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Inverse problems in deterministic continued

In the previous lecture we introduced the fundamental principles of 4-D war algorithm

which is also called the first order join method. Using a linear deterministic dynamical

system as a strong constraint we solved the constrained minimization problem using the

Lagrangian multiplier technique. The whole aim of the exercise is to be able to compute

the gradient of the cost functional in the context of the linear equality constraint. And

once we computed  the  gradient  numerically  we then have  to  use the  gradient  in  an

optimization minimization algorithm such as gradient method or a conjugate gradient

method.

So, since we have seen conjugate gradient methods as well as gradient method how they

work, we did not elaborate on that part of the problem that is the bottom half of the

problem the top half of the problem relates to computing the gradient itself. So, 4-D war

adjoin method are essentially methods for computing the gradient of the cost functional

with model as a strong constraint. That is the day.

Now I  am going to provide an extension,  in the previous  case we considered  linear

perfect  model  deterministic,  we  considered  a  noisy  observation,  observations  where

linear functions of the state. We remember we considered four cases: model can be linear

nonlinear observation can be linear, nonlinear; both being linear is the easy case, both

being linear is the more complex case. Now I am going to go over to the nonlinear case

when I say nonlinear everything is nonlinear; model is nonlinear, observations are none

linear in the functions of time, observations are noisy observation.

So, using nonlinear noisy observations I have to determine the initial condition based on

a finite number of indirect information about the states.
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So given that, I have the nonlinear model deterministic initial condition it is x naught, M

is a model map, M of X is the M 1 of X M 2 of x M n of x. So, M is a function from R n

to R M is the vector valued function of a vector. Observations or nonlinear functions h is

the forward operator, again h is a map from R n to R M. So, h of x is also is equal to h 1

of x h 2 of x and h m of x transpose or k is the observation noise; we are assuming white.

What do you mean by white V k? So, if I consider two instances in time k 1 and k 2 I

have V k 1 I have V k 2 I have V k 2; V k 1 and V k 2 are uncorrelated that is what white

means. White means the temporally uncorrelated, but at a given instant the covariance

matrix for the noise is given by R k. So, V k is normally distributed with mean 0 and R k

as the covariance.

What do you mean by mean 0? Mean 0 means the instruments that measure the states do

not  have  any  bias.  That  means,  if  there  is  a  bias  in  the  instrument,  I  have  already

calibrated the instrument against known standards, I have subtracted the bias, therefore

observations are bias free observation noise are mean 0 the observational covariance R k;

R k is at a given time and observations at different times are temporally uncorrelated.

These are the standard assumptions. I want to make a comment if the observations are

temporally correlated the analysis becomes much more complex. Therefore, in trying to

solve the problem we would like to be able to make assumptions that are necessary to

make the problem nontrivial. If you keep adding various levels of assumption the model



the problem statement becomes so difficult we may not be able to mathematically solve

it in a meaningful way.

So, what is the trick in modeling? You make all the necessary assumption to make the

problem  interesting,  but  at  the  same  time  not  too  complex.  So,  if  you  analyze  the

standard versions of the problem you get a feel for the solution based on which we can

then  tag  on  other  assumptions  other  conditions  to  further  explore  the  impact  of

assumptions; like if what if the observation are serially correlated and so on.
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So, the cost function is again J of x naught it is given by Z minus h of x k transpose R k

inverse Z k minus h of x k. So, this is the forecast Z of x k is the forecast error. So, this is

the sum of weighted sum of squared errors. The problem is to be able to minimize the J

of x naught; where x naught is related to x k is related to x naught through the model

dynamics.  Again it  is  an implicit  minimization  problem. In the linear  case we could

replace x k implicit explicitly by f x k is equal to M to the power of k x naught. In the

nonlinear case it is much more difficult. So, we need to be able to handle this case with

little delicacy, which little bit delicately not delicacy; with a little bit delicately I am sorry

delicately. So,  while  we could use the Lagrangian multiplier  method we illustrate  an

alternate strategy called the adjoint method.



