again a bracket is missing in here.

So, this 19 is simply an extension of what we did for one observation now in this case

because there are multiple observation there are summations from I is equal to oh I am

sorry the I think I have, I made an error, I do not think this is needed, I do not think that

is needed sorry, I do not think that is needed that is correct the summation is already

there I am sorry I missed it. So, we have utilized the linearity property as well the adjoint

property to get this 19. So, 19 essentially tells you how your first variation of delta J is

related to the forward sensitivities with respect to state and initial conditions.



(Refer Slide Time: 21:00)

Therefore  from  using  the  fundamental  definition  the  expression  for  the  forward

sensitivity with respect to the expressions for the forward sensitivity transpose times the

observation summation over, gives you the adjoint sensitivity. The expression some of

the transpose of the forward sensitivity with respect to the forecast errors gives raise to

the adjoint sensitivity these two are simple extensions of the one observation case U k, V

k are the forward sensitivities of the solution x k with respect to x naught and alpha.

(Refer Slide Time: 21:43)



So, adjoint dynamics with respect to x naught is given by this in the case of multiple

observation. So, please remember in the case of single observation we simply have the

final condition there is no forcing when there are multiple observation I have a final

condition and I also have a forcing.

(Refer Slide Time: 22:10)

So,  in  the end when we calculate  this  I  calculated  adjoint  sensitivity. So,  this  is  the

backward  dynamics  likewise  the  backward  dynamics  for  the  multiple  observation  is

given by this structurally they are not too different from each other. So, we have given

the pseudo code for computing the adjoint sensitivity in the case of multiple observation

both  with  respect  to  x  naught  and  alpha.  Slide  13 gives  the  adjoint  calculation  for

multiple observation with respect to x naught. Slide 14 adjoint sensitivity with respect to

the parameter.



(Refer Slide Time: 22:44)

Again  an example  now I  am going to  talk  about  their  example  one  of  the  standard

questions in data simulation is how do I distribute my observation temporarily how do I

distribute my observation stations spatially. So, the fundamental question relates to how

do you distribute the observation in a spatial temporal domain where from I can get the

maximum amount  of information that  can be derived from the observation for being

assimilated into the model. That is one of the fundamental question that is continues to

be of great interest in data assimilation because there are physical processes going on in

nature development of models and model analysis continues separately.

In  order  to  be  able  to  fit  the  model  to  the  data  I  need  observations  data  as  our

observations. So, and then when the data are the model available we are going to do the

data assimilation part, but the data collection is an expensive business what to measure,

how to measure, where to measure these are all fundamental question that have to be

satisfied that has to be um argued and the decision has to be made. I am going to make

observation that this time because, I am going to make this observation at these spatial

location because, the reason is I would like to get I would like to be able to maximize the

transfer  of  information  from  observation  to  the  model  through  the  process  of  data

assimilation.

Now,  we  are  going  to  talk  about  that  particular  aspect  of  how  the  distribution  of

observation impacts the computation of the adjoint sensitivity because that is that is one



of  the  fundamental  question  one  has  to  be  concerned  with.  In  order  to  answer  this

question I am going to be concerned with the same model that we talked about in the

previous  lecture  this  is  the  discrete  version of  the  cold  air  moving over  the  hot  sea

surface and there is  temperature  transfer  because of turbulent  mixing and this  is  the

solution, the solution can be rewritten 22 is the model 23 is the solution the discrete time

sensitivities of the solution with respect to the initial condition, sensitive respect to the

boundary condition and sensitive respect to the parameters are all given.

From the parts of the solution we you may remember that the sensitivity of the solution

of this parameter exhibited a maximum the maximum occurs when k is equal to k star k

star is this value. So, delta x k divided by delta the partial of x k with respect to k times

the maximum, when k is equal to k star which is given by that. And you may remember

beta is related to k beta is equal to delta t times k delta t is the time discretization k is the

original parameter in the continuous time version.

(Refer Slide Time: 26:16)

So, what is that we are going to do? We are going to do a twin experiment I am going to

start with x naught is one sea surface temperature is  11. So, you can easily see the air

when it  comes in  contact  to the  water  for the first  time has a  temperature  1 degree

centigrade. At that time the water is 11 degree centigrade so that is going to be a transfer

of heat from the water surface to the air. The heat transfer coefficient is assumed to be



0.25 and we assume x naught is 1, x s is 11 and k is equal to 0.25 that corresponds to the

truth what does it mean that is how nature has arranged matters.

So,  you generate  the  solution  by running the  model  forward in  time. I  am going to

observe the air temperature I am trying to make observations the air temperature. So, the

observations V k is equal to the air temperature plus noise. So, in this case which affects

is x itself; that means, is the linear h of x has an identity function the Jacobian of h is a

unity is a very simple problem we simplified it because we want to be able to bring out

the beauty of the underlying argument, the argument being how the distribution of the

observation affect the quality of the computation the quality and the value of the adjoint

gradient, adjoint sensitivity I should say adjoint sensitivity.

So, V k is given by this standard Gaussian noise. So, that is what mother nature does.

(Refer Slide Time: 28:01)

Now, not knowing what the mother nature has planned I am going to assume my initial

condition is 2, the surface temperature is 10, k is 0.3. Look at this now I have errors in

the  initial  condition, I  have  errors  in  the  boundary  condition, I  have  errors  in  the

parameter.

So, if I am going to make a forecast by running the model forward the forecast is going

to have errors. The forecast error results from the confounding of the errors in initial

condition parameters and boundary condition is one of the hard cases because we are



assuming  everything  is  wrong.  We  summarize  the  observation so computed, we

summarize the forecast calculated from these control value, we summarize the forecast

errors  all  in  the  following  table.  So,  you can  readily  see  the  forecast  error  E k  the

observations z k and x k f is the forecast.

(Refer Slide Time: 28:58)

So, look each of these now. So, the z k, E k I am sorry z k, x k and E k. So, this must be

the first column is z k, the second column is the forecast from the erroneous state, the last

column is the is the error. So, please remember this must be together this, that is the last

column, that is the last column. So, the first column is z k, second column is x f the lab

column is z k minus z k minus x f that is there that is the condition there is a little bit of a

space here I hope you understand now what these numbers are.

So, we are running the model to time 18, you can see from the forecast the temperature

of the I am assuming initial condition is two the temperature is rising; that means, the

water is getting, the air is getting hotter the water is transferring heat to the atmosphere.

The  actual  observation  generated  from  the  true  initial  conditions  are  given  by  this

therefore, you can readily see this is the observation, this is the model predicted. So, the

difference between two is minus  1 and that is how you are going to get the forecast

errors.

So, sometimes the forecast errors are negative, sometimes the forecast errors are positive

they widely vary from minus 1 to close to plus 1 as time evolves.



(Refer Slide Time: 31:11)

Now, we conduct  experiments  I  am going to  tell  you the  summary  the  experiments

experiment 1, in experiment 1, I take observations at time 15, 16, 17, 18, it means I am

taking observations at very late in the game. I am computing the delta J and FSM method

I am using 4-D Var and the forward sensitive method. Initial condition the theta must be

x actually initial condition x naught is 2, so when I used the forward sensitivity method

these are all the results for the forward sensitivity methods this is x. So, this is actually x

s this is actually x s, their adjusted value of the control is given by initial condition the

sea surface is temperature and the control value.

Look  at  this  now  this  is  the  record  value  using  these  observations.  So,  I  use  the

observations  4 observations  at  time  15 16 17 18 if  I  applied the adjoint  method the

recovered value are these using the same observation if I use the FSM method I got the

recovered value to be this. Now, you can see the true value of the initial condition is 1,

that true value of the parameters was 0.2, FSM has recovered the true initial condition

and the true parameter and the boundary condition I think was 11 and is pretty close.

In the case of 4-D Var the initial condition did not recover correctly there is error in the

parameter recovery as well the actual parameter is  0.2, but sea surface temperature is

recovered reasonably closely. So, this is good, but these two are not good. So, this gives

you a (Refer Time: 33:46) comparison of the performance of the two methods. You may

ask  why  this  happens,  if  you  look  at  the  sensitivity  functions  as  we  plotted  in  the



previous one the sensitivity with respect to the initial condition comes down this is t this

is delta x t divided by delta x naught, the sensitivity with respect to the parameters x s

goes like this the sensitivity with respect to this is again t this is sensitivity with respect

to the parameter k it went up and came down. So, 16, 17, 18 the times at which I 15, 16,

17, 18 the times at which I compute the, I performed the, I collect the observations 15 is

here and so on the forward sensitive solutions has already becomes very low close to 0.

But the sensitivity with respect to the boundary condition is quite large is equal to unity.

They bound the sensitivity that the parameters has become very close to 0, therefore, the

adjoint method is not able to recover the initial condition largely because the sensitivity

with respect to the initial condition has died down to 0, the sensitivity with respect to the

parameters also has died down to 0. If you record the structure of the adjoint sensitivity it

is the sum of the transpose of the forward sensitivity times the forecast error the product

of the two quantities if one is close to 0 that the product is 0. So, the adjoint sensitivity in

the  case  of  4-D  Var  does  not  have  enough  information  from  the  initial  condition

sensitivity and the parameter sensitivity that is why the adjoint sensitivity is not able to

recover the true value there is larger error in here, large error in here; however, if you

change the observation timing 1, 2, 17, 18.

(Refer Slide Time: 36:08)

So, two observations in the earlier time all, the two observations the final time. So, what

is  the  difference  between  these  two  experiments  in  the  first  experiment  we  put  4



observations all in the end here we are putting two observation the beginning and the two

observations in the end.