I would like to distinguish between adjoint equation and adjoint method. The adjoint

method  is  a  class  of  algebraic  methods  by which  I  can  compute  the  gradient  rather

explicitly in a beautiful way.
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So, first order perturbed analysis of the model, is key to the adjoint method that we are

dealing with.  So,  let  x bar naughtt  be a base initial  state  from that  I  can generate  a

trajectory which is called the base trajectory. If you give me the base trajectory I can

compute h of x k bar as the model predicted observation. The actual observations are Z k.

If Z k is very close to h of x k then x k bar arising from x naught is pretty good and x

naught bar could be a desonential condition to start the forecast from.

But, but in general Z of x k may not be equal to h of x k, Z of x k may be large Z k minus

h of x k is equal to e k and e k will be far from being small. If e k is far from being small

that means, I have a large forecast error. Our aim is to be able to annul the forecast error

or reduce the forecast error. The forecast is x k bar, the forecast was generated from x

naught bar. So, how do I; h is known fixed Z k is known fixed. So, how do I reduce the

forecast error? The only way to reduce the forecast error is to x k bar. But how do I

change x k bar? X k bar is the state of the model at time k, but x k bar depends on even

the model equation is fixed. So, I would like to remind you x k bar is equal to M of x k

minus 1.



So, that is the model equation. So, starting from x naught bar I calculated x k bar. So,

look at this now my aim is to minimize or reduce the forecast error e k, the only way to

reduce forecast error is to change x k, the only way to change x k is to change x naught.

So, x naught is called the control element. It is called control because by changing the

initial condition x naught bar I can change x k, if I change x k I can hope to change the

forecast error.

So,  with  this  in  mind  I  am now going  to  change  the  initial  condition  by  adding  a

correction delta x naught to x bar naught. So, this is the old initial condition, this is the

correction or a perturbation term, this is x naught is a new initial condition. So, delta x

naught is called the initial perturbation. So, I am changing the initial condition from x bar

naught to x naught. Now if I run the model forward in time from x naught I will get x 1

from x 2 x k. So, what is the hope? Z k minus h of x k must be smaller than e k I have

already computed. If this can be made smaller by moving the initial condition then I am

going the right direction to be able to reduce the forecast error. So, here is lies the idea of

basic perturbation analysis.

So let me summarize: the only way to reduce the forecast error is to be able to change the

model solution, the only way to change the model solution for a given model is to change

the  initial  condition;  I  am assuming  everything  else  in  the  model  are  fixed.  So,  by

changing  the  initial  condition  means  I  am going to  add a  perturbation  to  the  initial

condition. So, this is the base trajectory, this is the base trajectory, this is the perturbed

trajectory.

I would like to be able to find an optimal perturbation at an optimal increment in the

initial stage such that Z k minus h of x k is small; small in what sense; in the sense of

least squares. So, I would like to be able to minimize the norm the weighted norm of Z k

minus h of x k where the weighted norm is R k inverse the square of the norm. So, what

is this? This is the weighted sum of square errors at a given time by if I sum it up over k

is 1 to N I get the total errors coming forecast errors coming from all the observations.

So, I would like to be able to decide how I should perturb the initial condition to be able

to annihilate the forecast errors at specified in sufficient time.

So, that is how we can look at the 4-D war problem. I hope the statement and the view of

the problem is clear right now.
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So, I am now going to be talking about first order perturbation theory. This is also called

variational  analysis  that  is  why the notion of  4-D war variational  method came into

being. So, first order perturbation analysis how does it go? Let x naught be the initials;

let  x naught bar be the initial  condition.  This is the base state given by 20, the base

trajectory. I am going to perturb the initial condition, I am going to get the new initial

condition by adding a perturbation to to x naught bar; I am sorry this is x naught bar

 So, I can now compute the perturbed trajectory; the perturbed trajectory is given by the

equation 21. So, the base trajectory is given by 20; the perturb trajectory is given by 21.
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Now, what is the whole idea? Let me go back to the picture now. If x naught is the

perturbation at time 0; let x 1 be the perturbation at time 1, delta x k be the perturbation

at time k. Delta x naught is the first perturbation I am giving at the initial condition that

induces a perturbation at time 1, that induces a perturbation at time k. So, what is our

first goal? Our first goal is to find out how delta x k transforms to delta x 1, how delta x

1 transforms to delta x k. In other words I am interested in understanding the dynamics

of propagation of the initial perturbation through the model. So, that is the first task.

So, in time to write the dynamics of perturbation let us consider how delta x 1 is related

to delta  x naught.  Please understand delta  x 1 is  the induced perturbation at  time 1,

induced by the initial perturbation delta x naught at time 0 to this to compute delta x 1

from delta x naught we are going to invoke to the first order Taylor series. We have

already talked about first started Taylor series for maps in one of the previous modules.

So, delta x 1 by definition is equal to the perturbed state at time 1 with the unperturbed

state at the base state at time 1, x 1 is M of x naught x 1 bar is M of x naught bar, but x

naught we already know x naught is equal to; we already know x naught is equal to x

naught bar plus delta x naught. So, that is what delta x naught is all about.

I am now going to apply the first order Taylor series expansion for the first term. When I

apply the first order Taylor series expansion I get M of x naught bar plus the Jacobian of

M at x naught times delta x naught minus M of x naught that first and the third term



cancels; I get delta x 1 is equal to the Jacobian of M at x naught times delta x naught.

Please recall the Jacobian is a n by M matrix, Jacobian of M is n by M matrix it is the

partial derivative of the i-th component with respect to this I must say the following this

is  x I  am sorry this  is  not  M this  is  x;  x of J naught.  So,  x naught of J  is  the j-th

component of the initial condition M i is the i-th component of M. So, I varies from 1 to

N J varies from 1 to N. So, that is the Jacobian of M at the initial base state.

So, if you know M i can compute the Jacobian, I can evaluate the Jacobian; therefore,

you can readily see equation 22 that relates the perturbation at time 1 to the perturbation

at time 0 is a linear relation. So, even though the model is nonlinear the perturbation

dynamics is linear. That comes out very easily from equation 22.
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In general, let the delta x k plus 1 be the perturbation at time k plus 1. This is equal to x k

plus 1 minus x bar k plus 1,  this  is  M of x k,  M of x k plus x bar k.Nnow please

remember x k to a first order approximation is equal to x bar k plus delta x k. So, that is

essentially this. Then you have the M of x bar k. By applying the first order Taylor series

you get  this.  Now, you can  see  this  is  the  perturbation  dynamics.  This  dynamics  in

mathematics called variational equation; this is also called perturbation equation, but in

meteorological circle they have a very different name called tangent linear system they

call it TLS. So, TLS is a linear system. It is a non-homogeneous system, because the

Jacobian matrix varies along the base state. So, even though this is the matrix the matrix



changes in time. Therefore, you can try to relate delta x as this is equal to A k times delta

x k; where A k is the Jacobian at x k of m. So it varies with time, therefore this the

nonhomogeneous system is a linear system it is a non homogeneous linear dynamics that

gives you the evolution of the perturbation; this is the first order perturbation equation.
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By iterating 23; so by iterating this equation you can really see delta x k is equal to the

product of Jacobian’s along the trajectory; the product of Jacobian along the trajectory

times the initial perturbation. I am now going to concoct a new solution; a new notation

D subscript  k  minus  1 colon 0  to  M essentially  represents  this  product.  This  is  the

product of k matrices going from time 0 to time k minus 1. So, with this notation you can

readily see delta x k the perturbation at time k is related to the perturbation at time 0

through the product of Jacobian’s, the product taken along the trajectory starting from x 0

1 2 3 all the way up to k minus 1. This matrix is the product of Jacobian’s along the base

trajectory  starting  from  x  naught  bar  to  x  k  minus  1  bar:  notice  the  order  of

multiplication. Please remember matrix multiplication is not commutative, therefore you

have  to  take  great  care  in  trying  to  when  you  want  to  involve  matrix  matrix

multiplication you have to worry about the order and be sensitive to the order.

Now come back to; so what is that we have done, absolutely quickly summarize. We

stated the problem, we saw the problem of forecast correction is equal to changing the

initial condition, change the initial condition is equal to adding perturbation to the initial



condition,  so  we  were  interested  in  trying  to  quantify  how  an  initial  perturbation

propagated through the model in time. So, we have simply the original model equation,

we also have the forward dynamics which is the tangent linear system that describes the

evolution of the perturbation forward in time. That is what we have accomplished so far;

sorry I am going back instead of going forward.
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Now, I would like to come back to my J of x naught; the thing to be minimized. Please

recall J of x naught is given by this summation, this is given in equation 20. So, equation

20 when you multiply  that  all  the things  now becomes  equation  25.  25 is  simply  a

rewritten version of 20. Now I would like to change the notation to make the application

of multivariate calculus lot easier. So, let me call the linear term like this, let me call a is

R k inverse Z k.