Why this is important? If you look at the sensitive curve in slide 19 the initial condition

sensitivity is large initially, the initial condition sensitivity is also large the sensitivity of

the solution of this parameter is also large initially. So, by sampling at 1 and 2 I get lot

more information about x naught, I get a lot more information about k, by sampling at

17,  18 I  get  a  lot  more information  about  x  the boundary condition  x  (Refer  Time:

37:19). Therefore, by distributing the observation some in the initial, some in the final,

we  are  able  to  maximize  the  amount  of  information  that  can  be  transferred  from

observation to the control.

So, in the next slide you can readily see if you use the 4-D Var method I am sorry if you

use the 4-D Var method, this is the 4-D Var method, this is the FSM, likewise this is the

4-D Var I am sorry this is the 4-D Var, this is I would like to say that this is 4-D Var, this

is FSM. So, if I come back here you can readily see the 4-D Var method does better with

respect to the distribution of observation at 1, 2 and 17, 18 this is better than the previous

recovery this is better than the previous recovery, but this is even better because FSM is

able to take advantage of the distribution of observation with respect to sensitivity.

So, what is the moral of the story. So, far indeed assimilation we have assumed we are

given a bunch of data we never worried about the impact of data and the quality of data

simulation that is what motivated us to be able to think about a method by which we can

characterize  the  impact  of  distribution  of  observation  on  the  adjoint  sensitivity

computation. Why adjoint sensitivity computation? Because adjoint sensitivity gives the

gradient of the cost function with respect to the control, once I compute the gradient of

the cost function with respect the control I can use it in the minimization algorithm. So,

for the whole framework of data assimilation within the dynamical context to work I

should be able to compute this gradient this adjoint sensitivity reasonably accurately. So,

all the information in the observation and the forecast errors have to be transferred to this

quantity called the adjoint sensitivity.

It  is this transfer of information is very much critically dependent on the location of

observation the spatial temporal location of observation. So, this experiment 1 and 2 for

the simple problem illustrates the fact that if you put all the observations and one end at



another end we may not be able to maximize the information because at one end the

forward sensitive may become close to 0 or the forward sensitivity may become close to

0 in the beginning that for to maximize the impact of observation what is the lesson. You

need to run the model, you need to run the forward sensitivity you need to ascertain the

spatiotemporal  regions  where  the forward sensitivities  are  not  close to  0.  If  you put

observations in those locations where the forward sensitivities are bounded away from 0

those places will have will contribute to maximum amount of information that one can

utilize from the observations back to the computation of adjoint grady, adjoint sensitivity

that is the moral of the story.

(Refer Slide Time: 40:54)

So, comments in experiment one we use the observations at 15, 16, 17, 18 which led to

the poor recovery of the correction to the control this is largely because of the fact at a

later time, the only sensitivity that is bounded away from 0 was the boundary condition

sensitivity initial  condition sensitivity and the parameter sensitivity have already died

down to 0. So, we will have greater difficulty in recovering the initial conditions and the

parameters if you put all the observations where these two sensitivities are close to 0 that

is the moral of the story, from experiment 1.

The model of the story in experiment 2 is that I had two observations in the beginning

and two observations in the end. In the end the boundary condition sensitivity is large in

the beginning the initial  condition sensitivity and the parameter sensitivities are quite



good. So, the initial observation help you to derive information on the initial conditions

in  the  parameters, the  later  observations  help  you  to  derive  information  about  the

boundary condition. So, by having a combined distribution initially and finally, we are

able to maximize the transfer of information from observation to the control that is why

we saw in experiment 2 the recovery was much better than in experiment 1.

So, this essentially tells you forward sensitive method using forward sensitive method

not only one can do the data simulation which in principle is equivalent to the 4-D Var, it

also helps you to ascertain regions in the spatial  temporal domain where if  I put the

observations I will get the maximum benefit. It is this duel advantage of the forward

sensitive method we believe is one of the strengths of the forward sensitive method, as it

occurs with everything in life if there is an advantage there has to be a disadvantage.

What is the disadvantage? In the case of forward of 4-D Var the backward recurrence

relation involves only matrix vector multiplication, but in the case of FSM the forward

recurrence relation in needs matrix matrix multiplication. So, for large scale problem the

use of FSM would require excessive computational demands. So, for large scale problem

4-D Var is still preferable, but if you want to be able to do some diagnostics as to the

distribution of the observation within the framework FSM by running the model forward

in time by parting the variation of sensitivity  in the spatio-temporal  domain one can

ascertain a priori regions where the sensitivity is bounded away from 0 and hence if you

put the loc if you put observation those locations you will get the maximum benefit to be

able to do the data assimilation.

So, both the methods have advantages a disadvantage while they are also equivalent in

some sense that is the moral of the story.
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Again these modules follows from our paper  Lakshmivarahan and Lewis, Advances in

Meteorology, the title the paper is  Forward  Sensitivity  Based Approach Dynamic  Data

Assimilation.

Thank you very much.