From module 4 I do not think its model 4 the number is slightly different I will compute

the mark of the number later. Recall from one of the modules and multivariate calculus

which is two point something. I am now concerned with what is called the first variation,

you remember the notion of her to the first variation. The first variation is simply the

inner product of the gradient and the variation x k. So, the first variation of a transpose h

of x k is the gradient of a transpose h of x k times delta x k. The, a transpose x k is given

so its gradient is given by this equation; a by substituting this is given by this equation.

Therefore, the first variation of the linear term is given by 27.



So, what does first  variation means? I would like to be able  to talk about that for a

moment before we go further. I have a transpose h of x k. So, if I change x k to x k plus

delta x k, and if I compute the difference between this and that term and that is what is

called the difference between a transpose h of x k plus delta x k minus a transpose h of x

k;  that  is  called  the  actual  difference.  This  difference  is  equal  to  the  gradient  of  a

transpose h of x k times delta x k; that comes from the basic definition of the notion of

first variation.

So, how is the induced variation affects the linear term and that is going to be affected by

this;  where  D h  is  the  Jacobian  of  the  forward  operator  h.  I  hope this  idea  of  first

variation is very clear. Why am I talking about the first variation? Look at this now: delta

x k depends on delta x naught, I have already related delta x k to delta x naught through

the tangent linear system. So, if I can relate the first variations of each of these terms

with respect to delta x naught; of delta x k I am sorry I have already related delta x k to

delta x naught, so I can relate the variation of delta x naught to the initial variations. So,

that is the basic principle. That is not work here.
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If I consider the second term, the second term is a quadratic in h from the module on

multivariate calculus; we already know the first variation of this quantity with respect to

x k is given by the right-hand side of 28; the first variation of Z k transverse R k inverse

Z k 0, because it does not depend on x k. So, substituting the whole thing we can readily



see; substituting 25 through 29 and 25 the first variation in the cost function induced by

delta x naught is given by this expression in equation 30.

Now the right-hand side depends only on delta x k, but the left-hand side I am talking

about variation induced by delta x naught, through the tangent linear system I already

know delta x k is related to delta x naught. So, combining tangent linear system and 30 I

now know how to relate the first variation in J to delta x naught. So, that is the line of

arguments.
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Again I am going to define to simplify notations f of k is equal to the forecast error; this

is the forecast error, this is the normalized forecast error, this is the forecast normalized

forecast error viewed from the model space, this is same f of k as we have used in the

previous case. So, I can rewrite the equation this equation 30 succinctly as the variation

in the variation sorry; the variation in delta J induced by delta x naught to the sum of the

variations induced along the path all with respect to delta x k, k running from 1 to N

recognizing the fact delta x k and delta x naught are related through the tangent linear

system and that is 32. So, this is the first and the most fundamental relation in adjoint

approach to 31.

So, let me go back to the picture to illustrate a little bit further, I think it is very useful.

So, I when I change from x bar naught to x naught my J function changes. So, originally

I had sorry; I originally I had J of x naught bar now I have J of x naught’s the difference



between the two is delta J, this delta J is induced by delta x naught. Therefore, I would

like to be able to talk about the induced change in J at a given time through the initial

condition and that is what we have a complete so far through this variational analysis

through the tangent linear system if we wish. So, that is our.

(Refer Slide Time: 28:50)

Now, I would like to remind you that delta x k is given by the tangent linear system in

24. So, let me go back to 24 and remind you what is there. So, 24 essentially relates delta

x k to delta x naught through the product of the Jacobian’s; so 24. So, using 24 I am

changing dependence from delta x k to delta x naught, let me come back here. So, I am

going to substitute for delta x naught here, if I did that this is the expression I get; that is

the expression I get. Now you can readily see delta J induced by a change in the initial

condition is related directly to the change the initial condition itself; everything becomes

explicit.

Now we are  going  to  go  back  to  matrix  algebra  to  define  the  notion  of  an  adjoint

operator. So, if A is a matrix then the product of A x comma y; the inner product of A x

comma y by definition is A x transpose y which is equal to x transpose A transpose y

which  can  be  written  as  x  comma  A transpose  y.  So,  that  is  what  this  relation  is.

Therefore, the inner product A x with y is the same as inner product of x with A transpose

y. So, a transpose is called the adjoint of A; the transpose of a matrix is called the adjoint

of A. So, that is the definition of the adjoint of A operator or a matrix A.



So, using this adjoint property I can now apply to 33. So, you can think of 33 as f of k

comma A of k delta x naught which by adjoint property. So, let A of k be equal to this

matrix, let that be equal to A of k. Therefore, by applying the adjoint property in the

reverse way I can essentially say this is A k transpose f of k at delta x naught; this is delta

x naught. So, A k transposes D of k minus 1 colon 0 transpose f of x k. So, by applying

the  adjoint  property  34  to  33  I  get  this  relation.  This  relation  is  one  of  the  most

fundamental relation the method is called variational methods because I am talking about

variations induced by the initial variation, I am also talking about this adjoint method

because  I  am  using  the  adjoint  property  of  matrices.  So,  is  adjoint  and  variational

schemes all put together it uses many number of interesting properties that join from

matrix theory.
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Recall some of the basic things from again linear algebra. If I have the inner product x 1

plus y plus x 2 plus y that is equal to x 1 plus x 2 with y. If I have x is inner product x

and Z is equal to inner product of y Z for all Z then that implies x must be equal to y; it

comes very. So, first is a linearity property, second is the property that essentially tells

you if the inner product of x with Z is equal to the inner product of y with Z for all Z x

better be equal to y. So, that is the basic property.

By applying the first property the sum of the inner product is equivalent to the inner

product of the sum. So, inner product of the I am sorry; this is the inner product of the



sum with x naught. So, I have applied the first property. The first property is sum of the

inner product is  inner  product to the sum; that is essentially. So,  if  I  have your first

variation  is  given  with  the  inner  product  also  from first  principles  from variational

calculus we have seen in multi calculus delta J is equal to the gradient times delta x

naught. So, I am now going to have two different expressions related to delta J and these

two expressions are equal for all delta x naught. Delta x naught is arbitrary, therefore, by

applying the second property I can readily now conclude the negative with the gradient is

given by the sum which is summation k is equal to 1 to N transpose of the product of

matrices along the trajectory times f of k and f of k is the forecast error mute for the

model space. That is the whole idea.

My idea is to be able to find an expression for the gradient and we have achieved it. So,

instead of using Lagrangian multiplier  and equating the gradient we have worked the

path of being able to use the variational analysis; the variation analysis is very intuitive

in the sense that the only way to be able to correct the forecast error is to change the

initial condition; change the initial condition is equal to perturbing the initial condition if

I perturb the initial condition the initial perturbation propagates through the model. So, if

I  can  quantify  to  a  first  order  accuracy  the  propagation  of  model  errors  or  model

perturbations along the trajectory I have handle on one of the issues to be tackled using

tangent linear system. The other part of the story is to be able to compute the induced

first variation in the cost function itself, then we relate these two first variations. In trying

to relate this we use several properties one is the adjoint property another is the linearity

property another is the property where the inner product of x and Z and y and Z are the

same for all Z x is equal to y all these three basic properties are intimately related and

they are applied. And that essentially gives you an expression for the gradient which is

given in 39.

Now look  at  that  everything  on  the  right  hand  side  of  39  is  computable  f  of  k  is

computable the Jacobian of the model is computable, but what is the only thing that we

do not like it involves product of Jacobian’s. Jacobian’s are matrices matrixes; matrix

product is a no. So, you never multiply matrices unless that is what you want, you never

invert  a matrix  unless that is  what you want.  These are some of the golden rules in

numerical  analysis  in  numerical  in  linear  algebra,  because  these  are  too  expensive

operations.



So, in theory you may involve matrix matrix multiplication, but when you practice you

should avoid as much as possible whenever wherever possible. So, even though we have

got an x 39 for the gradient still we are in the same boat as we were in the linear analysis

this  still  involves  matrix  matrix  multiplication,  we  want  to  avoid  matrix  matrix

multiplication; matrix vector multiplication is cheaper than matrix matrix multiplication

let me talk about it for a moment now. If I have two matrices if I want to multiply C is

equal to A B the cost is o of n cube. If I have y is equal to A x when a is the matrix x is a

vector this matrix vector computation is o of n square. o of n square is much cheaper

than o of n cube. So, whenever there is a matrix matrix operation avoided, whenever you

can get away with matrix vector multiplication instead of matrix matrix multiplication

you introduce them.

Now, we are going to rewrite the computation of 39 without doing any matrix matrix

multiplication, but involving only matrix vector multiplication very intelligently. So, we

are going to talk about in a very efficient way this way is essentially the adjoint equation

we already saw. So, the rest of the problem rests in computing 39 efficiently essentially

involving only matrix vector multiplication.
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To bring this, to bring the structure of the expression 39 let us assume n is 4 just to be

able to; look at how this one comes up. This is in here we have involved a product of two

Jacobian’s, in here they are involved with the product of three Jacobian’s, in here we are



involved with the product of four Jacobian’s that is how the terms come in. So, please

understand these Jacobian’s these are all product of Jacobian’s, from the computational

point of view the Jacobian’s if you did it like this that is deadly.

So,  41  is  simply  an  explanation,  but  41  while  it  is  meaningful  to  interpret  it  is

computationally a disastrous. But to understand the kind of challenge we have I have

simply expressed 39 in a simple form of n is equal to 4 and expresses 40, so you can you

can see how much of competition involved in computing the gradient. Now how do we

avoid a matrix matrix multiplication and introduce matrix vector multiplication that is

done very cleverly by what is called the adjoint equation. So, let us look at 41.
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So, in this case the gradient is given by the sum of these products I am sorry; sum of

these products; sum of these products. Now look at look at the beauty of the structure of

this now. We are going to successively expand the matrix matrix multiplication involved

in here recursively. So, this is this is the structure I want to be able to compute efficiently.

In order to compute this efficiently again I am going to give an example.
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Let lambda 3; so, I am going to introduce some new variables. These variables lambdas

are related are somewhat related to the Lagrangian multiplier that we have seen earlier.

So, let me set lambda 4 is equal to f of 4; lambda 4 is equal to f of 4. Then I will compute

lambda 3 to be equal to D 3 transpose lambda 4 plus f 3. So, that gives rise to this

formula. Lambda 2 is equal to D 2 transpose lambda 3 plus f 2 that give rise to this

expression.  Lambda  1  is  equal  to  D  1  transpose  lambda  2  that  gives  rise  to  this

expression, you can see that is delta x.

Therefore,  when I have only four observations I can compute the gradient simply by

involving matrix vector multiplication. What is the matrix vector multiplication? Look at

this now. Lambda 4 is f 4 there is no matrix multiplication. To compute lambda 3 this is

D 3 transpose M is a matrix lambda is a vector. So, there is matrix vector multiplication

addition of a vector: one matrix vector multiplication addition of a vector, one matrix

vector multiplication addition of a vector.

Now if I did this like this involving only matrix vector operation you can see by iterating

backward in time I have gotten the explicit expression for the gradient. So, what does

this suggest? This suggests that we can avoid matrix matrix multiplication by introducing

a backward recurrence relation much like the adjoint equation that we had earlier and

that is the essence of the story.
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Therefore generalizing: I have given you a specific example to be able to get a handle on

the problem with n is equal to 4. For a general n I am going to define lambda N is equal

to f of N, I am going to define lambda k using D k transpose M lambda k plus 1 plus f of

k. So, compute from lambda N to lambda 1: if you compute lambda 1 then you can come

you can verify that the gradient of J x naught with refer to x naught is given by minus D

0 transpose M delta lambda 1. If M of x is equal to M x; that means if the model is a

linear  you  can  see  this  equation  reduces  to  the  one  that  we  did  in  the  Lagrangian

multiplier technique.

Therefore,  this  relation is  a generalization of the backward adjoint  dynamics  that  we

considered for the Lagrangian multiplier  technique; that is why this is called adjoint.

Again  at  adjoint  dynamics  this  whole  idea  of  using  first  the  propagation  of  the

perturbation adjoint principles from matrix theory and combination of adjoint dynamics

is this in the context of nonlinear system provides a very simple and a elegant means of

computing the gradient of the cost function with respect to the initial condition.
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Once the gradient is available we can again use it  in a general gradient or conjugate

gradient method. So, here is this summary of the 4-D war algorithm for the nonlinear

case.  So,  start  with x naught,  compute  the  nonlinear  trajectory, only for  the  sake of

illustration we use the base state and perturbation state and other things. Now that we

have understood everything I am now going to encapsulate all the analysis into the form

of a algorithm this is called 4-D war algorithm for the nonlinear case.

Start  with  the  initial  condition  x  naught,  compute  the  nonlinear  trajectory  from the

model. Then compute the Jacobian and evaluate the Jacobian along the model. Please

understand computationally it is expensive why is that each Jacobian is a n by n matrix

there are n square elements. So, I have to evaluate the n square elements of the matrix at

each  of  the  n  instances  in  time.  So,  that  is  going  to  be  a  pretty  demanding

computationally.

So, the question comes in: do you compute these matrices and store them? That is a no,

why? Storing these matrices which requires the n square space when n is of the order of

million there is no space in the world; in computers to be able to store all these matrices

for all time. So, what is that you do? You have a general expression for the matrix some

place, you evaluate that matrix on demand whenever you need the value at a given state.

So, there is a notion of a spacetime trade off involved in implementing these and one has

to be very clever in not to burn the space requirement by storing too many things. But I



also want to recognize, if you can store few things you can speed up the computation, but

the demands on the space becomes too large it makes no sense because it will eat up all

the memory and then sum and you may not have much space left for doing anything else.

So, great caution must be exercised in trying to be able to evaluate; you have to evaluate

the Jacobian. The question is should I store them or not? You probably cannot afford to

store them you simply compute them on the fly and use them wherever you want. That is

the basic idea.

So, once the Jacobian’s are computed I can compute f of k; f of k are vectors say f of k

can be stored matrixes is expensive; f of k is an it could be a million by vector. Million

vector is easier to store than million by million matrix. So, there is a tradeoff between

storage  in  time.  And now what  is  that  I  need to  do? I  need to  be able  to  start  the

backward dynamics starting from f n is equal to lambda N and lambda k is equal to

transpose of the Jacobian at time k; times lambda k plus 1 plus f of k. So, once I have

lambda 1 I can compute the gradient by this simple formula in step five. Once I have the

gradient I can compute the optimal x naught by simply repeating this until convergence

using  a  minimization  algorithm  the  gradient  algorithm  or  the  conjugate  gradient

algorithm.

But one thing I  want  to  remind you the J  function that  is  being minimized is  not a

quadratic  function.  I  would  like  to  be  able  to  bring  that  part  of  the  argument  very

carefully I want you to appreciate that the J of x naught- let us go back J of x naught is

given in 20 h of x is a nonlinear function. So, therefore, if we multiply both sides it is not

quadratic,  it  is much more nonlinear than quadratic.  So, if the function J of x is not

quadratic but much more nonlinear than quadratic; what does it mean? The performance

of  the  gradient  algorithm  and  conjugate  gradient  algorithm  are  guaranteed  only  on

quadratic functions. The function that is of interest here is not a quadratic function.

Therefore, the performance of gradient algorithm or the conjugate gradient algorithm for

the nonlinear case model nonlinear and the observational nonlinear could take longer to

minimize because are no general results guaranteeing convergence.

So, when to stop, how far to go all these things are questions whether one has to contend

with  in  trying  to  decide  what  kind  of  stopping  criterion  one  could  use  to  stop  the

minimization  process.  That  is  a  problem  quite  apart  from the  theory  that  we  have



developed.  But  I  want  you to  understand  that  that  is  an  integral  part  of  the  overall

development of the package if you are interested in trying to program this.

So, with this we have come to the end of the introduction to 4-D war. So, let me quickly

summarize a 4-D war or adjoint method is essentially a solution of the inverse problem

within the dynamic context.  Given a bunch of n observations noisy observations that

contain information about the state I would like to be able to determine the optimal initial

state we pose this as the minimization problem is the constrained minimization problem

this can be solved in one of two ways; either as a strong constraint Lagrangian multiplier

problem or by using variational methods. And I am trying to understand and quantify

propagation of variation through the model and adjoint properties of adjoint operators.

So, I have illustrated these two complimentary methods of analysis by one using linear

model  linear  observation  another  using  nonlinear  model  nonlinear  observation;  this

covers pretty large area of techniques that is known for solving deterministic dynamic

inverse problem where the model is deterministic and assumed to be perfect,  but the

observations are noisy.
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We  would  like  to  encourage  you  to  perform  several  relay  computation  a  related

experiments. I am going to go over this in some detaill let us spend a couple of minutes

on this. Consider a very simple scalar model x k plus 1 is equal to a times x k; consider

an observation Z k is equal to V k. Please remember the model is linear the observation



is linear; there is no h, h is identity is the simplest of the possible model. The model M is

the matrix is simply a scalar a. V k is the observation covariance which is sigma square I

am going to ask you to make take it as 0.5. So, my suggestion to you is to pick a is equal

to 1, generate a sequence of state with n is equal to 50 generate observations from one to

50 by adding noise to that store this sequence of observations.

Once we have chosen a set of sequence of observations now I am going to consider

different observation sets. O 1 I am going to consider assimilating all the observations.

Another one I am going to consider assimilating only a subset of observation spaced four

units apart. And then I am going to ask you to simulate even a further subset 1 10 20 30

40 and 50. So, what is that we are trying to do? We are trying to assimilate different

subsets of observation smaller larger and the largest possible observation.

What is the idea? I would like you to be able to perform the data simulation experiment

with different observation sets, and I would like you to be able to compare the quality of

the recovered x naught initial condition. So in order to do that, once you have developed

the observation  now I would like to  be able  to  start  the forecast  mode.  To start  the

forecast mode I do not know what is up let us forget about the states that are used for

observation. So I am going to assume, I am going to start the forecast model with 0.5, I

am still going to use a is equal to 1. I want to use each set of observations and estimate

the  optimal  x  naught  using  the  procedure  we  talked  about.  I  would  like  you  to  in

particular use the gradient method.

Being the linear case the J function is quadratic. If the J function is quadratic gradient

method should work reasonably well. So, I would like you to discuss the impact of the

varying the number of observation and the quality of estimate. This I would like you to

do with one variance, then you could once you program this you can then change sigma

square we can make sigma square less sigma square more. So, you can discuss a variety

of cases.

The impact of the estimate on the observation noise, you can also discuss the impact of

estimate and the number of observations. So, one can create quite a variety of computer

related  projects.  So,  this  is  a  very  good  example  that  can  be  used  to  test.  Your

understanding of the basic mechanics of the 4-D war this problem can be solved using

Lagrange multiplier technique. So, I would like to encourage you to be able to apply the



graduate multiplier  technique to solve this  linear  problem I believe it  will  be a very

educative exercise to do this pencil paper and program and plot and discuss the results.
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Then I am going to give you a nonlinear dynamics which is a again a very interesting

dynamics,  this  is  called  the  logistic  equation.  When the  parameter  is  4,  this  logistic

equation is supposed to exhibit extreme sensitivity with the initial condition. The model

actually exhibits chaotic behavior for any initial condition in this range. So, the previous

problem is an easy problem this is a slightly more difficult problem, but still I would like

you to make your hands dirty by doing this.

Start with the x naught equal to 0.5, generate a set of observations. Again I have given

you  observational  covariance  use  sigma  square  is  equal  to  0.5,  generate  20  of

observations. Then start the model from a wrong initial condition. Then assimilate all the

20 observations  into the esteem and find the optimal  estimate.  Now look at  that  the

observations were generated using 0.5 the forecast is used started from 0.8. So, forecast

will have the error you are going to use the 4-D war method to be able to correct the

forecast error in the nonlinear model.

So, I would like you to utilize the adjoint method that we have described in solving this

problem. I hope you will spend enough time to be able to solve these two problems. If

you solve these two problem by applying this method first pencil paper and then program

it you can say you understand 4-D war methods (Refer Time: 53:58).



With  that  we conclude  our  coverage  of  an  introduction  to  solving  inverse  problems

within the context of deterministic dynamic models with noisy observations.

Thank you.


